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Abstract. A method for constructing decision trees based on the mutual similarity of 
objects is proposed. The method allows obtaining complex decision boundaries, which 
have a clear logical interpretation. The results of the experiments confirm the 
effectiveness of the method for multispectral image recognition. 
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1 Introduction 

Classification methods based on logical decision functions presented in the form of decision trees (DT) [1,2] are 
popular in machine learning. Compared with other approaches, DT has the following advantages: 

– give one an opportunity to analyze information of different types (i.e., for quantitative and qualitative 
characteristics describing objects), in the presence of missed feature values; 

– find probabilistic logical rules that reflect cause-and-effect relationships of the phenomenon under study; 

– automatically determine the most informative features for each classified object and use them for making a 
decision; 

– in combination with an ensemble approach (e.g., decision forest, boosting on trees [3,4]), DT is able to find 
sufficiently stable solutions with high generalizing ability. 

A recent review of existing methods for DT induction is given in [5]. Despite a large number of known 
approaches, there is still a need in developing efficient methods with high generalization ability. There are several 
possible ways to improve quality. The first approach is to find a criterion that will enhance the predictive ability of 
decisions by optimally combining the accuracy and complexity of the tree for the given data [6]. The second approach 
involves the development of more sophisticated techniques for representing the tree (for example, using linear 
decision boundaries in the tree nodes) and applying “deeper” algorithms for searching the optimal tree structure [7].  

A “classical” DT is a tree-like graph, in the nodes of which conditions of two possible types are tested.  If X is a 
numerical attribute, then the condition “X(a) < b” is examined, where a is an arbitrary object from the statistical 
population, X(a)  is the value of X for object a,  b is some value of the attribute. If X is a categorical attribute, then the 
condition “X(a)=b” is checked. Depending on the truth or false of the test, the left or the right sub-node is chosen. The 
leaves (terminal nodes) of the tree are associated with the values (class labels) of the predicted feature. The paths 
from the root node to leaves represent classification rules. To find an optimal DT, a recursive partition of feature 
space is performed. 

This approach has a significant drawback: the partitioning of feature space occurs strictly parallel to the feature 
axes (in the case of numerical features), even if the real boundary between classes has a linear shape (Figure 1). To 
approximate the boundary, it is necessary to use a more complex tree structure (with many additional nodes) that 
often has a negative influence on the efficiency of decisions. 

Some works (e.g., [7]) propose oblique DT (ODT, also called multivariate DT) with more complicated types of 

statements having the form  ∑𝛽𝑗𝑋𝑗(𝑎) + 𝛽0 < 0, where the summation is carried out over a subset of numerical 

features, 𝛽0, 𝛽1, …  are real-valued coefficients. The coefficients are estimated by optimizing a given quality 

functional for the subset of objects in the tree node. A number of algorithms for ODT induction exist:  
– Classification and Regression Trees - Linear Combination (CART-LC)  [1]; 
– Simulated Annealing Decision Tree (SADT) [8]; 
– Linear Machine Decision Trees (LMDT) [9],  
– OC1 system [10],  
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– Based on Support Vector Machine (SVM-ODT) [11], etc. 
 

 

 

 
Figure 1. An example of linearly separable classes (labeled 0 and 1) and their partition in accordance with the 

“classical” decision tree. 
 
Despite the significant improvement of prediction accuracy, this approach also has a number of limitations. First 

of all, the found linear boundaries are not-easy to interpret in contrast with simple rules of “classical” univariate DT. 
Another limitation is ODT is applicable only for multivariate data and cannot be used for data described with pairwise 
similarity matrices.  

To overcome the latter difficulty, the work [12] suggests Similarity Forest method in which an ensemble of ODT 
is built. Each variant of ODT is defined by randomly chosen pair of data points from different classes; the splitting 
boundary is a hyperplane perpendicular to the segment connecting the pair and crossing its midpoint. In the 
experiments, the proposed algorithm has demonstrated sufficiently high accuracy in comparison with a number of 
other methods, especially in the presence of missed feature values, even if the input information has the form of 
multidimensional data. However, the obtained ensemble decision is hard-to-interpret because it includes a large 
number of generated trees.  

The method proposed in this paper aims to eliminate the above-mentioned drawbacks. We propose to use a more 
general type of statements regarding the similarity of observations. The similarity can be calculated using various 
metrics in different feature subspaces. This type of decision tree allows one to get more complex decision boundaries, 
which at the same time have a clear logical interpretation for the user. 

The developed algorithm was experimentally investigated on model data and multispectral satellite images. 

2 Similarity-based decision tree (SBDT) in pattern recognition problems 

In this work, we consider a pattern recognition problem formulated as follows. Let us denote by 𝚪  a general 
population of objects under consideration, and by point 𝑥 = 𝑥(𝑎) = (𝑥(1), … ,  𝑥(𝑚)) ∈ 𝑹𝑚  a feature description of 
object 𝑎 ∈ 𝚪, where m is feature space F dimensionality. Let 𝑌  be a set of class labels. We consider a binary 
classification problem: 𝑌 = {−1,+1}, although the results can be extended to a multi-class scenario. Denote by 𝐗 the 
set of feature descriptions of objects from 𝚪. Let  𝑦∗: 𝐗 → 𝑌 be an objective function with values assigned to the 
points of the finite set (training or learning sample) 𝑋𝑡𝑟𝑎𝑖𝑛 ⊂ 𝐗. We need to build a decision function 𝑓:  𝐗 → 𝑌 which 
belongs to a given family; 𝑓 should approximate y∗ and minimize the estimate of misclassification probability for any 
point 𝒙 ∈ 𝐗.  Let 𝑋𝑡𝑒𝑠𝑡 be another subset of 𝐗 used for evaluating the performance of the decision function, 𝑋𝑡𝑒𝑠𝑡 ∩
𝑋𝑡𝑟𝑎𝑖𝑛 =  ∅. Denote by  𝑋 = 𝑋𝑡𝑟𝑎𝑖𝑛 ∪ 𝑋𝑡𝑒𝑠𝑡 , and let d be the size of X and l be the size of 𝑋𝑡𝑟𝑎𝑖𝑛. 

We propose a modification of DT in which instead of standard tests, more general statements of the type “object a 
is more similar to the set A than to the set B in feature subspace F’ according to metrics 𝜇” are examined in the 
internal nodes. Here A, B are subsets of learning sample, typically of small cardinality. In this work, we assume that 
each set A, B includes exactly one object (its description is called a support point). We also shall assume that F’=F 
and metrics 𝜇  is the Euclidian metrics. 

Suppose 𝑇 is a binary tree with t internal nodes, and 𝑨 = {𝐴1, … 𝐴𝑝},   𝑩 = {𝐵1, … , 𝐵𝑛} are the sets of support 
points from positive and negative classes respectively. For each internal node 𝑣𝑖 of the tree, 𝑖 = 1, . . , 𝑡, we define the 
tested statement as follows: "𝑥 ∈ M1

𝑣𝑖", where M1
𝑣𝑖 are the points from feature space, which are closer to 𝐴𝑣𝑖 than to 

𝐵𝑣𝑖  (figure 2). Thus, the data is separated linearly (figure 3). 

For any 𝑥 ∈ 𝑋 we define matrix 𝑀𝑥  with elements: 

𝑚(𝑖, 𝑗) = {
1,    𝑖𝑓  𝜇(𝑥, 𝐴𝑖  ) − 𝜇(𝑥, 𝐵𝑗  ) < 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒                                   
  , i=1,…, p,  j=1,…,n, 

where 𝜇 is a metric in feature space 𝐹. 
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Figure 2. Example of singe separation. 

 
Figure 3. Splitting synthetic data by SBDT into two 

groups. 
 

Let us transform matrix 𝑀𝑥 into a vector 𝑀𝑥
⃗⃗ ⃗⃗  ⃗ of the size 𝑝𝑛 by the reshaping procedure. Then each point 𝑥 is 

described by vector 𝑀𝑥  ⃗⃗ ⃗⃗ ⃗⃗   of the size 𝑝𝑛. In this way, 𝑋′ = {⋃ 𝑀𝑥
⃗⃗ ⃗⃗  ⃗}𝑥∈𝑋  is a new feature representation of 𝑋. 

Consider an example of feature transformation based on data shown in figure 2. As the number of all possible 
pairs equals one, matrix 𝑀𝑥  has only one element. For objects represented by circles we have 𝑀𝑥 = 1, and for 
objects represented by triangles, 𝑀𝑥 =  0. 

3 Support points selection 

The proposed form of DT splits data points based on their relative position. The support points selection method 
should consider their informativity for a given sample 𝑋. In this work, three methods of support points selection were 
implemented. 

The first approach uses Relief feature selection algorithm introduced in [13]. Let 𝑋+ and 𝑋− be subsamples of 

𝑋𝑡𝑟𝑎𝑖𝑛 of +1 and –1 class. After generating vectors 𝑀𝑥  ⃗⃗ ⃗⃗ ⃗⃗   for all 𝑥 ∈ 𝑋, applying Relief allows extracting the most 

informative sets  𝑨 ⊂ 𝑋+, 𝑩 ⊂ 𝑋−  reducing feature dimension. 
The second way is based on Support vector machine (SVM) [14]. SVM builds a separating hyperplane with 

maximum distance (margin width) between points of different classes. Data points which are placed on the border of 
the margin are called support vectors. When SVM is trained on 𝑋𝑡𝑟𝑎𝑖𝑛, this set is divided into support and non-support 
vectors. In our approach, support vectors compose the sets of support points 𝑨 and 𝑩. 

The last method is based on k-means clustering algorithm. We generate 𝑆 subsamples of the size 𝐿 from 𝑋 and 
apply k-means (k=2) to each subsample to extract cluster’s medoids which are considered as support points.  

In addition, we used kernel k-means algorithm that uses kernel function instead of a scalar product. Kernel 
function implicitly transforms initial feature space into another space of larger dimensionality, where the 
configuration of data points is changed, often resulting in linearly separable form. 

4 Construction of similarity-based decision tree 

We chose CART algorithm [2] as an add-on method used in SBDT construction. The proposed SBDT algorithm 
can be represented with the following steps: 

o Step 1. Find sets of support points 𝑨 and 𝑩 of classes +1, –1. 

o Step 2. Compute vector �⃗⃗� 𝑥 for all 𝑥 ∈ 𝑋. 

o Step 3. Build a decision tree in new feature space  {⋃ 𝑀𝑥
⃗⃗ ⃗⃗  ⃗}𝑥∈𝑋𝑑  by CART method. 

When using SVM or k-means based selection methods, we get linear computational complexity, while using 
Relief or kernel k-means results in quadratic complexity depending on the sample size. 

5 Experimental study on model data 

The proposed method was experimentally studied on three two-dimensional model datasets. Each dataset consists 
of 100 elements belonging to one of two classes. Figure 4 shows the original datasets: «Moons», «Circles» and 
«Linear». The parameter values for the CART algorithm were selected by default. Support points for the SBDT 
algorithm were selected with  k-means algorithm. Figures 5 and 6 show the classification results obtained by CART 
and SBDT algorithms respectively. They also indicate classification mistake probability values obtained by the 



«moving exam» method. These examples demonstrate that the SBDT method provides higher classification accuracy 
compared to the CART algorithm. These figures also show that the decision boundaries constructed by the CART 
algorithm are coarser. 

6 Experimental study on satellite data 

To compare CART and SBDT algorithms performance on real data, Landsat 8 satellite image of Iskitim city 
(Novosibirsk region) was used. The RGB composite of this image is introduced in Figure 7a. Figure 7b shows the 
map of this image made by visual-instrumental methods containing representatives of six classes. It was used to train 
and to test the classifiers. 10% of the mapped pixels were used for training. As a result, classification accuracy of 
CART and SBDT algorithms is 88% and 98% respectively. Figure 7c shows SBDT image classification result. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Initial model data sets: (a) – «Moons»; (b) – «Circles»; (c) – «Linear». 

 

(a) (b) (c) 

Figure 5. CART method classification result: (a) – «Moons»; (b) – «Circles»; (c) – «Linear». 

 

(a) (b) (c) 

Figure 6. SBDT method classification result: (a) – «Moons»; (b) – «Circles»; (c) – «Linear». 
 
 
Thus, the proposed SBDT decision tree construction method based on the mutual objects similarity provides 

higher classification quality compared to the CART method not only on model, but also on real data. The SBDT 



method allows obtaining more accurate decision boundaries, which have a clear logical interpretation. The results of 
the experiments confirm the effectiveness of the method for multispectral satellite image classification. 

 

   

                 a                                                  b                                                      c 

 
Figure 7. Landsat 8 satellite image classification results. a – RGB composite image, b – image map,  

c – image classification result with SBDT. 
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