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Abstract. Topic modeling algorithms traditionally model topics as list of 
weighted terms. These topic models can be used effectively to classify texts or to 
support text mining tasks such as text summarization or fact extraction. The gen-
eral procedure relies on statistical analysis of term frequencies. The focus of this 
work is on the implementation of the knowledge-based topic modelling services 
in a KNIME2 workflow. A brief description and evaluation of the DBPedia3-
based enrichment approach and the comparative evaluation of enriched topic 
models will be outlined based on our previous work. DBpedia-Spotlight4 is used 
to identify entities in the input text and information from DBpedia is used to ex-
tend these entities. We provide a workflow developed in KNIME implementing 
this approach and perform a result comparison of topic modeling supported by 
knowledge base information to traditional LDA. This topic modeling approach 
allows semantic interpretation both by algorithms and by humans. 
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1 Introduction 

Recent developments related to Semantic Web made knowledge from the web avail-
able as machine readable ontologies. Links and vocabulary mappings between public 
ontologies enable algorithms to make use of knowledge from the web available as 
linked open data. One of the most popular public knowledge repositories is DBpedia. 
The DBpedia project extracts structured data from Wikipedia and makes it accessible 
as knowledge base via a SPARQL interface. ([1]) 

Topic modeling performs analysis on texts to identify topics. These topic models are 
used to classify documents and to support further algorithms to perform context adap-
tive feature, fact and relation extraction.  

 
1 This work has been partially supported by the "Wachstumskern Qurator – Corporate Smart 

Insights" project (03WKDA1F) funded by the German Federal Ministry of Education and 
Research (BMBF). 

2 https://www.knime.com/ 
3 https://wiki.dbpedia.org/ 
4 https://www.dbpedia-spotlight.org/ 
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While Latent Dirichlet Allocation (LDA) [2], Pachinko Allocation [3], or Probabil-
istic Latent Semantic Analysis (PLSA) [4] traditionally perform topic modeling by sta-
tistical analysis of co-occurring words,  the approaches in [1], [5] and [6] integrate se-
mantics into LDA. 

[1], [5] and [6] propose methods to improve word-based topic modeling approaches 
by introducing semantics from knowledge bases. This reduces perplexity issues arising 
from ambiguous terms and produces topic models that directly link to the knowledge 
base. Topic models created using a knowledge base are easier to understand by humans 
than topic models created exclusively by means of statistics.   

This proof of concept work applies the method from [6] to perform knowledge base 
supported topic modeling using DBpedia. The presented approach to topic modeling is 
based on the semantics of entities identified in the document. The basic idea of LDA to 
perform analysis based on term frequency is maintained. The extension of [6] is to en-
rich the input using a knowledge base to perform LDA with semantics. Therefore, 
DBpedia Spotlight API is used to recognize entities and additional information to these 
entities is retrieved via the DBpedia API endpoint. During a preprocessing stage the 
text is tagged with semantic annotations from the knowledge base and the tagged text 
is used as input to the LDA algorithm. This results in improved topic models due to 
more context and less ambiguities in the input. 

2 Architecture 

The text to be examined is transferred to DBpedia Spotlight API. Spotlight returns a 
JSON object containing all entities recognized in the text.  Additional information to 
these entities is retrieved using DBpedia API. The response for each entity is a set of 
properties e.g. tags, Uri, type and hypernym (see Section 4 for details). A tagger com-
bines these sets with the corresponding entities in the text. The result is processed by 
LDA. LDA performs topic modeling and provides the result in two formats (as a table 
with weights and as an image visualization). The architecture of the processing pipeline 
is illustrated in Fig. 1. 

Fig. 1 architecture of the topic modeling pipeline using DBpedia-Spotlight, DBpedia and 
the LDA algorithm. 
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3 KNIME 

The KNIME information miner is an open source modular platform for visualization 
and selective execution of data pipelines. KNIME as a powerful data analysis tool that 
enables simple integration of algorithms, data manipulation and visualization methods 
in the form of modules or nodes [7]. 

There are a number of additional services in the KNIME ecosystem, e.g. KNIME 
Server, which connects the different actors (services, teams and individuals) in a central 
place and thus offers a platform for collaboration. KNIME Workflow Hub makes work-
flows publicly available on the KNIME Examples Server. Members of the user com-
munity can share workflows and receive ratings and comments from other users. In our 
work with the KNIME analytical platform we have implemented and performed various 
modelling methods to offer complete services around semantic analysis. 

4 Workflow for Topic Modeling 

The workflow developed in this work consists of four stages: (1) Reading the text in 
consideration and Entity recognition using DBpedia-Spotlight API. (2) Getting proper-
ties of the entities included in the JSON. (3) Tagging the text by combining the entities 
and the related properties gained from the previous phase. (4) Text cleaning and topic 
modeling using the LDA algorithm. Fig. 2 gives an overview of the workflow devel-
oped and its modularization into four stages. 

 
The Reading stage includes Table Creator node, which provides the settings of the 

parameters used to request entities from DBpedia Spotlight. We use confidence=0.5 
and support=0 to get as many entities as possible from the text. File Reader node for 
reading the text from a path. String Manipulation node to repair the text, e.g. to replace 

1 3
 

2
 

4 

Fig. 2 represents the workflow developed for topic modeling. 
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double spaces. Column Appender node to combine the data provided by the Table Cre-
ator and File Reader nodes. String Manipulation node prepares the URL request to 
DBpedia Spotlight, which is then sent by the node Get Request. The output of this stage 
is a table of the text entities recognized by DBpedia Spotlight as shown in Fig. 3. 

The Get properties stage contains Column Filter node to extract the entities col-
umn from the table. Java Snippet node to filter Resources from the JSON. The String 
to JSON, JSON to Table, Transpose and JSON to Table nodes to put the column 
content in the format required for further processing. Column Filter node filters types 
and surfaceForms. Java Snippet node sends a HTTP request containing a SPARQL 
query to DBpedia API and retrieves entities and the related tags. Missing Value node 
deletes null values and Column Filter node filters surface forms (entities) and tags 
from the table created, which build the output of this stage as illustrated in Fig. 4. 

The tagging stage implements a loop taking the original input text and the recog-
nized entities with their tags to match these entities with their mentions in the origi-
nal text and enrich it by the tags as shown in Fig. 5. This loop consists of Recursive 
Loop Start to begin the loop, Row Filter to get the rows one by one, Row Table to 
Variable as a converter, String Manipulation as a tagger and Recursive Loop End to 
get back into the loop in case there are still entries in the table. At the end of the loop 

Fig. 3 represents the response JSON object of DBpedia Spotlight. 

Fig. 4 represents the table filtered by surface name and tags 
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a String to Document node converts the text into a document format and forwards it 
to the next stage. 
 
 

In the text cleaning and topic modeling stage, the produced document will be cleaned 
by Column Filter5, Number Filter, Punctuation Erasure, Stop Word Filter, Case Con-
verter and Snowball Stemmer. That preprocessed text is passed to Topic Extractor node 
that implements the LDA algorithm. LDA creates the topic model as list of weighted 
terms, which are then visualized using Color Manager and Tag Cloud nodes. 

5 Evaluation 

The focus of this work was on the implementation of the knowledge-based topic 
modelling services in a Knime workflow. For a detailed description and evaluation of 
the DBPedia based enrichment approach and the comparative assessment of enriched 
topic models we refer to our earlier work in [6] and [8]. In this paper we demonstrate 
the Knime-based proof-of-concept implementation by comparing the results of topic 
modeling supported by knowledge base information to traditional LDA using the fol-
lowing text: 

 
Barack Obama is only passing through Germany on his trip to Europe later this week and 
does not plan to hold substantial talks with Angela Merkel. The White House views the chan-
cellor as difficult and Germany is increasingly being left out of the loop. 
 
This text is expanded with annotations from DBpedia as follows: 
 
Barack Obama [Barack_Obama, Politician, Agent, President, Person, Politician] is only pass-
ing through Germany [Germany, Republic, Place, Country, Person, PopulatedPlace, Loca-
tion], on his trip to Europe [Europe, Continent, Location, PopulatedPlace, Place, Continent] 
later this week and does not plan to hold substantial talks with Angela Merkel [Angela_Merkel, 
Politician, Agent, Person, OfficeHolder]. The White House [White_House, Residence, Loca-
tion, Building, Place… 
 

 
5 Column Filter which is common needed, since the output of the most nodes includes, in addition 

to the result, its input that is mostly not needed any more. 

Fig. 5 illustrates the tagged text 
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Fig. 6 shows the image visualization of weighted, normalized terms created by LDA 
without semantic annotations and Fig. 7 the weighted, normalized terms obtained 
with support of a knowledge base.  
 

 
Fig. 6 shows the traditional LDA topic 

model 

 
Fig. 7 shows the knowledge base enriched 

topic model 

The results reflect the expectations. LDA provides a naive topic model for the orig-
inal text comprising of weighted lemmatized terms from the input text with only one 
term having a significantly higher weight than other terms of the model. The knowledge 
base supported method creates a superior topic model also containing weighted lem-
matized terms from the knowledge base, which are not present in the input text. This 
topic model enables semantic interpretation by algorithms as well as by humans. 

In particular the enriched topic model enables algorithms to infer from the topic 
model linked to a knowledge base that the input text contains information about politics 
and actions of relevant officials, while a classification based on the traditional LDA 
topic model might result in a false classification as geographical text. 

     

6 Summary and Future Prospects 

This proof of concept work developed a KNIME workflow to perform comprehen-
sive topic modeling using a knowledge base. The use of information from a knowledge 
base is achieved by using DBpedia Spotlight API for entity recognition and DBpedia 
API to retrieve entity properties. The presented results show that the developed ap-
proach is applicable and delivers results containing more comprehensive insights into 
a text than statistical topic models based on words only. The created topic models can 
improve the results of various methods used for text mining tasks such as text classifi-
cation or fact and relation extraction. 

Topic modeling using knowledge bases is a step towards improved automated meth-
ods for knowledge base population. Other methods in natural language processing 
might also be extendable by applying the idea of annotating text with information from 
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knowledge bases. We expect improved results over word-based approaches for these 
tasks in future work, especially when analyzing small corpora. 
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