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Abstract. SAT solvers are used in a wide variety of applications, in-
cluding hardware and software verification, planning and combinatorial
design. Given a propositional formula, standard SAT solvers are able
to decide whether it is satisfiable or not. In the first case, a model is
returned as a witness of satisfiability. The returned model is typically
selected according to an internal heuristic and no control on the assign-
ment is offered to the final user. This paper serves as a description for
our tool minipref, a SAT solver extended to provide an optimal model
with respect to a given preference over literals.

1 Introduction

The Boolean satisfiability problem (SAT) [6] is the problem of deciding whether
a propositional formula is satisfiable. The importance of this decision problem
is underlined by the many practical applications of SAT, which include soft-
ware/hardware verification and planning among many others. Decision proce-
dures for SAT, especially modern conflict-driven clause learning (CDCL) solvers,
are routinely used to solve real-world instances with up to tens of millions of vari-
ables and clauses. The problem of finding an optimal solution to a SAT problem
with preferences is a natural extension of the original problem which is of cen-
tral importance in many areas of computer science [2,4,13,19]. For instance, in
planning, besides the goals that have to be achieved, it is natural to have other
soft goals that it would be desirable to satisfy [14]. Preferences are also essential
to treat conflicting constraints [4] or for the computation of a minimal model
[13]. Different approaches have been proposed to handle preferences [13,7,9], all
of which work on top of modern SAT solvers. These approaches have been all
implemented in a tool called sat&pref [7]. To the best of our knowledge, this
is the only implemented SAT-based tool which deals with preferences directly
inside the solver. However, sat&pref presents some limitations in its interface
that make it not an ideal candidate on tasks that require iterative calls to a
solver or enumeration tasks. More specifically, sat&pref doesn’t provide any
API for interacting with the solver. Preferences are directly specified inside the
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input problem which is represented as an extension of the popular DIMACS
format. In this paper, we present a tool for conveniently expressing preferences
over literals which expose a clear and easy to use incremental interface. The tool
introduces a level-based specification of the preferences, where a level is used to
express a degree of desirability. This has some limits with respect to the more ex-
pressible DAG-based specification format, but it is more compact and convenient
in many practical real-world applications [2,4,19]. Besides, our approach allows
for better performance. When reasoning in terms of levels, variables within the
same level are selected according to the original heuristic of the solver. This
has a positive effect on the running time, since it is well known that imposing
an ordering over the literals may lead to a performance loss [16]. The origi-
nal minisat code has been modified without introducing any invasive change.
This has the additional advantage to make it easy to integrate our implementa-
tion into other minisat-like solvers [3]. Finally, minipref preserves the original
minisat incremental interface, which is particularly useful in enumeration prob-
lems. The paper is organized as follows. Section 2 introduces the definitions used
throughout the paper. In Section 3 the tool minipref is presented. In Section
4 we provide some usage examples. An experimental evaluation is presented in
Section 5. The paper concludes in Section 7.

2 Preliminaries

Let V be a countable set of propositional variables. A literal is either a variable
x, or its negation ¬x. For a literal l = x, l = ¬x, while for a literal l = ¬x, l = x.
This notation is extended to a set S of literals, i.e. S = {l | l ∈ S}. A clause is a
set of literals and a formula ϕ is a set of clauses. The set of variables and literals
occurring in ϕ are denoted as vars(ϕ) and lits(ϕ), respectively.

An assignment A ⊆ (V ∪ V ) is a set of literals such that if a literal l ∈ A
then ¬l 6∈ A. Literals in A are said to be true. A clause C is satisfied w.r.t. an
assignment A if C ∩ A 6= ∅. A formula ϕ is satisfied w.r.t. an assignment if all
clauses in ϕ are satisfied. An assignment that satisfies a formula ϕ is said to be
a model of ϕ.

Preferences. Given a set of literals L ⊆ lits(ϕ), a preference over literals in L is
defined as a function ω : L → N. Given a set of literals S and a number i ≥ 0,
ΩS

i = {l | l ∈ S, ω(l) = i}. With a slight abuse of notation, when clear from

the context, Ωi denotes Ω
lits(ϕ)
i , for a formula ϕ. For two literals l1 and l2 in L,

l1 is preferred to l2, denoted l1 ≺ l2, if ω(l1) > ω(l2). For two models M1 and
M2, M1 is preferred to M2, denoted M1 ≺ M2, if there exists j > 0 such that
ΩM1

j ⊃ ΩM2
j , and for all i > j, ΩM1

i = ΩM2
i . In the following, we assume that

given a literal l such that ω(l) > 0, then ω(l) = 0.
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3 The Tool minipref

In this section we present our tool minipref, which is built on top of minisat
[11]. In particular, minipref works by overriding the original minisat heuris-
tic. Given a preference l ≺ l′, minipref branches first on l before selecting l′.
Intuitively, this is necessary in order to avoid that the less preferred literal l′

can affect the assignment to the most preferred literal l. At each step, minipref
selects a new variable following the order imposed by the preferences and as-
signs to it the preferred value. This is always possible, unless the opposite value
is implied by the current partial assignment. In modern SAT solvers, heuristics
have a significant impact on performance [5]. In order to prevent performance
loss, minipref keeps interference with the heuristic to a minimum. In minisat
the next variable to branch on is selected from a heap. In our implementation
variables are distributed in more than one heap. More specifically, minipref is
organized as a stack of heaps, one for each level i such that Ωi is not empty. Intu-
itively, levels serve to represent the relative importance of variables. In practice,
given two levels n and m, with n > m, all the literals in Ωn are selected before
those in Ωm, while all the literals within the same level are selected according to
the original minisat policy. Note that, differently from the minisat implementa-
tion, in our tool random choices are allowed only within the same level. The tool
exposes an interface for specifying for each literal its level. Literals without a
specified preference are assumed to be at level 0 and their the standard minisat
heuristic is not modified for them. Indeed, it is important to emphasize here
that minipref acts as a standard SAT solver, when no preference is specified.
The implementation of the tool guarantees that the first discovered assignment
satisfying the input formula is a most preferred model.

Interface. minipref is implemented on top of minisat and it extends the original
C++ interface with two additional methods:

1. setPreference(Lit l, int lv): This method adds the variable var(l) into the
heap at level lv. If no heap at level lv already exists a new one is created.
Then, whenever var(l) is selected by the branching heuristic of minisat,
var(l) is assigned to true if l is positive, and to false otherwise.

2. removePreference(Lit l): This method remove var(l) from the current heap
to the heap at level 0 (i.e the default minisat level) and restore the default
behaviour of the minisat heuristic for this variable.

The tool minipref comes with a Python wrapper, pyminipref, which ex-
tends the tool pyminisolvers, originally implemented in [17]. The aim of the
Python wrapper is to allow for quick prototyping of ideas. The Python interface
mostly resembles the C++ interface, with the only difference being an int as
a first parameter of setPreference and removePreference instead of a Lit. The
intended meaning of the int matches the one of the DIMACS format, with l
and −l used to denote a positive and negative literal respectively. In addition,
pyminipref comes with a Dimacs class to deal with input formulas. The class
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stores the formula before it is pushed into the solver, thus giving the opportunity
to apply modifications to it (e.g adding selector variables) before execution. It
also keeps information about soft/hard clauses and their weights. At the mo-
ment, such a class is not available for the C++ interface, but this will be added
in future releases.

minipref and pyminipref both support incremental SAT solving under as-
sumption literals even in combination with preferences. Incremental SAT solving
is beneficial when dealing with problems requiring iterative calls to a solver. Both
minipref and pyminipref can return a core in case a formula is unsatisfiable or
a model otherwise. The interface that returns a model or a core is left unchanged
with respect to minisat and pyminisolvers, respectively.

4 Usage Examples

The interface presented in the previous section can be used for performing dif-
ferent computational tasks. As usage examples, in this section we report on two
algorithms, one for the computation of a Minimal Correction Subset (MCS) and
one for the computation of the backbones of a propositional formula. In the
following, algorithms are presented in a Python-like language. Given the space
limit, we report here only on a simplified version to understand the algorithms;
for the full code we refer the reader to [10].

Computation of a MCS. Algorithm 1 reports on a strategy for the computation of
a MCS of a given formula, say ϕ, that is split into two sets of clauses representing
the hard and soft clauses, respectively. The algorithm returns a minimal subset
C of the soft clauses such that ϕ \ C is satisfiable. In the following, we assume
that the set of hard clauses is satisfiable. The working principle of the algorithm
is quite straightforward: each soft clause c is processed and a fresh literal, called
selector literal, is added to c. Intuitively, since all the selector literals do not
appear elsewhere in the ϕ, then any set M including all of them is a model of
the soft clauses. Therefore, in order to compute a minimal set of true selector
literals it is sufficient to associate the level 1 to the preference of the complement
of the selector literals (line 9).

Computation of backbones. The algorithm described in the following shows the
advantage of providing an incremental interface for the specification of prefer-
ences. Indeed, it is based on multiple calls to the solver, where preferences are
updated after each call.

A model M of a formula ϕ is said to be minimal with respect to a set O of
objective literals if there is no model M ′ of ϕ such that (M ′ ∩ O) ⊂ (M ∩ O).
The algorithm described in the following, and reported as Algorithm 2, takes
advantage of this notion. In particular, given a formula ϕ, it first searches for
models of ϕ that are minimal with respect to the current set of candidates C.
The model returned by S.solve() either discard some candidate from C, which
would lead to a new iteration of the strategy, or are such that all literals in C are
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Algorithm 1: Computation of a MCS

1 S = pyminipref.MinisatSolver()

2 D = pyminipref.Dimacs()

3 V = []

4 for c in D.clauses : S.addClause(c) // Add hard clauses

5 for c in D.soft :
6 V.append(S.newVar()) // Add a selector variable

7 c.append(V[-1]) // Add the selector variable to the clause

8 S.addClause(c) // Add the clause to the solver

9 for v in V : S.setPreference(-v, 1)

10 S.solve()

11 mcs = [c[:-1] for c in D.soft if S.isTrueInModel(c[-1])]

12 print (mcs);

Algorithm 2: Computation of Backbones

1 S = pyminipref.MinisatSolver()

2 D = pyminipref.Dimacs()

3 C = []

4 for c in D.clauses : S.addClause(c) // Add clauses

5 S.solve() // Compute first model

6 for v in range(1, S.nvars()) :
7 if S.isTrueInModel(v) : C.append(v)

8 else : C.append(-v)

9 S.setPreference(-C[-1], 1)

10 while True :
11 S.solve()

12 newC = [l for l in C if S.isTrueInModel(l)] // update candidates

13 if len(newC) == len(C) : return C // no candidates removed

14 for l in C and l not in newC : S.removePreference(l)

15 C = newC

true. In the latter case, the set C only contains backbones of ϕ, and therefore
the algorithm terminates returning C.

Note that the minimality of each model with respect to C is enforced by
associating the level 1 to the preference of the complements of literals in C
(line 9), and then by removing such preferences when literals are proven to be
not part of the backbones (line 14).

5 Experiments

The performance of the tool minipref presented in this paper was assessed
empirically on three benchmarks
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Fig. 1. Comparison of the performance of minipref-mcs and sat&pref on instances
of benchmark (i).

(i) all instances from [18] for the computation of one MCS. In particular, we
considered all the instances used for the computation of a single MCS;

(ii) all structured instances from [7] used to test the performance of sat&pref
and downloaded from [8];

(iii) all the 783 instances from [15] for the computation of backbones of proposi-
tional formulas.

For (i) and (ii), we compared an implementation of Algorithm 1 based on the
Python interface of minipref (referred to as minipref-mcs) with the tool
sat&pref [7] using the best performing strategy according to [7], i.e., sat&pref.
Note that both minipref and sat&pref use minisat [11] as underlying SAT
solver. For (iii), we compared two different implementations of Algorithm 2,
based on the C++ (referred to as minipref-bbc) and on the Python library of
minipref (referred to as minipref-bbp), respectively. The experiment was run
on an Intel CPU 2.4 GHz with 16 GB of RAM. Running time was limited to
1200 seconds.

Concerning benchmark (i), results are reported in the cactus plot of Fig-
ure 1. We recall that in a cactus plot a line is reported for each tested solver;
where instances are ordered by solving time and a point (i, j) in the graph rep-
resents that the i-th instance is solved in j seconds. It is possible to observe that
minipref-mcs 558 instances more than sat&pref. However, from the analysis
of the results, we noticed that sat&pref is buggy in the majority of the tested
instance. In particular, the solver terminates without printing neither the correct
solution nor an error message. Therefore, in order to perform a fair comparison,
we restricted our analysis to the 231 instances where sat&pref was either cor-
rect or it exceeded the time limit. In this setting, sat&pref solves 208 instances,
whereas minipref-mcs obtains a better performance solving 215 instances.

A slight improvement of the performance can be also observed on instances
of the benchmark (ii) as shown in the scatter plot of Figure 2. We recall that
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Fig. 2. Instance-wise comparison between minipref-mcs and sat&pref on benchmark
(ii).

in a scatter plot a point (x, y) is reported for each instance, where x and y are
the solving times of the compared systems. Points standing below the diagonals
represent instances where the system reported on the x-axis was slower than
the system reported on the y-axis. In this setting, it is possible to observe that
minipref-mcs outperforms sat&pref since the majority of the points are be-
low the diagonal. Moreover, we report that the latter is able to solve all the
157 instances with a total running time of approximately 260 seconds, whereas
minipref-mcs solves all the instances with a total running time of 32 seconds.

Finally, concerning benchmark (iii), we report that the two tested solvers,
minipref-bbc and minipref-bbp, are almost on par, solving 670 and 674 in-
stances, respectively. Interestingly, the Python version obtains slightly better
performance than the C++ version. This can be explained by a heuristic factor,
due to the different implementation of the two solvers. Indeed, candidates in
minipref-bbc are handled using a data structure called unordered set which in
general does not preserve the order of literals added to it, while in minipref-bbp
they are handled using a Python list. Therefore, the order of processed literals is
different in the two versions, thus the solvers perform different heuristic choices.

6 Related Work

The SAT problem with preferences finds many practical applications, but to date
the only available solver (sat&pref) is outdated and mostly buggy. sat&pref
implements three different procedures to enforce satisfaction of the preferences
over literals, namely optsat-hs [13], optsat-bf [9] and sat&pref [7]. Our tool is
similar in spirit to optsat-hs, since they both work by modifying the heuristic.
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However, differently from optsat-hs, an ordering over the literals is enforced with-
out modifying the scoring mechanism of minisat. We compare our tool against
the technique referred to as sat&pref, which according to [7] is the most perform-
ing one. As shown in the experimental section, our tool outperforms sat&pref.
Moreover, in sat&pref preferences over literals have to be specified into the in-
put formula, which makes using the tool unpractical for tasks requiring multiple
calls to the solver. minipref offers an easy interface to use the solver that can
be adopted as a good starting point for dealing with preferences. The underline
minisat solver provides good guarantees in terms of performance out-of-the-box,
as shown empirically in the experimental section. Moreover, to the best of our
knowledge, this is the first tool for SAT preferences exposing a programmatic
interface.

Preferences can be also specified in other languages, like Answer Set Pro-
gramming (ASP), and several ASP solvers, like clingo [12] and wasp [1] are
able to deal with preferences. Concerning clingo, preferences can be expressed
by using the class of HeuristicType. However, the interface of clingo is more
complex since it is mainly dedicated to ASP programs, and therefore requires an
additional effort to convert the SAT instance into an ASP program. Concern-
ing wasp, it offers a minisat-like interface to specify the SAT formula and it
allows to add preferences among literals in a way that is similar to the one of
minipref. However, wasp supports only one level of preferences, therefore it is
not possible to specify a total order among literals. Moreover, the interface of
wasp is available in C++ only, whereas minipref also offers a Python interface.

Finally, we mention that the current implementation of minipref does not
allow to compute cardinality-minimal models; therefore it is not suitable for the
computation of (partial) MaxSAT solutions.

7 Conclusion

In this paper we presented a new tool, minipref, built on top of a CDCL SAT
solver, which allows for expressing preferences over literals. An experimental
analysis conducted on publicly-available instances shows that minipref outper-
forms the tool sat&pref. Possible future directions include a new efficient data
structure to handle a DAG-based preference specification, the possibility to pro-
vide different heuristics for different levels and other approaches as presented in
[7]. Finally, we mention that minipref is open-source and available at [10].
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