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Abstract. This paper discusses the issue of mixing di↵erent argumen-
tation semantics in a single Dung’s argumentation framework. The gen-
eral notion of combination schema is defined to model a specific way of
mixing argumentation semantics, and several properties that may be de-
sirable for a combination schema are introduced at an abstract level. A
specific combination schema is then evaluated in the light of such prop-
erties, showing that there are several interesting challenges both from a
conceptual and a technical perspective still to be tackled.
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1 Introduction

Dung’s model of abstract argumentation focuses on evaluating the justification
of a set of arguments related by an attack relation [7]. To this purpose, arguments
are simply represented as nodes of a directed graph, called abstract argumen-

tation framework, and binary attacks between them correspond to the edges of
the graph. In this general setting, several argumentation semantics have been
defined to determine the justification state of the arguments. Di↵erent semantics
reflect di↵erent intuitions and are meant to satisfy specific properties and/or ful-
fill some desired behavior in problematic examples [5, 2]. Moreover, they feature
di↵erent degrees of skepticism, i.e. they make more or less committed choices
about argument justification, and exhibit di↵erent computational complexities.

With the exception of [10], all proposals are intended to apply a single argu-
mentation semantics at a global level, under the assumption that the involved
attacks between arguments are essentially homogeneous. However, in [10, 8, 4]
various motivations have been presented to mix di↵erent semantics in the same
argumentation framework. First, in a complex argumentation framework di↵er-
ent parts may model di↵erent application contexts, thus a specific semantics may
be suitable for each of these parts. Examples involving conflicts of heterogeneous
nature include approaches to integrate epistemic and practical arguments [9], and
modelling choices underlying specific assumptions on the treatment of conflicts
between arguments [4]. Moreover, in multi-agent systems di↵erent reasoning at-
titudes may be adopted by individual agents, requiring multiple semantics to
model the interactions between agents. Finally, practical considerations, such as
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the cost of evaluation errors and the computational complexity of semantics, can
lead to the adoption of di↵erent semantics for di↵erent sets of arguments.

An approach to mix di↵erent argumentation semantics has been first pro-
posed in [10] and then recasted as an instance of a framework for combining
argumentation semantics based on decomposability [1], as sketched in [8]. In [4],
we have shown how this approach is able to manage epistemic and practical
arguments in several examples inspired from [9].

In this paper we adopt a more general perspective, by providing the following
contributions:

– We introduce the definition of combination schema as a general model of
approaches to mix argumentation semantics, and we define a number of
properties to characterize such approaches.

– We analyze the approach introduced in [10, 8] in the light of these properties,
also providing some preliminary results.

– We discuss several perspectives for further research opened by this prelimi-
nary analysis.

After some background in Section 2, the previous points are dealt with in
Sections 3, 4 and 5, respectively. Proofs of the results are omitted due to space
limitations.

2 Background

We follow the traditional definition of argumentation framework introduced by
Dung [7] and define its restriction to a subset of arguments.

Definition 1. An argumentation framework is a pair AF = (Ar , att) in which

Ar is a finite and non empty set
1
of arguments and att ✓ Ar⇥Ar. An argument

A attacks an argument B, denoted as A ! B, if (A,B) 2 att. An argument A
such that for no B B ! A is called initial. An argument B such that (B,B) 2 att

is called self-attacking. Given a set Args ✓ Ar, we denote as Args
+

the set of

arguments attacked by Args, i.e. Args
+ = {A | 9B 2 Args , (B,A) 2 att}. The

set Args is conflict-free i↵ Args \ Args
+ = ;. Given a set Args ✓ Ar, the

restriction of AF to Args, denoted as AF#Args , is the argumentation framework

(Args , att \ (Args ⇥ Args)).

In this paper we adopt the labelling-based approach to the definition of argu-
mentation semantics. A labelling assigns to each argument of an argumentation
framework a label taken from the set {in, out, undec}, where the label in means
that the argument is accepted, the label outmeans that the argument is rejected,
and the label undec means that the status of the argument is undecided. For
technical reasons, we define labellings both for argumentation frameworks and
for arbitrary sets of arguments.

1 In the general definition, the set of arguments may be infinite or empty.
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Definition 2. Given a set of arguments Args, a labelling of Args is a total

function Lab : Args �! {in, out, undec}. The set of all labellings of Args is de-

noted as LArgs . Given an argumentation framework AF = (Ar , att), a labelling
of AF is a labelling of Ar. The set of all labellings of AF is denoted as L(AF ).
Given a labelling Lab, we write in(Lab) for {A | Lab(A) = in}, out(Lab) for

{A | Lab(A) = out} and undec(Lab) for {A | Lab(A) = undec}. For a la-

belling Lab of Args, the restriction of Lab to a set of arguments Args
0 ✓ Args,

denoted as Lab#Args0 , is defined as Lab \ (Args 0 ⇥ {in, out, undec}). We ex-

tend this notation to set of labellings, i.e. given a set of a labellings L ✓ LArgs ,

L#Args0 , {Lab#Args0 | Lab 2 L}.

A labelling-based semantics prescribes a set of labellings for each argumen-
tation framework.

Definition 3. Given an argumentation framework AF = (Ar , att), a labelling-

based semantics S associates with AF a subset of L(AF ), denoted as LS(AF ).

Two notions of justification, i.e. skeptical and credulous, can then be intro-
duced with respect to a semantics.

Definition 4. Given a labelling-based semantics S and an argumentation frame-

work AF , an argument A is skeptically justified under S if 8Lab 2 LS(AF )
Lab(A) = in; an argument A is credulously justified under S if 9Lab 2 LS(AF ) :
Lab(A) = in.

In general, a semantics encompasses a set of alternative labellings for a single
argumentation framework. If a semantics S is defined in such a way that such a
set is always non empty, i.e. 8AF,LS(AF ) 6= ;, then S is said to be universally

defined. Moreover, a semantics may be defined so that a unique labelling is
always prescribed, i.e. for every argumentation framework AF , |LS(AF )| = 1.
In this case the semantics is said to be single-status, while in the general case
it is said to be multiple-status. Note that according to the previous definitions a
single-status semantics is universally defined.

In the labelling-based approach, a semantics definition relies on some legality
constraints relating the label of an argument to those of its attackers.

Definition 5. Let Lab be a labelling of the argumentation framework (Ar , att).
An in-labelled argument is said to be legally in i↵ all its attackers are labelled

out. An out-labelled argument is said to be legally out i↵ it has at least one

attacker that is labelled in. An undec-labelled argument is said to be legally
undec i↵ not all its attackers are labelled out and it does not have an attacker

that is labelled in.

We now introduce the definitions of labellings corresponding to traditional
conflict-free, admissible and complete semantics.

Definition 6. Let AF = (Ar , att) be an argumentation framework. A conflict-
free labelling is a labelling Lab where every in-labelled argument does not have

an attacker that is in-labelled, and every out-labelled argument is legally out.
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Definition 7. Let AF = (Ar , att) be an argumentation framework. An admis-
sible labelling is a labelling Lab where every in-labelled argument is legally in

and every out-labelled argument is legally out.

Definition 8. A complete labelling is a labelling where every in-labelled argu-

ment is legally in, every out-labelled argument is legally out and every undec-

labelled argument is legally undec.

On this basis, the labelling-based definitions of several argumentation seman-
tics can be introduced. The semantics are defined by referring to the commitment
relation between labellings [2].

Definition 9. Let Lab1 and Lab2 be two labellings. We say that Lab2 is more
or equally committed than Lab1 (Lab1 v Lab2) i↵ in(Lab1) ✓ in(Lab2) and

out(Lab1) ✓ out(Lab2).

Definition 10. Let AF = (Ar , att) be an argumentation framework. A stable
labelling of AF is a complete labelling without undec-labelled arguments. The

grounded labelling of AF is the minimal (w.r.t. v) labelling among all complete

labellings. A preferred labelling of AF is a maximal (w.r.t. v) labelling among

all complete labellings. The ideal labelling of AF is the maximal (under v)

complete
2
labelling Lab that is less or equally committed than each preferred

labelling of AF (i.e. for each preferred labelling LabP it holds that Lab v LabP ).

The uniqueness of the grounded and the ideal labelling has been proved
in [6]. Accordingly, grounded and ideal semantics are single-status, the other
semantics are multiple-status. Admissible, complete, stable, grounded, preferred,
ideal semantics are denoted in the following as AD, CO, ST, GR, PR and ID,
respectively. Since AD and CO are mainly used as a fundamental notions rather
than as semantics for argument evaluation, in the following we will focus on ST,
GR, PR and ID.

Argumentation semantics can be compared w.r.t. the tendency of making
more or less committed choices about argument justification. In particular, since
argument justification has been introduced according to a skeptical and credu-
lous perspective, two corresponding skepticism relations can be defined between
semantics.

Definition 11. Given two labelling-based semantics S1 and S2, S1�S
SKS2 i↵

for any AF where LS1(AF ) 6= ; and LS2(AF ) 6= ;, it holds that 8Lab2 2
LS2(AF ) 9Lab1 2 LS1(AF ) such that Lab1 v Lab2.

Intuitively, according to the skeptical viewpoint on argument justification,
S1�S

SKS2 indicates that S1 is not more committed (or, equivalently, not less
skeptical) than S2, since every labelling in LS2(AF ) has a more skeptical coun-
terpart in LS1(AF ), while LS1(AF ) can include additional unrelated labellings

2 Literally, the original definition refers to an admissible labelling rather than a com-
plete labelling. However, the definition adopted here is equivalent to the original one,
since it can be shown that the ideal labelling is a complete labelling [6].
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Fig. 1. Hasse diagrams of the semantics according to the skeptical relations.

that can only lead to less committed choices w.r.t. skeptical justification of ar-
guments.

Definition 12. Given two labelling-based semantics S1 and S2, S1�S
CRS2 i↵

for any AF where LS1(AF ) 6= ; and LS2(AF ) 6= ;, it holds that 8Lab1 2
LS1(AF ) 9Lab2 2 LS2(AF ) such that Lab1 v Lab2.

According to the credulous viewpoint on argument justification, S1�S
CRS2

indicates that S1 is not more committed (or, equivalently, not less skeptical)
than S2, since every labelling in LS1(AF ) has a more committed counterpart
in LS2(AF ), and LS2(AF ) can include additional unrelated labellings that can
potentially lead to more committed choices w.r.t. the credulous justification of
arguments.

The Hasse diagrams of the semantics considered in this paper according to
the skeptical and the credulous perspective are shown in Figure 1. Basically, arcs
connect pairs of comparable semantics, and lower semantics are less committed
than higher ones.

With abuse of notation, we extend the previous notions to sets of labellings,
i.e. given two sets of labellings L1 and L2 of L(AF ):

– L1�S
SKL2 i↵ L1 6= ;, L2 6= ;, and 8Lab2 2 LS2(AF ) 9Lab1 2 LS1(AF ) such

that Lab1 v Lab2

– L1�S
CRL2 i↵ L1 6= ;, L2 6= ;, and 8Lab1 2 LS1(AF ) 9Lab2 2 LS2(AF ) such

that Lab1 v Lab2

3 Combination schema and relevant properties

The notion of mixing models an argumentation framework partitioned into a set
of subframeworks each managed by an associated semantics.
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Definition 13. A mixing m is a tuple (AF,P,SEM, S), where AF is an agu-

mentation framework (Ar , att), P = {P1, . . . , Pn} is a partition
3
of Ar, SEM

is a set of semantics, and S : P ! SEM is a total function associating a se-

mantics to each element of the partition such that 8S 2 SEM, 9Pi 2 P such

that S(Pi) = S. Given a mixing m, the elements in m are denoted as AFm, Pm,

SEMm, Sm, respectively. Moreover, the set of all possible mixings is denoted as

MIX.

In general there are many possible ways to combine the semantics, each
corresponding to a specific combination schema as in the following definition.

Definition 14. A combination schema cs is a function which, given a mixing

m 2 MIX, returns an element of 2L(AFm)
, i.e. a set of labellings of the argu-

mentation framework associated to m.

In a sense, the notion of combination schema generalizes the notion of se-
mantics. Whereas a semantics identifies a way to assign a set of labellings to an
argumentation framework, a combination schema identifies a way to assign a set
of labellings to a mixing, on the basis of the argumentation semantics associated
to the elements of the partition.

In the following, several properties of combination schemas will be introduced
to characterize di↵erent proposals for combining argumentation semantics. These
properties are not meant to be mandatory, but they may allow one to know
whether a combination schema is suitable to a specific application context.

In general, a property of a combination schema cs requires the set of la-
bellings cs(m) (with m possibly subject to specific constraints) to satisfy a set
of conditions, where these conditions may depend in turn on the characteristics
of the input mixing m. As it will be shown in the following, some properties
do not hold in general, but they do if the set of semantics in the input mixing
is restricted and/or the partition of the arguments in the input mixing satisfies
specific constraints.

As to partitions, the relevant constraints can be expressed by the notion of
partition selector of [1] here recalled.

Definition 15. A partition selector F is a function receiving as input an argu-

mentation framework AF = (Ar , att) and returning a set of partitions of Ar.

In this paper three restrictions on partitions are worth considering. The first
one restricts the partitions to those including one set only, i.e. the whole set of
arguments of the argumentation framework.

Definition 16. For any argumentation framework AF = (Ar , att), FWH(AF ) ,
{{Ar}}.

The other two restrictions, as in [1], are based on the notion of strongly
connected components.

3 i.e.
S

i2{1,...,n} Pi = Ar and i 6= j ! Pi \ Pj = ;
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Definition 17. Given an argumentation framework AF = (Ar , att), the set of

strongly connected components of AF , denoted as SCCSAF , consists of the equiv-

alence classes of arguments induced by the binary relation of path-equivalence,

i.e. the relation ⇢(A,B) defined over Ar⇥Ar such that ⇢(A,B) holds if and only

if A = B or there are directed paths from A to B and from B to A in AF .

In particular, we consider the partition coinciding with the strongly con-
nected components SCCSAF , identified by the partition selector FSCC, and the
partitions where each element is the union of some strongly connected compo-
nents, identified by the partition selector F[SCC.

Definition 18. For any argumentation framework AF = (Ar , att), FSCC(AF ) ,
{SCCSAF }, F[SCC(AF ) , {{P1, . . . , Pn} | {P1, . . . , Pn} is a partition of Ar and

8i 2 {1, . . . n} ((S 2 SCCSAF ^ Pi \ S 6= ;) ! S ✓ Pi}).

Summing up, as to property restrictions we say that:

– a property is satisfied by a combination schema cs under a given set of
semantics SSEM if it holds for any mixing m such that SEMm ✓ SSEM;

– a property is satisfied by a combination schema cs w.r.t. a partition selector
F if it holds for any mixing m such that Pm 2 F(AFm).

In the following the properties considered in this paper are introduced.

3.1 Properties related to Semantics Dependence and Independence

First, an expected requirement for any reasonable combination schema is that
it should actually depend on the semantics assigned to the partition elements of
the input mixing. This requirement can however be enforced at di↵erent levels
of strictness.

At the lowest level, if a semantics S is applied to the whole argumentation
framework (i.e. the partition includes just one set coinciding with the set of
arguments Ar), then one can require the labellings returned by the combination
schema to coincide with those returned by S.

Definition 19. A combination schema cs is reasonable if 8m 2 MIX, if Pm =
{Ar} then cs(m) = LSm(Ar)(AFm).

A more demanding requirement is to extend this property to all cases where
a unique semantics S is assigned to the partition elements.

Definition 20. A combination schema cs is adherent to a unique semantics if

8m 2 MIX, if SEMm = {S} then cs(m) = LS(AFm).

It is immediate to see that a combination schema is reasonable i↵ it is ad-
herent to a unique semantics w.r.t. FWH.

One can view the property of adherence to a unique semantics as a conjunc-
tion of two partial properties, namely top-down and bottom-up adherence to a
unique semantics.
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Definition 21. A combination schema cs is top-down adherent to a unique se-

mantics if 8m 2 MIX, if SEMm = {S} then LS(AFm) ✓ cs(m).

Definition 22. A combination schema cs is bottom-up adherent to a unique

semantics if 8m 2 MIX, if SEMm = {S} then cs(m) ✓ LS(AFm).

In a sense, top-down adherence requires the application of the combination
schema to be a complete procedure w.r.t. the semantics involved, i.e. the obtained
labellings include those prescribed by the semantics, while bottom-up adherence
corresponds to correctness of the procedure, i.e. all obtained labellings are also
prescribed by the semantics.

As a sort of counterpart of dependence properties, one may require the result
of the combination schema to sometimes depart from the original semantics.

Definition 23. A combination schema cs is non symbiotic if 9m 2 MIX and

9P 2 Pm such that cs(m)#P * (LSm(P )(AFm))#P .

3.2 Existence properties

Another significant requirement for a combination schema is being actually able
to identify a non empty set of labellings for the mixing in input. Of course, this
cannot be required in general for a reasonable argumentation schema if one of
the argumentation semantics of the input mixing S is not universally defined. For
instance, the schema returns the (potentially empty) set of labellings prescribed
by S when applied w.r.t. a partition of FWH with the unique semantics S involved.
As a consequence, we introduce the universal definition requirement under the
assumption that all the semantics are universally defined.

Definition 24. A combination schema cs is universally defined if 8m 2 MIX
such that 8S 2 SEMm S is universally defined, it holds that cs(m) 6= ;.

3.3 Properties that warrant basic properties of labellings

Whenever the labellings prescribed by all the involved semantics satisfy a desir-
able property, it would be nice this property to be satisfied also by the labellings
returned by the combination schema. The basic properties we consider for la-
bellings are conflict-freeness, admissibility, and completeness.

Definition 25. A semantics S satisfies the CF (admissibility, completeness)

criterion i↵ for any argumentation framework AF , all the labellings in LS(AF )
are conflict-free (admissible, complete) labellings.

Definition 26. A combination schema cs is conflict-freeness (admissibility) (com-
pleteness) preserver if 8m 2 MIX, if 8S 2 SEMm S satisfies the CF (admis-

sibility, completeness) criterion, then all the labellings in cs(m) are conflict-free

(admissible, complete) labellings.

127



3.4 Skepticism-related properties

These properties concern the characterization of the labellings obtained by mix-
ing semantics w.r.t. the skepticism relations between semantics.

We first introduce a criterion of skepticism monotony, basically stating that
the level of skepticism of the labellings obtained by a combination schema mono-
tonically depends on that of individual semantics. This can be formalized by
requiring that replacing a semantics associated to a subframework with a more
commited one should correspondingly result in a more committed set of la-
bellings.

Definition 27. A combination schema cs is monotonic w.r.t. �S
, with �S 2

{�S
SK ,�S

CR}, i↵ 8m1,m2 2 MIX such that AFm1 = AFm2 and Pm1 = Pm2 , if

8Pi 2 Pm1 Sm1(Pi)�SSm2(Pi) then cs(m1)�Scs(m2).

We then consider a criterion of boundedness requiring for any mixing that if
the set of involved semantics are lower (upper) bounded by a semantics w.r.t. a
skepticism relation, then the resulting set of labellings is also bounded.

Definition 28. A combination schema cs is lower-bounded w.r.t. �S
, with

�S 2 {�S
SK ,�S

CR}, i↵ 8m 2 MIX, if there is a semantics S
0
such that 8S 2

SEMm S
0�S

S then LS0(AFm)�Scs(m). A combination schema cs is upper-
bounded w.r.t. �S

, with �S 2 {�S
SK ,�S

CR}, i↵ 8m 2 MIX, if there is a se-

mantics S
0
such that 8S 2 SEMm S�S

S
0
then cs(m)�S

LS0(AFm).

It should be noted that, while seemengly related, monotonicity and (lower or
upper) boundedness of combination schemas are independent properties. Mono-
tonicity may hold even if the labellings arising from the combination schema are
not bounded by a maximal (or minimal) semantics w.r.t. skepticism.

4 A decomposability-based approach

An approach to combine di↵erent argumentation semantics generalizes to multi-
ple semantics the model introduced in [1] to analyze the decomposability prop-
erties of individual semantics, i.e. concerning the correspondences between se-
mantics outcome at global and local level. This approach, first proposed in [10]
and described in [8], works as follows. Given a mixing m = (AF,P,SEM, S), for
each element Pi of the partition P a function which models the application of
the semantics S(Pi) at the local level is applied, to determine the set of the la-
bellings restricted to Pi. This local computation depends on the topology of the
subframework AF#Pi , on the attacks received by Pi from the external arguments
and on the labels assigned to these attacking arguments by the other local func-
tions. The following definition introduces the corresponding combination schema
csdb.

Definition 29. Given a mixing m = (AF,P,SEM, S), csdb(m) , {
S

Pi2Pm
LabPi |

LabPi 2 FS(Pi)(AF#Pi , Pi
inp, (

S
j=1...n,j 6=i LabPj )#Pi

inp , Pi
R)}, where FS(Pi) a
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local function which assigns to the arguments in Pi a set of labellings on the

basis of AF#Pi , of the set Pi
inp = {A /2 Pi | 9B 2 Pi : A ! B} (including the

external arguments attacking Pi and playing the role of input arguments for the

set Pi), of the labels externally assigned to them, i.e. (
S

j=1...n,j 6=i LabPj )#Pi
inp,

and of the attack relation Pi
R ⌘ att \ (Pi

inp ⇥ Pi) from the input arguments of

Pi
inp

to Pi.

The question is then how to identify the local function FS of a semantics S
to be used in Definition 29. The local function can be univocally identified if the
semantics S is complete-compatible.

Definition 30. A semantics S is complete-compatible if it satisfies the following

constraints:

1. For any argumentation framework AF = (Ar , att), every labelling Lab 2
LS(AF ) satisfies the following conditions:

– if A 2 Ar is initial, then Lab(A) = in

– if B 2 Ar and there is an initial argument A such that A ! B, then

Lab(B) = out

– if C 2 Ar is self-attacking, and there are no attackers of C besides C
itself, then Lab(C) = undec

2. for any set of arguments I and any labelling LabI 2 LI , the argumentation

framework AF 0 = (I 0, att 0), where I 0 = I [ {A0 | A 2 out(LabI)} and

att
0 = {(A0, A) | A 2 out(LabI)} [ {(A,A) | A 2 undec(LabI)} admits a

labelling
4
, i.e. |LS(AF 0)| > 0.

In this case, the local function of S can be univocally determined by con-
sidering each input tuple (AFL, I,LabI , attI), and constructing a corresponding
standard argumentation framework [1] where the input arguments I as well as
the attacks of attI are added to AFL, and the input labelling LabI is enforced
through the addition of initial arguments attacking out-labelled arguments of
I and self-attacks for all undec-labelled arguments of I (the input labelling is
enforced due to the fact that S is complete-compatible). The output of the local
function for the input (AFL, I,LabI , attI) then includes the set of labellings
obtained by applying the semantics to the standard argumentation framework,
restricted to the set of original arguments of AFL. This choice for the local
function, called canonical local function in [1], is necessary to guarantee the
combination schema csdb to be adherent to a unique semantics at least for the
simple cases represented by the standard argumentation frameworks identified
by the various input tuples.

It is easy to verify that CO, GR, PR and ID are complete-compatible.
The corresponding local functions can be explicitly expressed as in the following
proposition.

Proposition 1. The canonical local functions of complete, grounded, preferred

and ideal semantics are as follows:

4 Due to the first point, this labelling is necessary unique, i.e. |LS(AF 0)| = 1.
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– FCO(AF, I,LabI , attI) , {Lab 2 L(AF ) |
Lab(A) = in ! ((8B 2 (Ar [ attI) : (B,A) 2 att ,Lab(B) = out)
Lab(A) = out ! ((9B 2 (Ar [ I) : (B,A) 2 att ^ Lab(B) = in)
Lab(A) = undec ! (((8B 2 (Ar [ I) : (B,A) 2 att ,Lab(B) 6= in) ^ ((9B 2
(Ar [ I) : (B,A) 2 att ^ Lab(B) = undec)}

– FGR(AF, I,LabI , attI) , {Lab | Lab is minimal w.r.t. v in FCO(AF, I,LabI , attI)}
– FPR(AF, I,LabI , attI) , {Lab | Lab is maximal w.r.t. v in FCO(AF, I,LabI , attI)}
– FID(AF, I,LabI , attI) , {Lab | Lab is maximal w.r.t. v in FCO(AF, I,LabI , attI)⇤},

where FCO(AF, I,LabI , attI)⇤ = {Lab 2 FCO(AF, I,LabI , attI) | 8LabP 2
FPR(AF, I,LabI , attI)Lab v LabP }

Stable semantics is not complete-compatible, since self-attacking arguments
otherwise unattacked prevent any stable labelling to exist (see the second item of
Definition 30). It turns out that several local functions guarantee the combination
schema csdb to be adherent to a unique semantics. In particular, for all input
labellings with at least one undec-labelled argument, the output of the local
function can be choosen arbitrarily, as long as it includes no labellings with
undec-labelled arguments. To maximize the set of labellings, the following local
function can be adopted for ST:

FST(AF, I,LabI , attI) , {Lab 2 FCO(AF, I,LabI , attI) | undec(Lab) = ;}

As a simple example of application of csdb, consider the partitioned argu-
mentation as in Figure 2.

Considering a corresponding mixing m such that S(P1) = PR and S(P2) =
GR, the application of FPR returns for AF#P1 the labellings {(A, in), (B, out)}
and {(A, out), (B, in)}. Taking into account that A and B are the input ar-
guments of P2, it is easy to see that FGR returns for AF#P2 the labelling
{(C, out), (D, in)} both with the input labelling {(A, in), (B, out)} and with
the input labelling {(A, out), (B, in)}. Summing up, it turns out that csdb(m) =
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BA DC

P1: GR P2: ID

Fig. 3. A mixing showing that csdb is not universally defined.

{{(A, in), (B, out), (C, out), (D, in)}, {(A, out), (B, in), (C, out), (D, in)}}. This
example shows in particular that csdb is non symbiotic.

Considering instead a mixing m such that S(P1) = GR and S(P2) = PR,
the application of FGR returns for AF#P1 the labelling {(A, undec), (B, undec)},
and the application of FPR with such an input returns for AF#P2 a single-
ton including the labelling {(C, undec), (D, undec)}. Summing up, csdb(m) =
{{(A, undec), (B, undec), (C, undec), (D, undec}}.

In general, csdb is not universally defined, since in particular examples where
the partition elements are related by a cyclic relation induced by attacks the
resulting set of labellings is empty even if the involved semantics are univer-
sally defined. As an example, consider the mixing depicted in Figure 3. First,
note that P2 has B as its only input argument, and FID returns for AF#P2

the labelling {(C, out), (D, in)} with the input labelling (B, undec), the la-
belling {(C, undec), (D, undec)} with the input labelling (B, out), and the la-
belling {(C, out), (D, in)} with the input labelling (B, in). As to P1, FGR re-
turns for AF#P1 the labelling {(A, undec), (B, undec)} with the input labelling
(D, undec), the labelling {(A, undec), (B, undec)} with the input labelling (D, out),
and the labelling {(A, in), (B, out)} with the input labelling (D, in). It can be
seen that there is no labelling satisfying Defnition 29. In particular, if B is undec-
labelled then D is in-labelled according to ID, but in this case GR labels B
as out. If instead B is out-labelled then D is undec-labelled according to ID,
but in this case GR labels B as undec. Finally, if B is in-labelled then D is
in-labelled according to ID, but in this case GR labels B as out.

The outcome of the previous example is due to the peculiar behavior of
FID which is not monotonic, i.e. the outcome labellings does not respect the
v relations between input labellings. In particular, considering the input la-
bellings LabI

1 = (B, undec) and LabI
2 = (B, out) for which LabI

1 v LabI
2,

it turns out that FID(AF#P2 , {B},LabI1, {(B,C)}) = {(C, out), (D, in)}, and
FID(AF#P2 , {B},LabI2, {(B,C)}) = {(C, undec), (D, undec)}. Thus it does not
hold that FID(AF#P2 , {B},LabI1, {(B,C)}) v FID(AF#P2 , {B},LabI2, {(B,C)}).

On the other hand, csdb is universally defined under semantics with mono-
tonic canonical local functions.

Definition 31. Given a semantics S, its canonical local function FS is mono-

tonic if for every AF , I, attI and for every pair of labellings LabI
1
and LabI

2
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Fig. 4. csdb is not adherent to a unique semantics under {GR,PR}.

such that LabI
1 v LabI

2
, it holds that for every Lab1 2 FS(AF, I,LabI1, attI)

there is a labelling Lab2 2 FS(AF, I,LabI2, attI) such that Lab1 v Lab2.

Proposition 2. The combination schema csdb is universally defined under any

semantics S such that its canonical local function FS is monotonic.

In particular, since both FGR and FPR are monotonic, csdb is universally
defined under {GR,PR}.

Taking into account the relationship between csdb and the decomposability
schema proposed in [1], it is possible to prove that under some mild conditions
csdb is conflict-freeness, admissibility and completeness preserver.

Proposition 3. csdb is conflict-freeness, admissibility and completeness pre-

server under any set of semantics SSEM [ {ST} where all the semantics in

SSEM are complete-compatible.

As to semantics dependence, it is immediate to see that csdb is reasonable.
On the other hand, csdb is not in general adherent to a unique semantics, while
the following results can be obtained on the basis of [1]:

– csdb is adherent to a unique semantics under {ST}
– csdb is top-down adherent to a unique semantics under {GR,PR}
– csdb is adherent to a unique semantics under {GR,PR} w.r.t. F[SCC (and

thus also w.r.t. FSCC(AF )), but not under {ID}.

As a simple example showing that csdb is not adherent to a unique semantics
under {GR,PR}, consider the partitioned argumentation framework depicted
in Figure 4. In a corresponding mixing m1 such that Sm1(P1) = Sm1(P2) = PR

as well as in a mixing m2 such that Sm2(P1) = Sm2(P2) = GR, csdb re-
turns {(A, in), (B, out), (C, in), (D, out)}, {(A, out), (B, in), (C, out), (D, in)},
and {(A, undec), (B, undec), (C, undec), (D, undec)} as output labellings. On
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P1 P2

Fig. 5. Skepticism-related properties are poorly satisfied.

the other hand, LGR(AF ) = {{(A, undec), (B, undec), (C, undec), (D, undec)}},
and LPR(AF ) includes the labellings {(A, in), (B, out), (C, in), (D, out)} and
{(A, out), (B, in), (C, out), (D, in)}.

Skepticism-related properties turn out to be poorly satisfied, in particular
according to the skeptical perspective. As to monotonicity, consider the parti-
tioned argumentation framework of Figure 5, and two corresponding mixings m1

and m2 such that Sm1(P2) = Sm2(P2) = PR, Sm1(P1) = GR and Sm2(P1) =
PR. Clearly, Sm1(Pi)�S

SKSm2(Pi) for i 2 {1, 2}. However, it is not the case
that csdb(m1)�S

SKcsdb(m2), thus csdb is not monotonic w.r.t. �S
SK . In fact, it

turns out that csdb(m1) = {{(A, undec), (B, undec), (C, out), (D, in)}}, while
csdb(m2) = {{(A, in), (B, out), (C, in), (D, out)}, {(A, in), (B, out), (C, out), (D, in)},
{(A, out), (B, in), (C, out), (D, in)}}. csdb is not upper-bounded, since 8S 2
SEMm1 S�S

SKPR, and it is not the case that csdb(m1)�S
SKLPR(AF ). The

example of Figure 4 shows that csdb is not lower-bounded either, since for m1 it
does not hold that LPR(AF )�S

SKcsdb(m1).
As to the credulous perspective, the following result has been obtained.

Proposition 4. csdb is lower-bounded w.r.t. �S
CR under {GR,PR}.

5 Discussion and perspectives for further research

We believe the considerations and results presented in this paper open the way
to several interesting investigations, both at a conceptual and a technical level.

From a technical level, some other semantics can be considered, including
e.g. semi-stable and CF2 semantics.

At a more general level, one might wonder whether the set of identified
principles should be enlarged or, conversely, whether some principles should be
weakened or given up. On the one hand, a significant set of properties has been
identified for argumentation semantics [3, 11] and one may consider the relation-
ship with combination schema. On the other hand, some principles seem rather
di�cult to achieve, in particular those related to skepticism. For instance, the
example of Figure 5 suggests that the reason why csdb is not monotonic w.r.t.
�S

SK concerns the semantics rather than csdb, in particular the beaviour of PR

that prescribes for AF#P2 with an undecided input a more committed outcome
than the one that would be obtained with a more decided input. To put it in
other terms, while PR leaves all arguments undecided in the argumentation

133



framework of Figure 5, it yields argument D as justified if the two-lenght cycle
in P1 is replaced with a self attacking argument which attacks C. According to
these considerations, skepticism-related properties can be considered not appro-
priate, or at least they should be refined to take into account the behavior of
the semantics involved.

A relevant question concerns the analysis of the relationship holding between
principles. For instance, under a set of semantics prescribing labellings for which
v is coreflexive, if a combination schema satisfies both lower-boundedness and
upper-boundedness then it is adherent to a unique semantics. This again confirms
that skepticism-related properties in the current form are di�cult to satisfy.

More generally, an interesting question is whether the proposed principles
can actually be satisfied altogether. This in turn relates to the identification of
the space of combination schemas that are worth considering. For instance, a
combination schema which takes into account a greater set of input arguments
w.r.t. csdb may be able to be adherent to a unique semantics.

Another interesting issue to consider is the case when the same argument is
interpreted according to di↵erent semantics with respect to di↵erent attackers,
which may require an extension of the notion of mixing.
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