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Abstract. An evaluation of the IsiXhosa Branching Entropy Segmenter
(XBES), an unsupervised morphological segmenter for isiXhosa, is pre-
sented. The segmenter contributes a combined bi-directional branching
entropy language model with an option for modified Kneser-Ney (mKN)
smoothing. XBES’s boundary identification accuracy of 77.44± 0.32% is
comparable to the benchmark Morfessor-Baseline’s 77.2±0.10%. XBES’s
f1 score, of 58 ± 0.10%, is significantly better than Morfessor-Baseline’s
48.9 ± 0.75%. The study shows that mKN smoothing degrades perfor-
mance on branching entropy-based segmentation of isiXhosa, and sug-
gests that better segmentation performance could be achieved in the
unsupervised morphological segmentation of isiXhosa, given more data.

Keywords: Natural language processing · Unsupervised machine learn-
ing · Morphological segmentation · Branching entropy · isiXhosa.

1 Introduction

Work on the unsupervised learning of isiXhosa text segmentation, the IsiX-
hosa Branching Entropy Segmenter (XBES), was presented in [21]. This paper
presents the bi-directional branching entropy language model implemented in
XBES and evaluates the XBES against more metrics than just accuracy.

Human language resources and applications currently available in South
Africa are still limited. According to [33] this can be attributed to the depen-
dence on Human Language Technology (HLT) expert knowledge, scarcity of data
resources, lack of market demand for African languages, and how the particular
language relates to other more resourced languages. Morphological analysis is
one of the basic tools in the natural language processing (NLP) of agglutinating
languages such as isiXhosa.

IsiXhosa is one of the South African official languages belonging to the Bantu
language family, which are classified as “resource scarce languages”. IsiXhosa
is the second largest language in South Africa with 9.3 million mother-tongue



2 L. Mzamo et al.

speakers (17% of the South African population), second only to isiZulu [38].
Although there has been an increase in the tools for South African languages,
this increase is from a low baseline. Hence there is still a need for NLP tools [25].

IsiXhosa is closely related to other Nguni languages such as isiZulu, Siswati
and isiNdebele and therefore work done in it could easily be bootstrapped to
these languages as has been shown in [4]. Nguni languages account for 45.8% of
the South African mother tongue speaker population.

2 Morphological segmentation for isiXhosa

2.1 Morphological segmentation

Morphological analysis is the task of splitting one token, a word, into its con-
stituent units [23], e.g. the segmentation of a word into morphemes, and classi-
fication thereof. Morphemes are the smallest meaning bearing component of a
word [19]. In languages with rich systems of inflection and derivation, morpho-
logical analysis is needed in information retrieval, translation, etc.

A differentiation is made by [17] between morphological segmentation, which
splits words into constituent morphemes, and morphological analysis, which also
classifies the identified morphemes. This differentiation originated in [44]. The
task handled in this paper is morphological segmentation.

2.2 Morphological segmentation in isiXhosa

IsiXhosa is an agglutinating and polysynthetic language in that it usually has
many morphemes per word [19]. It is also fusional/inflectional because morpheme
boundaries are sometimes fused and difficult to distinguish, e.g ukwanda (to
grow) is linguistically segmented as u-ku-and-a. The w is a result of a fusion
between the u and a vowels.

IsiXhosa words are composed of a root, prefixes, suffixes and circumfixes
that attach to the root. The root is the main meaning carrying constituent of the
word. A circumfix is the “simultaneous affixation of a prefix and suffix to a root or
a stem to express a single meaning” [19]. An example of a circumfix in isiXhosa is
the combination “a. . . ang..” in isiXhosa negation, e.g. a-ka-hamb-ang-a (he/she
did not go). Each of the affixes (i.e. prefixes, suffixes or circumfixes) is made up
of one or more morphemes. Morphemes follow one another in an order prescribed
for each word type [20]. In isiXhosa, most roots are however bound morphemes,
meaning that they never appear independently as words which are independently
meaningful [29]. They at least appear as stems, which are word roots suffixed
with a termination vowel [20], e.g. and-a in ukwanda.

2.3 Automated morphological segmentation of isiXhosa

One of the earliest reports on automated morphological segmentation of South
African languages is that of [40] on the automatic acquisition of a Directed
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Acyclic Graph (DAG) to model the two-level rules for morphological analysers
and generators. The algorithm was tested on English adjectives, inflection of
isiXhosa noun locatives and Afrikaans noun plurals, with a 100% accuracy for
isiXhosa noun locatives inflection.

An existing isiZulu morphological analyser [30] was bootstrapped by [4] to
other Nguni languages including isiXhosa. The study reported that 93.30% of
the words (181) were analysed.

Work on the development of text resources for ten South African languages
was presented by [11], including a morphologically analysed corpus for isiXhosa.
That morphological segmentation corpus is used in this study as the test corpus.
The corpus is rated at an accuracy of 84.66%.

The most recent work for isiXhosa segmentation is that of [26], which intro-
duced a lemmatiser for isiXhosa and [28] who presented the development of a
rule-based noun stemmer for isiXhosa. The isiXhosa lemmatiser was evaluated
at an accuracy of 83.19% and the noun stemmer showed an accuracy rate of
91%.

3 Unsupervised morphological segmentation

The last works done for morphological segmentation for isiXhosa reported in
[21] uses unsupervised machine learning in the morphological segmentation of
isiXhosa. This is attractive because it bypasses the need for expensive linguistic
experts or annotation of training data.

3.1 Supervision in Machine Learning

There are three modes of training a machine learning model, i.e. supervised,
semi-supervised and unsupervised [23]. In supervised learning, the training data
contains solution examples that the model must generalise from. Data in un-
supervised training is devoid of such, but only creates a model from raw data.
Semi-supervised systems use anything in between, from using limited supervised
data with large amounts of unannotated data to unannotated data with rules
built into the model.

The segmenter evaluated in this paper, XBES, uses unsupervised learning in
the morphological segmentation of isiXhosa.

3.2 Unsupervised morphological segmentation works

The earliest works in unsupervised morphological segmentation used a form of
accessor variety, where a morpheme boundary is identifiable by the possible
number of letters that may follow a sequence of letters [9, 12]. This evolved
to using mutual information [39, 42], and different forms of Branching Entropy
[1, 39].

Minimum Description Length (MDL) [31] has seen extensive use in unsu-
pervised morphological segmentation, primarily as a measure of fit of the train-
ing data to heuristic models and statistical models [16, 18]. The comparative
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standard used in this study, Morfessor-Baseline [7], uses MDL and Maximum
likelihood estimation.

Clustering and paradigmatic models is another popular approach. This in-
volves clustering related words into a paradigm using a similarity measure, identi-
fying the stem, and considering the rest as sequences of affixes [5,13]. A paradigm
is a grouping of words according to their form-meaning correspondence [3]. The
similarity measures used are Latent Semantic Analysis [8], Dice and Jaccard
coefficients [23], Ordered Weighted Aggregator operators [5] and affixality mea-
surements [24]. Word context is also another technique that is used to identify
similar words [2, 32].

Non-parametric Bayesian techniques have also shown promise, including Pit-
man-Yor process based models [15, 41] and adaptor grammars [34]. These use
Markov Chain Monte Carlo (MCMC) simulation with Gibbs Sampling [14] for
inference. Contrastive Estimation [27,35] is another non-parametric model that
is showing elegance and promising results.

A number of studies have used a combination of the above techniques and
measures [28, 32].

3.3 Choice of unsupervised segmenter for benchmarks

To place this work amongst other segmenters, a standard in morphological seg-
mentation was chosen for comparison. The benchmark segmenter had to be
publicly available and had to have been used for highly agglutinative languages
like isiXhosa. The Morfessor-Baseline segmenter [7] was chosen because it has
been used as a benchmark extensively and is freely available.

To establish a minimum performance baseline a random segmenter that ran-
domly decides whether a point in a word is a boundary of a segment or not was
implemented.

4 Character level language modelling

To estimate the branching entropies, character level language modelling is re-
quired. Instead of using two language models, one for each direction, XBES’s
implementation uses one model for both directions such that a dictionary en-
try points to a vector of two values, the right branching and the left branching
values. This reduced the memory footprint.

Both the un-smoothed and modified Kneser-Ney [6] smoothed language mod-
els were implemented. The language model was also extended to include an
option for using all possible n-gram levels in one model instead of having a
maximum n-gram level limit, i.e., an infinite-gram.

The calculation of the VBE and NVBEs are done as specified in [21] and [22]
and stored in the model.

The algorithms are briefly described below.
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4.1 Un-smoothed bi-directional Branching Entropy language model
flow

The input to the unsmoothed modelling is a list of one directional (left-to-right)
n-gram strings with frequency counts (n-gram, f) or a mapping of n-gram string
to frequency counts and the process returns a single Bi-directional Branching
Entropy Language Model (BELM) with branching entropy values for both di-
rections. Fig. 1 shows the process of the modelling.

The sorting allows the process to do a single pass through the n-gram strings
frequency counts. This is important when dealing with large frequency counts
as in this case.

Fig. 1. Un-Smoothed BELM process

The reverse frequencies are updated such that each n-gram x is mapped to
a list of two counts such that

C(x) →
�
#←−x
#−→x

�
(1)

The branching entropies are calculated according to [43]. The probabilities
are discarded after use.
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4.2 The modified Kneser-Ney smoothed bi-directional Branch
Entropy language model flow

In this exercise, we also wanted to check if smoothing had any effect on the
performance of the branching entropy segmenter. Smoothing is necessary where
there is data sparsity, which is the case in higher order character n-grams, i.e
long n-gram strings.

We implemented a bi-directional mKN smoothed BELM. Input to it is also
a list of one directional (left-to-right) n-gram strings with frequency counts (n-
gram, f) or a mapping of n-gram string to frequency counts and the process
returns a single bi-directional Branching Entropy Language Model (BELM) with
branching entropies for both directions. The process is shown in Fig. 2. The
conditional probabilities are calculated according to [6] and the branching entries
are according to [43].

Fig. 2. mKN Smoothed BELM Process

The sorting by n-gram lengths and n-gram contexts ensured that lower level
n-grams are processed first as their results are required for the interpolation of
higher-level n-grams. This also ensured that discount values could be calculated
independently for each level. Lastly, this ensured that n-grams are clustered
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by context, which is key in mKN smoothing. All this ensured only two passes
through the n-gram counts one for generating discount values and collection
interpolation statistics, and one for calculating the probabilities and updating
the BELM.

5 Evaluation

This section details the evaluation that was done on XBES.

5.1 Data sources 1

A raw unannotated isiXhosa corpus of 1.45 million isiXhosa words was compiled
from the isiXhosa version of the South African Constitution [37], isiXhosa text
on the internet and the IsiXhosa Genre Classification Corpus [36]. This text is
named the training corpus.

For testing purposes the NCHLT IsiXhosa Text Corpus (29 511 tokens) was
used.

5.2 Data splits

For training purposes, ten-fold training was performed for different training set
sizes and language model n-gram lengths. The training set sizes chosen were
orders of ten (10) from one hundred (100) words to a million words and one and
a half million (1.5 million). The n-gram lengths were two (2) to five (5), odd
numbers to nineteen (19) and to the maximum n-gram length possible, i.e. the
infinite-gram.

For testing purposes a subset of the NCHLT corpus was used. Because the
NCHLT corpus was generated with a rule based morphological analyser, the so-
lutions are not all surface segmentations, others include grammatic morphemes.
XBES is a surface segmenter and was not built to handle morpheme boundary
fusion. As an example the morphological segmentation of ukwanda is u-ku-and-
a. A surface segmenter would segment ukwanda to u-kw-and-a. Excluding these
kinds of entries resulted in an evaluation testing corpus of 13441 tokens.

5.3 Experiment setup

Training was performed for two segmenters, i.e. XBES, and Morfessor-Baseline,
using the training corpus, and tested against the testing corpus. The random
segmenter does not require training. Both Morfessor-Baseline and XBES were
trained with different sizes. Because Morfessor-Baseline does not support speci-
fying n-gram size, only XBES was trained to different model n-gram lengths.

1The IsiXhosa Genre Classification Corpus and NCHLT IsiXhosa Text Corpus are
available at the South African Language Resource Management Agency, (http://rma.
nwu.ac.za/index.php)
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XBES provides an option of using the minimum between the right branching
entropy and left branching entropies or the sum of the two. In addition this
study tests XBES on unsmoothed and a modified Kneser-Ney smoothed language
models [6] as detailed in Algorithms 1 and 2. In addition XBES was evaluated
for all the branching entropy modes specified in [21].

Evaluation of the segmentations was measured as boundary identification
accuracy and f1 score, where, in a word, a morpheme boundary location is tagged
1 and everything else 0. Accuracy measures how many boundaries and non-
boundaries the segmenter identified correctly. The f1 score focuses on the possible
boundary location and does not factor the non-boundary word locations.

5.4 Results

The overall results, including the best performance per XBES mode are shown
in Table 1. The results are shown with configuration information (i.e. smoothed
or not, the operator used to mix the directional branching entropies, the training
set size and the language model n-gram level that produced the results).

Table 1. Boundary Identification Results

Method
Highest Accuracy

(Smoothing/Op/training
Size/n-gram length)

Highest f1 Score
(Smoothing/Op/training

Size/n-gram length)

Random 50.1± 0.16 35.7± 0.16
XBES-BE 71.6± 0.35 (No/Min/100K/4) 55.3± 0.12 (No/Sum/1m/7)
XBES-VBE 72.4± 0.25 (Yes/Min/1.5m/9) 58.0± 0.10 (No/Sum/1.5m/9)
XBES-NuVBE 75.8± 0.60 (No/Sum/1m/11) 53.6± 0.35 (No/Sum/1.5m/13-max)
XBES-NzVBE 77.4± 0.32 (No/Sum/1.5m/11) 55.5± 1.18 (No/Sum/1.5m/9)
Morfessor-
Baseline

77.2± 0.10 (1m) 48.9± 0.75 (10K)

The benchmark ten-fold validation average accuracy from Morfessor-Baseline
was measured at 77.2 ± 0.10%. The random segmenter presented an average
accuracy from ten (10) runs of 50.1 ± 0.16%. This implies that any segmenter
below this threshold would actively degrades segmentation.

The Random Segmenter’s average f1 score was 35.7±0.16% whilst Morfessor-
Baseline’s performance peaked at 10000 words with an average f1 score of 48.9±
0.75%.

The best 10-fold average accuracy, 77.4 ± 0.32%, was achieved by the z-
score normalised branching entropy mode (NzVBE) of XBES at a training set
size of one and a half million (1.5 million) words using an unsmoothed 11-gram
language model and the sum operator. This accuracy, however, is only considered
comparable to Morfessor-baseline’s accuracy of 77.2 ± 0.10% as the Wilcoxon
Signed Rank test [10] p-value between the two was measured at 0.07446. This
configuration, however, does not reflect the best f1 score.
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The best f1 score, 58 ± 0.10%, was achieved by the un-normalised variation
of branching entropy mode (VBE) at a training set size of one and half million
(1.5 million) words using an unsmoothed 9-gram language model and the sum
operator. This score is statistically better than the rest of the scores with a
maximum pair-wise p-value of 0.0051.

For Normalised Variation of Branching Entropy modes, the sum of the left
and right branching measures performed better than the minimum of the two,
implying that a smoothing effect is better, as the sum is a form of averaging the
two branching directions. Unsmoothed language models performed better than
modified Kneser-Ney smoothed language models. This suggests that character
level language modelling does not suffer from sparsity, which is prevalent in word
level language modelling.

Fig. 3 shows the trend of the segmenters including Morfessor-Baseline and
the best performing XBES modes for accuracy and f1 score in relation to training
set size. Because the random segmenter was not trained, it is represented as a
flat line across the training set sizes.

Fig. 3. Average accuracy and f1 score of the Random Segmenter, Morfessor-Baseline
and the best XBES mode by training set size.

As can be seen from Fig. 3 Morfessor-Baseline’s accuracy and the best XBES
mode peak at around 77% with maximum training set size. The f1 score is
however a different matter.
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The f1 score of Morfessor-Baseline peaks at 10000 words and degrades whilst
XBES’s best mode continues to grow albeit marginally.

6 Conclusions

In this paper, an unsupervised morphological segmenter for isiXhosa that uses
branching entropy is evaluated. The IsiXhosa Branching Entropy Segmenter
(XBES) uses an adaptation of branching entropy techniques detailed in [22]
applied to isiXhosa.

The study contributes and summarises a single bi-directional branching en-
tropy language model with an option for smoothing with modified Kneser-Ney
smoothing.

The morpheme boundary identification average accuracy of XBES, at 77.4±
0.32%, was evaluated to be comparable to Morfessor and it was achieved using
the z-score normalised variance of branching entropy mode with an unsmoothed
11-gram language model and the sum operator when trained on 1.5 million
words.

The morpheme boundary identification f1 score of XBES, at 58 ± 0.10%,
performed better than the benchmark Morfessor-Baseline when using the un-
normalised variance of branching entropy (VBE) mode with an unsmoothed 9-
gram language model and the sum operator when trained on 1.5 million words.

The results also show that XBES performance could still grow in both accu-
racy and f1 score, however those gains could cost a lot of training data.

The results also show that using the modified Kneser-Ney smoothing provides
no advantage when using branching entropy.
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cessing work. The authors also with to thank the two anonymous reviewers for
their careful reading of the paper and their many insightful comments and sug-
gestions. This has helped to improve and clarify this paper.

References

1. Ando, R.K., Lee, L.: Mostly-Unsupervised Statistical Segmentation of Japanese:
Applications to Kanji. In: Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference (2000)

2. Belkin, M., Goldsmith, J.: Using eigenvectors of the bigram graph to infer mor-
pheme identity. In: Proceedings of the ACL-02 workshop on Morphological and
phonological learning. vol. 6, pp. 41–47. Association for Computational Linguis-
tics, Philadelphia, USA (2002)

3. Booij, G.: The grammar of words: an introduction to linguistic morphology. Oxford
University Press, third edit edn. (2012)



Combined bi-directional branching entropy isiXhosa segmentation 11

4. Bosch, S., Pretorius, L., Fleisch, A.: Experimental Bootstrapping of Morphological
Analysers for Nguni Languages. Nordic Journal of African Studies 17(2), 66–88
(2008)

5. Chavula, C., Suleman, H.: Morphological Cluster Induction of Bantu
Words Using a Weighted Similarity Measure. In: Proceedings of SAIC-
SIT ’17,. p. 9. No. September 26–28, Thaba Nchu, South Africa (2017).
https://doi.org/10.1145/3129416.3129453, http://pubs.cs.uct.ac.za/archive/

00001225/01/morphological-cluster-induction-camera.pdf
6. Chen, S.F., Goodman, J.: An Empirical Study of Smoothing Techniques

for Language Modeling. Tech. rep., Computer Science Group, Harvard Uni-
versity, Cambridge, Massachusetts (1998), https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/tr-10-98.pdf

7. Creutz, M., Lagus, K.: Unsupervised Discovery of Morphemes. In: Procedings of
the 6th Workshop of the ACL Special Interest Group in Computational Phonology.
pp. 21–30. No. July, Philadelphia, USA (2002)

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by Latent Semantic Analysis. Journal of the American Society for Information
Science Sep 41(6), 391–407 (1990)
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