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Abstract. The available approaches to testing pseudorandom sequences show
low flexibility and versatility in the means of finding hidden patterns in the da-
ta. To solve this problem, it is suggested to use algorithms based on multidi-
mensional statistics. The paper proposed a new approach for testing pseudoran-
dom sequences, obtained an explicit form of the joint distribution of numbers of
2-chains and numbers of 3-chains of various options random bit sequence of a
given small length. Examples, tables, diagrams that can be used to test for ran-
domness of the location of zeros and ones in the bit section are presented. In fu-
ture as a result an information system will be created that will allow analyzing
the pseudorandom sequence of a small length and choosing a quality pseu-
dorandom sequence for use in a particular subject area.

Keywords: Algorithms, multidimensional Statistics, Random Sequence, s-
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1 Introduction

Random sequences have found the widest application from the gaming computer
industry to mathematical modeling and cryptology.

We list some areas of their usage: modeling, cryptography and information securi-
ty, decision making in automated expert systems, optimization of functional depend-
encies, fun and games.

There are various approaches to the formal definition of the term “randomness”
based on the concepts of computability and algorithmic complexity [1-2].

By implementing some algorithm, software generators produce numbers (although
not obvious) depending on the set of previous values, so the received numerical se-
quences are not truly random and are called pseudo-random sequences (PRS). At the
moment, more than a thousand software PRS generators are known, which differ in
algorithms and values of parameters. Statistical properties are significantly different
from the number sequences that are generated by them.
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The presented and not presented results allow us to characterize the state of modern
technologies of designing the PRS (focusing on the most progressive of them by the
following basic provisions [3-6].

2 Problem Statement

Before responsible using in mathematical modeling and cryptology, PRS should be
tested. Unfortunately, for many PRS tests, there are some limitations:

e checked out only one of the probable ones properties that are characterize
PRS;
e not fix family alternatives;
e do not have theoretical ones ratings power.
e do not give a correct an estimate of chance sequences provided a little sam-
ple.
Problems small and large samples refer to the main problems that arise in practical
application methods analysis data. Let's be use the next classification samples by
number [2], based on requirements presented in the program criteria:

e very small sample - from 5 to 12,
e small sample - from 13 to 40,

e medium sample - from 41 to 100,
e large sample - from 101 and more.

The minimum size of the sample limits not so much the algorithm of calculating
the criterion, but the distribution of its statistics. For a row algorithms with too much
small ones numbers sample normal approximation distribution of statistics criterion
will be under question.

During the research, the localization of the local sections of the bit sequence was
conducted to detect the dependencies in the location of its elements by using the exact
distributions of the corresponding statistics. In the work an explicit form of the joint
distribution of the numbers of 2-chains and numbers of 3-chains of various variants in
a random sequence was obtained. This joint distribution allows more accurate com-
parison of the use of one-dimensional statistics, to analyze the bit sequence small
length by chance.

3 Joint Distribution of number of 2-chains and number of 3-
chains of a provided type in binary sequence

Consider a sequence of random variables
YoV Vn (l)
wherey; = {0,1},i= 1,2,...,n,n > 0.

Subsequences  ¥;,¥j+1,---,¥j+s—1, Sequences (1) are called s-chains, j =
1,2,....n—s+1,s=1,2,...,n.



Denote n(t, t, ... tg) the number of s-chains in the sequence (1) that coincide
with t;,t,,...,t;, wheret; ={0,1},i =1,2,...,s

Theorem. Let sequence (1) consist of n, n > 0 independent identically distributed
random variables; P{y; =1} =p, P{y;=0}=q,p+q=1,i=1,2,...,nand
ki, k,, ks, t, — integer numbers such that k; > 0,k, = 0,k; =0, m;y+my=n=
3,te{0,1}, t*=1—t.Then
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is the symbol )  denotes addition over all non-negative integers &; and &,+ such that
a1=k2—mt*+2(mt—k1—1), azzkz_mt*+2(mt_k1+1), a1=k2—
mt* + Z(mt - kl)'

4 Experiment

As a result of applying this technique for testing pseudo-random sequences for two-
dimensional statistics, you can build tables (relations (2) - (5)) and bubble diagrams
(relations (3) - (5)) with which you can get the probability of the distribution of zeros
and ones in a given sequences.

As practice shows, the use of ready-made tables for analyzing the sequence of
randomness allows you to get the answer as quickly as possible, in contrast to the
classical testing method.

Consider an example of tables and bubble diagrams for a bit-sequence of small
length. For example, let the length of the bit sequence n, n = 32 for relations (3) - (5)
and n = 24 for relations (2).

4.1  lllustration of the Use of Equality (2)

In Table 1 and in Fig. 1 shows the use of the relation (2) for a small sample n, n =
32, and some values k; and k,.

Table 1. Using relation (3) for a small sample of length 32

ki  k; P P, ki ky P P,
4 5 0,0102 0,44366 9 4 001595  0,67931
6 1 0,01037 0,45403 6 2 001596  0,69527
12 1 0,0108 0,46483 10 1 001623 07115
5 2 0,01106 0,4759 8 1 001642  0,72791
9 5 0,01121 0,48711 6 5 001655  0,74446
11 3 0,01157 0,49868 7 5 001655  0,76102
5 6 0,01187 0,51055 9 1 001721  0,77823
10 4 0,01189 0,52244 10 2 00181  0,79633
7 6 0,01203 0,53447 6 4 001898  0,81531
6 6 0,01289 0,54736 6 3 001901  0,83432
11 1 0,01387 0,56123 8 4 001915  0,85346
7 1 0,01393 0,57516 7 2 001981 087328
5 3 0,01417 0,58933 9 3 001985  0,89313
5 5 0,0142 0,60353 7 4 002039 091351
11 2 0,01421 0,61774 9 2 002085 093437
8 5 0,01449 0,63222 8 2 002156 095593
5 4 0,01519 0,64741 7 3 002192 097785
10 3 0,01595 0,66336 8 3 002215 1




In Table 1 the first column contains all possible values k; and k,, for which proba-
bility is P{n(t t) = k., n(t*t*t*) = k,} = 0,01. The second column of Table 1 gives
the probabilities (in non-decreasing order) P{n(tt) = k,,n(t*t*t*) = k,} for pairs
of numbers (k4, k,) listed in the first column.

Each row of the fourth column contains the sum of the accumulated probabilities
before the event is implemented {n(tt) = k., n(t*t*t*) = k,} inclusive where k;
and k, indicated in the same line in the first column.

4.2 lllustration of the Use of Equality (4)

In Table 2 and in Fig. 2. shows the use of the relation (4) for a small sample of n, n =
32, and some values of k; and k.

Table 2. Using relation (4) for a small sample of length 32

ky k, P P, ky k, P P,

12 1 0,010309 0,25025 5 6 0,019461 0,524834
4 7 0,010346 0,260596 11 2 0,020707 0,545541
13 2 0,010566 0,271162 8 2 0,020939 0,56648
10 1 0,010906 0,282067 6 3 0,022517 0,588997
11 1 0,011296 0,293363 5 4 0,023782 0,61278
3 6 0,011426 0,304789 10 2 0,024014 0,636794
7 6 0,01148 0,316269 9 2 0,024221 0,661015
9 5 0,011732 0,328001 9 4 0,025878 0,686893
12 3 0,011875 0,339876 7 5 0,026396 0,713288
5 3 0,013051 0,352927 10 3 0,027086 0,740375
4 4 0,013083 0,36601 5 5 0,027095 0,76747
7 2 0,015224 0,381234 6 5 0,029893 0,797363
12 2 0,015705 0,396939 7 3 0,030948 0,828311
6 6 0,016693 0,413631 6 4 0,033093 0,861404
10 4 0,017033 0,430665 9 3 0,033247 0,894651
4 6 0,017494 0,448159 8 4 0,033621 0,928272
4 5 0,018859 0,467018 8 3 0,034964 0,963236
11 3 0,019157 0,486174 7 4 0,036764 1

8 5 0,019199 0,505373

Table 2 is formed of columns whose contents are similar to the contents of the Table
1 columns.

4.3 llustration of the Use of Equality (5)

In Table 3 and in Fig. 3 shows the use of the relation (5) for a small sample n, n =
32, and some values k; and k.



Table 3. Using relation (5) for a small sample of length 32

kq k, P P, ki ks P P,

6 11 0,01018 0,35129 6 10 0,01737 0,61156
4 12 0,01025 0,36154 10 6 0,019 0,63056
6 6 0,01028 0,37182 5 10 0,01963 0,65019
12 4 0,01165 0,38347 7 9 0,01986 0,67005
7 10 0,01178 0,39525 7 6 0,02017 0,69022
11 6 0,01179 0,40704 6 7 0,02026 0,71048
9 4 0,01209 0,41913 10 5 0,02064 0,73112
4 9 0,01229 0,43143 9 7 0,02083 0,75195
8 9 0,01285 0,44428 8 8 0,0211 0,77305
10 7 0,0129 0,45718 9 5 0,02156 0,79461
9 8 0,01325 0,47043 5 9 0,02159 0,8162

5 11 0,014 0,48444 6 9 0,0242 0,8404

4 11 0,01416 0,4986 9 6 0,02513 0,86552
11 4 0,01481 0,51341 6 8 0,02612 0,89165
10 4 0,01521 0,52862 8 6 0,02619 0,91783
4 10 0,01543 0,54406 7 8 0,02698 0,94481
11 5 0,01578 0,55984 8 7 0,02735 0,97217
8 5 0,01706 0,57691 7 7 0,02783 1

5 8 0,01729 0,5942

Table 3 is formed of columns whose contents are similar to the contents of col-
umns from Table 1.

4.4 lllustration of the Use of Equality (2)

In Table 4 shows the use of the relation (2) for a small sample n, n = 24, and some
values k, k, and k5.

Table 4. Using relation (2) for a small sample of length 24

ky k, k3 p P.

5 1 3 0,009096 0,851162
4 4 3 0,009398 0,86056
5 1 4 0,009748 0,870309
8 1 2 0,009901 0,88021
7 1 3 0,009946 0,890155
4 3 3 0,009999 0,900154
6 3 2 0,010374 0,910529
7 1 2 0,010382 0,920911
4 2 4 0,010422 0,931332
6 2 2 0,010553 0,941885
7 2 2 0,011017 0,952902
5 3 3 0,011284 0,964186
6 2 3 0,011495 0,975681
6 1 3 0,011903 0,987584
5 2 3 0,012416 1




In Table 4 in the first, second and third columns are all possible values k,, k, and
ks, for which probability P{n(tt) = k{,n(t*t"t*) = k,,n(t*tt*) = k3 } = 0,009,
and the contents of the fourth and fifth columns are similar to the contents of the third
and fourth columns of the Table 1.

5 Results and Discussion

As a result of applying this technique for testing pseudo-random sequences for two-

dimensional statistics (relations (3) - (5)), you can build a bubble diagram with which

you can get the probability of the distribution of zeros and ones in a given sequence.
Consider examples of bubble diagrams for a bit sequence of small length n, n = 32.

5.1  Graphic lllustration of the Use of Equality (3)

Fig. 1 gives a bubble chart in which the first parameter (horizontal axis) is the value
k,, the second parameter (vertical axis) is the value k, , and the third parameter (the
bubble size) is the probability of the event occurring {n(t t) = k., n(t*t*t*) = k;},
presented in percent.
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Fig. 1. Bubble chart of sequence with the length 32 for (3)

After analyzing Fig. 1 it can be concluded that for the analysis of the sequence of
chains of small and medium length (from 13 to 100 elements), one-dimensional statis-
tics do not always give the correct result. For example, if we consider the sequence
where the parameter k, = 8, then we can draw a conclusion with a degree of probabil-
ity about 10% of randomness of the sequence with these characteristics, however, if
we pay attention when k; = 8 and k, = 5 it can be argued that this sequence is non-



random, therefore as shown in Fig. 1 we have P{n(tt) = k., n(t't*t*) = k,} =
1,45%. What also shows the lack of use of one-dimensional statistics for the analysis
of small and medium bit sequences.

An approach to testing using n-dimensional statistics allows us to rely on a deeper
justification of the randomness of generated sequences.

5.2  Graphic Illustration of the Use of Equality (4)

In Fig. 2 shows the use of the relation (4) for a small sample n, n = 32, and some
values k; and k.
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Fig. 2. Bubble chart of sequence with the length 32 for formula (4).

Fig. 2 gives a bubble chart in which the first parameter (horizontal axis) is the val-
ue k,, the second parameter ( vertical axis) is the value k,, and the third parameter
(bubble size) is the probability of the event occurring {n(t t) = ky,n(t*tt*) =k, },
which is represented as a percentage.

5.3  Graphic Illustration of the Use of Equality (5)

In Fig. 3 shows the use of relation (4) for a small sample n, n = 32, and some values
k, and k.

Fig. 3 gives a bubble chart in which the first parameter (horizontal axis) is the val-
ue k,, the second parameter (vertical axis) is the value k,, and the third parameter
(bubble size) is the probability of the event occurring {n(tt) =k, n(t*t*t*) +
n(t*t t*) = k, }, which is represented as a percentage.
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Fig. 3. Bubble chart of sequence with the length 32 for formula (5).

In this paper, the exact compatible distributions of some statistics (0, 1) -sequences
of length 1 < n < oo are given. For a bit sequence of small length n, n = 32, the tables
containing the numerical values of the corresponding distribution are given. These
tables, as well as the proposed graphic representations, can be used to test the hypoth-
esis of the randomness of the arrangement of zeros and units.

6 The Results of the Comparison the NIST Statistical Test Suite
and Test of PRS of Small Length using Multidimensional
Statistics

Consider the well-known examples that are given in [7, 8]. Let us analyze the submit-
ted sequences for the corresponding tests, where:

e P is the probability of sequence randomness according to the selected criterion
from the first column,

e P;isthe probability obtained using relation (2),
e P, isthe probability obtained using relation (3),
e Psisthis is the probability obtained using relation (4),
e P,isthis is the probability obtained using relation (5).



Table 5. The results of the comparison

Input Size
Test msr?ﬁgtrﬂ{n, length Sequences P P1 P2 P3 P4
n more than
Frequency
(Monobit) 100 10 1011010101 0,527 0,007 0,027 0,007 0,057
Test
Frequency
Test within a 100 10 0110011010 0,801 0,01 0,075 0,102 0,01
Block
Runs test 100 10 1001101011 0,147 0,052 0,075 0,087 0,09
Binary _ _
Matrix Rank 38000 W20 M= 01011001001 201 004 0008 0014 0,017
Q=3 010101101

Test
Discrete
Fourier
Transform 1000 N=10 0001010011 0,109 0,063 0,109 0,084 0,092
(Spectral)
Test
Non-
overlapping N=20, 2
Template 200 blocks of 10000000 0344 001 0026 0051 0025
Matching length 10
Test
Maurer’s
“Universal 01011010011
Statistical” 380000 N=20 101010111 0.767 0,001 0,03 0,009 0,023
Test
Serial test 100 N=10 0011011101 0,907 0,029 0,064 0,087 0,088
Approximate N=10 0100110101 0,261 0,052 0,075 0,087 0,09
Entropy test
Cumulative
Sums 100 N=10 1011010111 0,411 0,02 0,031 0,043 0,057
(Cusum) Test
Random
Excursions 108 N=10 0110110101 0,502 0,02 0,027 0,043 0,031
Test
Random
Excursions 108 N=10 0110110101 0,683 0,02 0,027 0,043 0,031
Variant Test

As can be seen from the table, the use of two-dimensional statics gives a more ac-
curate result for short sequences. And also, according to [8], the recommended mini-
mum sequence length n is greater than 100 bits.



7 Conclusions

The available approaches to testing pseudorandom sequences show low flexibility and
versatility in the means of finding hidden patterns in the data. To solve this problem,
it is suggested to use algorithms based on multidimensional statistics.

The approach to testing using multidimensional statistics allows you to rely on a
deeper justification of the randomness of the generated sequences. This area is prom-
ising for scientific research.

The paper proposed a methodology for testing a sequence and obtained a correct
view of the joint distribution of the numbers of 2-chains and the numbers of 3-chains
of various variants in a random bit sequence of a given small length.

These algorithms and scheme of work for verification statistical tests of random-
ness sequences (proposed in chapter I) combine all the advantages of statistical
methods and are the only alternative for the analysis of sequences of small and medi-
um length.

To implement the proposed approach, a PRS software test package is being devel-
oped, which will include tests using multidimensional statistics, which are well rec-
ommended for testing a small length PRS. As a result of the implementation of this
technique, an information system will be created that will allow analyzing the PRS of
a small length and choosing a quality PRS for use in a particular subject area.
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