
Teaching Programming at Scale

Angelika Kaplan, Jan Keim, Yves R. Schneider, Maximilian Walter, Dominik Werle, Anne Koziolek, Ralf Reussner
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{angelika.kaplan, jan.keim, yves.schneider, maximilian.walter, dominik.werle, koziolek, reussner}@kit.edu

Abstract—Teaching programming is a difficult task and there
are many different challenges teachers face. Beyond considera-
tions about the right choice of teaching content and presentation
in lectures, scaling practical parts of courses and the exami-
nation and grading to course sizes of around 1,000 students
is particularly challenging. We believe programming is a skill
that needs to be trained practically, which creates additional
challenges, especially at this scale. In this paper, we outline
learning goals for our undergraduate programming course and
the structure for the course we derived from these goals. We
report on the challenges we see when teaching programming
at scale and how we try to overcome them. For example, one
central challenge is how to grade a high number of students
in a good, transparent, and efficient way. We report on our
approach that includes automated tests as well as tool support
for manual code review. Over the years, we experienced different
issues and learned valuable lessons. We present corresponding
key takeaways that we derived from our experiences.

Index Terms—Programming, Object Oriented Programming,
Software testing, Teaching, Computer aided analysis

I. INTRODUCTION

Teaching programming is a challenging task. Different
programming concepts need to be explained in an appropriate
way for students to grasp them, their general application, and
their concrete realization in a chosen programming language.
In universities and schools, usually, the additional task of
grading comes up. Grading is essential in our education
systems and is equally challenging. At the Karlsruhe Institute
of Technology (KIT), we teach object-oriented programming to
undergraduates in their first semester using Java with different
learning objectives stating that students:

• know the basic structures and details of the Java program-
ming language, foremost control structures, simple data
structures and how to handle objects,

• can implement non-trivial algorithms and can apply basic
principles of programming and software engineering, and

• are able to create executable Java programs of medium
size that withstand automated quality assurance including
automated tests and enforcement of code conventions.

Our course follows the learning-by-doing principle for teach-
ing programming which emphasizes the role of programming as
skill that requires practical training. This view is also supported
by research on programming education [1]–[3]. This is why we
employ practical programming assignments instead of a hand-
written exam or similar examination techniques. Therefore,
one of our learning objectives is that students should be able

to write 500 to 1,000 lines of code based on a complex and
precise specification.

Based on our learning objectives, we have three major
goals for the assessment of the students’ solutions. First, the
correctness of the program is important to us. Second, we
want the students to program in a good and clean object-
oriented manner. Counter-examples for that include god classes
(programs with all functionality and logic in one class, cf. [4,
p. 136ff]), high coupling between classes as well as low
cohesion. Third, students need to submit self-made programs
for assignments. No code written by another student or person
is allowed in the submitted programs, including any kind of
code-copying from others or similar kinds of plagiarism.

For smaller course sizes, achieving these goals is challenging
and already requires some effort. However, the number of
students joining our programming course increased by roughly
45% over the last five years. At present, we have about 1,000
students attending the lectures and almost all of them participate
in the practical exercises. Around 500 students take part in
the exam. When scaling the challenges up to this number of
students, additional challenges arise, such as assessing and
grading in an efficient, good, transparent, and fair way. These
properties rise from the following factors: We have only limited
time and personnel for grading, therefore we have to grade
efficiently. However, we want to grade in a good way which
means that students can learn and improve from their mistakes.
Therefore, the whole grading process should be clear and
transparent for students to understand. In addition, the grading
should be fair in a way that submissions with similar quality get
similar grades. Moreover, we have to make sure that students
are submitting their own solutions without cheating.

In the following, we present our approach and the efforts to
tackle the different challenges and share our experiences.

II. COURSE STRUCTURE

Our programming course consists of two parts: 1) a lecture
that teaches the theoretical knowledge for Java development
and 2) a set of practical exercises. The practical part consists
of five exercise sheets and weekly tutorials, which are held by
student teaching assistants. The tutorials are held in smaller
groups with about 25 students, teach the practical application
of concepts from the lecture, and present the solution to
the exercise sheets. Our student teaching assistants rate the
submitted exercise sheets regarding functional properties and
coding style. The course participants have to submit their

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 2

 Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

solutions using the Praktomat system, a submission system
for programming assignments, digitally. The structure of our
programming course is partly based on previous programming
courses at KIT like the structure described in [5], [6]. As
previously stated, we do not have group submissions but have
a strong emphasis on individual submissions. At the end of the
semester, the course is concluded with two tasks that determine
the grade for the course. Each task can be solved with about
1,000 lines of code [5]. Students only qualify for the final tasks
if they scored over 50% of the points over all exercise sheets.
The solutions for the final tasks are again digitally submitted
via the Praktomat system, just like the exercise sheets during
the semester. However, grading of these tasks is not done by
tutors.

A. Communication Infrastructure with Students

During the semester, we provide different information
sources for course participants. Besides the lecture and the
tutorials, we also have other forms of communication. First,
we provide a wiki, where we document the rules for grading
to provide transparency in this regard. In the wiki, students
can also find a beginner’s tutorial for Java. Second, we provide
forums where students can ask questions about the lecture
and the exercises. To ensure fairness and equality, questions
regarding the content of the exercises are only answered in the
forum. Here, students have the options to either write under
a pseudonym or under their real name. The main idea is that
students answer each other’s questions (cf. Section IV). The
teaching staff only answers questions that are not answered
by students. In the last semester, the student forum had about
300 threads with about 1,000 individual posts. Additionally,
we provide a separate private forum for our student teaching
assistants where they can exchange questions and information
about their tutorial. Besides the forum, we answered around
1,000 e-mails from students regarding organizational matters.

B. How to Cope with Cheating

As all submission are only done digitally, including the final
exams, students might be able to buy or copy solutions from
other students. This is a well known problem in exercises that
are submitted digitally [7], [8] and we experienced this issue
before. Therefore, it is necessary to cope with this kind of
cheating. We address this using two different methods:

First, every student needs to pass a special exercise. This
exercise is similarly organized to a classical written exam.
Students come to the exercise, where we check their identity
and give them a simple exercise that they need to answer
in writing. This exercise tests a minimal set of programming
concepts like simple array operations or variable initialization.
This still cannot guarantee that no bought solutions are
submitted, but at least guarantees that every student has
understood basic programming principles. From our experience,
everyone who has understood the basic principles passes this
exercise and the ones who fail lack significant knowledge.
We mostly ask questions in the domain of knowledge and
comprehension in regard to Bloom’s taxonomy [9] that are

easy to grade. However, a small part of this special exercise is
always targeted to capture whether the student understood the
basic principles and can apply them (Application, Analysis,
and Synthesis according to Bloom’s taxonomy).

Second, to detect solutions shared between multiple partici-
pating students, we use the automatic plagiarism checker JPlag
[10], [11]. JPlag compares each solution against all solutions
in the course using abstract syntax trees. However, before we
finally mark a solution as plagiarism, we manually check them
to filter out possible false positives. False positives often exist
in the simpler exercises at the start of the semester, where the
number of possible solutions is limited. Despite the fact that we
announce the plagiarism checks publicly at the beginning of the
semester, we unfortunately detect multiple cases of plagiarism
each semester. In the last semester (winter term 2018/2019),
almost 10% of the course participants were involved in such
cases.

III. GRADING STUDENTS

We differentiate between functional requirements and coding
style requirements for the grading of programming tasks.
Usually, the ratio of the points for functionality to style is
2 to 3. The basis of the functional evaluation is the degree
to which a program corresponds to the functionality specified
in the task description. This functional evaluation is carried
out almost entirely by automated checking of test cases. The
basis of the style evaluation is the degree to which a program
meets the principles of object-oriented design taught in the
lecture. This style evaluation is almost completely carried out
by manual code reviews.

The following section explains our grading process for
exercise sheets and final assignments. In general, this process
is identical for the exercise sheets and the final tasks.

1) After a task is created, the correction scheme for
evaluating the coding style is created and test cases
for testing functionality are developed.

2) After the submission deadline, further automated func-
tional and style tests can be performed on the submis-
sions.

3) Once these automated tests have been completed, the
manual correction is started. The source text files can
be edited by the corrector, for example to comment on
certain source code lines or to make suggestions for
improvements. In addition, the corrector can add general
comments to the submission.

4) The correction is published to the students after comple-
tion via the Praktomat. The students can take a look at all
test cases with their evaluation, all comments regarding
the grading, and all changes to the source code.

A. Automated Functional Tests

In almost all cases, functionality is checked automatically
through program output. All final tasks and most tutorial tasks
include a command line interaction. Student solutions are
compiled with each submission and automatically run several
of previously defined functional test cases. This automation

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 3

allows a much wider range of testing than would be possible
manually in realistic time. For the two final tasks, we had, on
average, 50 different test cases per task.

Test cases are usually divided into two groups: public and
private test cases. The public test cases are visible to students
during submission and are mandatory to pass a valid submission.
These test cases give the students feedback whether they have
correctly implemented the most important (basic) functionalities
before their final submission. Private test cases, on the other
hand, are only visible to students after the correction has been
completed. These test cases automatically check additional
functionalities like edge cases and more elaborated functionality
and thus form the basis for grading.

The functional test cases describe the expected command
line output for a given input. After the Praktomat compiles
the submission, the Praktomat executes the submission and
compares the solution’s output to the expected output. The
definition for individual test cases is done via a simple text file,
in which an input and the corresponding output are specified
line by line.

B. Grading Coding Style

While we check some coding styles automatically with
Checkstyle [12], such as indentation or mandatory comments,
some properties are manually reviewed. Before grading, we
create grading guidelines that contain information about the
required style and how to apply the grading guidelines. Because
of the high number of solutions and the scope of the exercises,
the grading cannot be done by one person but a group. The
grading normally takes around 670 person-hours.

The UI for grading in the Praktomat is illustrated in Figure 1.
On the right side, the correctors can see the solution of the
student as well as the results of the automated tests. They can
access the detailed results by clicking on each test. To attest
the solution, they can switch to the Attest solution tab.

This process originally caused some trouble: This process
was cumbersome because correctors had to remember the
line for the deduction (the reduction of points) and all
grading guidelines. Additionally, the quality and especially the
traceability for deductions varied between different correctors.
Moreover, it was sometimes hard to deduce the reason for the
deduction because of lacking reasoning or incomprehensibility.
Therefore, we developed the Praktomat Enhancement Tool
Suite (PETS). This tool is a web overlay written in JavaScript
for the existing Praktomat interface. The left frame of Figure 1
shows its parts containing additional information and features.
First, it shows the automatically calculated points (final grade)
of the student, here 20 points. Afterwards, it shows a list of
the structure of the current solution, where the red icon marks
the class with the main method of the solution. Below the
structure, it shows the automatically calculated functionality
points, here 13 points. Then, it shows for each style category
(OO-Modeling, Comprehensibility, Style) the current points
and a list of buttons. Each button represents a typical defect of
students’ solutions. For instance, the empty JavaDoc button is
used in case an empty JavaDoc exists or no JavaDoc exists at

all. In our experience, this is a widespread defect. In case of this
defect, a corrector would select the line in the editor and then
click the button. This automatically deduces a fixed number of
points and produces an explanatory text for the student. The
text contains the deduction, the reason for the deduction and the
line of the deduction. In case none of the predefined deductions
is applicable, a custom defect button exists. With the custom
button, a corrector can type an individual comment and decide
an individual deduction. It is also used for further explanation
when the general description of a button is not enough. The
deduction for each defect is individually configurable and
correctors can reuse individually created comments within the
scope of one solution similarly to the buttons. For the premade
buttons, a threshold of minimum number of occurrences can
be configured until points are deduced, e.g., 5 occurrences of
bad identifiers. Buttons can also directly deduce points for
the very first occurrence, such as visibility, which means the
wrong visibility modifier was used for a class. After the first
deduction for a certain type of defect, other occurrences do
not produce further deductions. Moreover, in each grading
category there can be no negative points, i.e., the minimum is
0 points. If all possible points are already deducted, further
mistakes are only listed but do not change the score. Only
when markings are deleted, e.g., when correcting the grading,
previously disregarded deductions are checked and applied
automatically.

IV. KEY TAKEAWAYS

In this section, we review our practice and experience of our
programming course with regard to (a) teaching concepts and
strategies in lecture and practical training, (b) grading, and (c)
communication.

As we stated before, one of our ongoing and overall goal is
to optimize the lecture in terms of teaching quality and effort
reduction with (semi-)automation in case of a big course size
in the aforementioned categories (a)-(c). The key takeaways in
each category is a statement from our point of view. Statements
marked with (*) are confirmed by students via, e.g., the course
evaluations we conduct each semester.

a) Teaching Concepts and Strategies: As we believe in
the learning-by-doing principle, we use teaching strategies
aligned to that principle. To organize the course structure
regarding teaching content, we provide a semester schedule
that lists the lecture units and an advance organizer (cf. [13]).
Each lecture unit is outlined with the corresponding learning
objectives, formulated according to Bloom’s taxonomy [9]. We
also use student-activating teaching methods during the lecture
to support efficient teaching and learning. For this, we have
experimented with online response tools, but found replies in
class by hand signs more interactive and less distracting for
the students. Tutorials, which take place every week in small
size attending groups, support on one side repeating the lecture
content on the other side prepare for the practical tasks in
advance. To achieve a more effective learning experience, the
learning objectives should also be made clear in the practical
task sheets.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 4

Figure 1: Attestation view with the PETS extension on the left side

Key Takeaways. Formulating learning objectives and the curric-
ula brings many benefits: It limits and clearly determines the
teaching content, thus also improves planning. Additionally, it
creates a shared understanding about the expectations between
lecturer and students and serves as criteria for external and self-
assessment (*). Efficient teaching and learning during lecture
can be achieve by student-activating teaching methods (*).
Advance organizers are suitable for novice as well as more ex-
perienced programming students (*). Practical tasks encourage
the learning-by-doing principle. In particular, implementing
games is popular among students (*).
Open Issues. One of the open issues is the selection of the main
teaching paradigm to use, i.e., objects first or algorithms first.
Regarding the perspective of a novice programming student,
we cannot decide which paradigm is more suitable. For the
up-coming winter term, we plan to establish the objects first
paradigm. At the beginning of the semester, we plan to use
a visualization of objects and their behaviors by using an
animation environment for demonstration purposes (cf. [14]).

b) Grading: During the semester, we have different
phases of grading, but in this part we will focus on the grading
of the final exam. At the end of the programming lecture,
students should be able to write 500 to 1,000 lines of code

based on a given specification. For grading, we differentiate
between functional requirements and coding style requirements.
Coding style is a solid part in the programming lecture and is
also compactly described in our Ilias-Wiki (cf. Communication
below). While grading referred to functional requirements
is done automatically, we introduced PETS as enhancement
tool for grading coding style. PETS allows us to build a
coding style catalog by defining categories for grading purposes
with template comments based on an informal coding style
description. Additionally, graders have the opportunity to write
so called custom comment for exceptional cases when a coding
style convention is not considered yet.
Key Takeaways. A transparent and systematic grading scheme
helps in reducing (negative) feedback from student as well
as overhead concerning inspections. (Semi)-automatic grading
techniques have – beside the reduction of effort (e.g., avoid
repeating the same kind of feedback) – the potential to ensure
fair grading in mass programming lectures.
Overall Conclusion. The alignment between teaching and
examination is an ongoing optimization process. Besides effort
reduction with (semi-)automatic grading, teaching quality needs
continuously improvement by adapting new findings in terms
of didactic concepts.

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 5

c) Communication: Regarding the novice programming
course size, organizing the communication referred to organi-
zational information and teaching content as well as teaching
material is a major task. We use Ilias [15] an open source
software for managing this issue. Our Ilias course for the
programming lecture is organized as follows: a wiki for defining
a programming style catalog, a download area to provide
materials for lecture, tutorials, practical and final exam, and
forums for important announcements and as a platform for
questions of students. Concerning the discussion forums (one
for the lecture, one for the practical tasks), we provide a set
of strict rules and guidelines for interaction. For example, we
use naming conventions for the titles of threads for every post
concerning practical tasks. In our experience, this reduces the
number of redundant questions and answers.
Key Takeaways. Learning management systems (LMS) as a
central platform for all participant (i.e., teachers including
student teaching assistants and students) are an effective way
to keep the communication process manageable and transparent.
Using open source LMS like Ilias also helps managing students
and their learning activities as well as organizing a virtual
learning environment (*). The E-learning course should be
designed in a way that all requirements are met in the best
possible way for teachers and students. In our case, regarding
the novice programming course with many users, we consider a
transparent communication and knowledge provision as major
key element. Therefore, we use Ilias-features like file exchange,
internal mail for important announcements to users, a discussion
and announcement forum, and wiki functions.
Open Issues. We highly welcome the participation of students
in our discussion forums at Ilias by answering questions from
other students. We believe this also increases collaborative
learning by building virtual learning groups. However, it is
still an open issue how to support knowledge exchange among
students and to encourage them even further to participate in
answering discussion forums posts. In future, we will focus
on this part in more detail and we plan to experiment with
gamification mechanisms.

V. CONCLUSION

Teaching programming in lectures with around 1,000 atten-
dants brings up some tough challenges, especially for grading.
In this paper, we showed different challenges that we saw for
our programming course. We then reported how we organize
the course and perform grading at a scale of around 1,000
students. Automated and semi-automated techniques enable fair
grading in mass programming lectures in terms of objectivity
and consistency. Derived from our experiences, we listed key
takeaways. Next steps for us are primarily about increasing our
efficiency by further automating the grading process, especially
regarding coding style. Here, we envision an extension that
automatically calculates part of the grading based on the metrics
provided by tools, such as SonarQube [16] or Checkstyle. To
ensure correct grading, the grading is verified by a human
corrector who decides on the final grade. We expect that this
process not only reduces the overall human workload, but

also increases the transparency as these metrics can be stated
clearly and are well-defined and explained. Besides increasing
the efficiency, an ongoing process is the improvement of the
lecture and its paradigms, e.g., the learning goals and teaching
objects first.

REFERENCES

[1] M. Piteira and C. Costa, “Learning computer program-
ming: Study of difficulties in learning programming”, in
Proceedings ISDOC ’13, New York, NY, USA: ACM,
2013, pp. 75–80.

[2] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A
study of the difficulties of novice programmers”, in
Proceedings ITiCSE ’05, ser. ITiCSE ’05, Caparica,
Portugal: ACM, 2005, pp. 14–18.

[3] K. Ala-Mutka and H.-M. Järvinen, “Assessment process
for programming assignments”, in IEEE Conference on
Advanced Learning Technologies, 2004, pp. 181–185.

[4] R. C. Martin, Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2009.

[5] J. Breitner, M. Hecker, and G. Snelting, “Der Grader
Praktomat”, Automatisierte Bewertung in der Program-
mierausbildung, 2017.

[6] J. Krinke, M. Störzer, and A. Zeller, “Web-basierte
Programmierpraktika mit Praktomat”, Softwaretechnik-
Trends, vol. 22, no. 3, pp. 51–53, 2002.

[7] J. Sheard, M. Dick, S. Markham, I. Macdonald, and
M. Walsh, “Cheating and plagiarism: Perceptions and
practices of first year it students”, in Proceedings ITiCSE

’02, Aarhus, Denmark: ACM, 2002, pp. 183–187.
[8] S. Cerimagic and M. R. Hasan, “Online exam vigilantes

at australian universities: Student academic fraudulence
and the role of universities to counteract”, Universal
Journal of Educational Research, pp. 929–936, 2019.

[9] B. S. Bloom, “Taxonomy of educational objectives: The
classification of educational goals”, Cognitive domain,
1956.

[10] L. Prechelt, G. Malpohl, M. Philippsen, et al., “Finding
plagiarisms among a set of programs with jplag”, J.
UCS, vol. 8, no. 11, p. 1016, 2002.

[11] Jplag 2.12.1, Nov. 4, 2019. [Online]. Available: https:
//github.com/jplag/jplag (visited on 11/04/2019).

[12] Checkstyle 8.18. [Online]. Available: https://checkstyle.
sourceforge.io/ (visited on 11/04/2019).

[13] D. P. Ausubel, “In defense of advance organizers: A
reply to the critics”, Review of Educational research,
vol. 48, no. 2, pp. 251–257, 1978.

[14] D. Boles, Programmieren spielend gelernt mit dem Java-
Hamster-Modell. Springer, 1999, vol. 2.

[15] Ilias: The open source learning management system.
[Online]. Available: https://www.ilias.de/ (visited on
11/04/2019).

[16] SonarQube. [Online]. Available: https://www.sonarqube.
org/ (visited on 11/04/2019).

S. Krusche, S. Wagner (Hrsg.): SEUH 2020 6

https://github.com/jplag/jplag
https://github.com/jplag/jplag
https://checkstyle.sourceforge.io/
https://checkstyle.sourceforge.io/
https://www.ilias.de/
https://www.sonarqube.org/
https://www.sonarqube.org/

	Introduction
	Course Structure
	Communication Infrastructure with Students
	How to Cope with Cheating

	Grading Students
	Automated Functional Tests
	Grading Coding Style

	Key Takeaways
	Conclusion

