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Abstract. Training agents in hard exploration, sparse reward environ-
ments is a difficult task since the reward feedback is insufficient for mean-
ingful learning. In this work, we propose a new technique, called Directed
Curiosity, that is a hybrid of Curiosity-Driven Exploration and distance-
based reward shaping. The technique is evaluated in a custom navigation
task where an agent tries to learn the shortest path to a distant target, in
environments of varying difficulty. The technique is compared to agents
trained with only a shaped reward signal, a curiosity signal as well as
a sparse reward signal. It is shown that directed curiosity is the most
successful in hard exploration environments, with the benefits of the ap-
proach being highlighted in environments with numerous obstacles and
decision points. The limitations of the shaped reward function are also
discussed.

Keywords: Sparse Rewards - Hard Exploration - Curiosity - Reward
Shaping - Navigation.

1 Introduction

A reinforcement learning agent learns how to behave based on rewards and pun-
ishments it receives through interactions with an environment [18]. The reward
signal is the only learning signal that the agent receives [2]. Many environ-
ments have extrinsic rewards that are sparsely distributed, meaning that most
timesteps do not return any positive or negative feedback. These environments,
known as sparse reward environments [12,21], do not provide sufficient feedback
for meaningful learning to take place [17]. The most difficult sparse reward envi-
ronments are those where an agent only receives a reward for completing a task
or reaching a goal, meaning that all intermediate steps do not receive rewards.
These are referred to as terminal reward environments [7].

Closely related to the sparse rewards problem is the issue of exploration. Ex-
ploration algorithms aim to reduce the uncertainty of an agents understanding
of its environment [4]. It is not possible for an agent to act optimally until it has
sufficiently explored the environment and identified all of the opportunities for
reward [24]. An agent may never obtain positive rewards without an intuitive
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exploration strategy when rewards are sparse. Hard exploration environments
are environments where local exploration strategies such as e-greedy are insuffi-
cient [4]. In these environments, the probability of reaching a goal state through
local exploration is negligible.

These types of environments are prevalent in the real-world [17] and training
reinforcement learning (RL) agents in them forms one of the biggest challenges
in the field [1]. This research focuses on learning in hard exploration, terminal
reward environments.

A popular approach to learning in these environments is reward shaping,
which guides the learning process by augmenting the reward signal with supple-
mental rewards for intermediate actions that lead to success [15]. This ensures
that the agent receives sufficient feedback for learning.

Intrinsic rewards that replace or augment extrinsic rewards is another area
of research that has exhibited promising results [4,7,17]. Instead of relying on
feedback from the environment, an agent engineers its own rewards. Curiosity is
a type of intrinsic reward that encourages an agent to find “novel” states [17].

In this research, we present Directed Curiosity: a new technique that hy-
bridises reward shaping and Curiosity-Driven Exploration [17] to allow agents
to explore intelligently. The algorithm is defined in Section 3 and the custom
navigation environments used for evaluation are described in Section 4. The
performance of the algorithm is evaluated by comparing it to its constituent al-
gorithms i.e. agents trained with only the shaped reward and only the curiosity
reward. Directed Curiosity is shown to be the most robust technique in Section 5.
The environment characteristics that are suited to this technique are highlighted
and the limitations of the shaped reward function are also discussed.

2 Related Work

Learning in hard exploration, sparse reward environments is a well-studied area
in reinforcement learning. Reward shaping is a popular approach that augments
the reward signal with additional rewards to enable learning in sparse reward
environments. It is a means of introducing prior knowledge to reduce the number
of suboptimal actions [9] and guide the learning process [14]. A concern is that
when reward shaping is used incorrectly, it can have a detrimental effect and
change the optimal policy or the definition of the task [9,15].

Potential-Based Reward Shaping has been proven to preserve the optimal
policy of a task [9,15]. It defines ¢, a reward function over states that introduces
“artificial” shaped reward feedback [3]. The potential function F is defined as
a difference between ¢ of the next state s’ and the current state s with v as a
discount factor on ¢(s).

The restriction on the form of the reward shaping signal limits its expressive-
ness [14]. Potential-Based Advice is a similar framework that introduces actions
in the potential function [26]. A novel Bayesian approach that augments the
reward distribution with prior beliefs is presented in [14].
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It is difficult to manually engineer reward functions for each new environ-
ment [9,11]. Implicit reward shaping is an alternate approach that learns from
demonstrations of target behaviour. A potential-based reward function is re-
covered from demonstrations using state similarity in [22] and through inverse
reinforcement learning methods in [21]. The shaped reward function is learnt
directly from raw pixel data in [11].

An alternative to “shaping” an extrinsic reward is to supplement it with
intrinsic rewards [16] such as curiosity. Curiosity-Driven Exploration by Self-
Supervised Prediction [17] is a fundamental paper that defined a framework for
training curious agents. Curiosity empowers the agent by giving it the capability
of exploration, enabling it to reach far away states that contain extrinsic rewards.
Much research has built upon the findings of this paper. Large scale analysis of
the approach is performed in [7] where agents learned to play various Atari
Games using intrinsic rewards alone. A limitation of the approach is that it
struggles to learn in stochastic environments [7].

Classic work in [6,13] investigated balancing exploration and exploitation
in polynomial time and has inspired much research in the area of intelligent
exploration. Count-based exploration methods generate an exploration-bonus
from state visitation counts [24]. It has been shown to achieve good results on
the notoriously difficult “Montezuma’s Revenge” Atari game in [4,5]. Exploration
bonuses encourage an agent to explore, even when the environment’s reward is
sparse [4], by optimising a reward function that is the sum of the extrinsic reward
and exploration bonus.

Approximating these counts in large state spaces is a difficult task [24]. Hash
functions were used in [24] to extend the method to high-dimensional, continu-
ous state spaces. Random Network Distillation (RND) [8] is a novel technique
that consists of a fixed randomly initialised target network and a prediction net-
work. The target network outputs a random function of the environment states
which the prediction network learns to predict. An intrinsic reward is defined as
the loss of the prediction network. It achieved state of the art performance on
“Montezuma’s Revenge” [5] in 2018.

Other methods of exploration include maximising empowerment [10], wherein
the long-term goal of the agent aims to maximise its control on the environment,
using the prediction error in the feature space of an auto-encoder as a measure
of interesting states to explore, and using demonstration data to learn an explo-
ration policy [23].

3 Directed Curiosity

We propose a new reward function that is made up of two constituents: a
distance-based shaped extrinsic reward and a curiosity-based intrinsic reward.

3.1 Distance-Based Reward Shaping

Shaping rewards is a fragile process since small changes in the reward function
result in significant changes to the learned policy [25].



4 A. Jeewa et al.

Various functions were engineered and compared. It is essential that the
positive and negative rewards are balanced. In an episode, the agent should not
receive more positive rewards for moving closer to the target, or more negative
rewards for moving further away, so as not to introduce loopholes for the agent
to exploit. If the weighting of positive rewards is too high, the agent learns to
game the system by delaying reaching the target to gain more positive rewards
in an episode. If the weighting of the negative rewards is too high, the agent
does not receive sufficient positive reinforcement to find the target. This means
that the shaped rewards alter the optimal policy of the original task [15].

The shaped reward should encourage the agent to keep advancing towards
the target by favouring consecutive positive moves and punishing consecutive
negative ones. It must not dominate the terminal reward such that the agent is
no longer incentivised to find the target and its motivations become polluted.
To overcome these issues, a shaped reward function based on relative distance
between target and agent is used.

Algorithm 1 Distance-based shaped reward function

Input: Agent position Pagent, target position Pigrget, maximum distance Doz,
previous distance Dprey, reward coefficient C'
Calculate distance Deyrrent < distance(Pagent, Prarget)
Calculate reward signal: R < Dcurrent/Dmax
if Dcurrent < Dprev then
return C'- (1 — R)
else
return C - (—R)
end if

There are various benefits to Algorithm 1. The agent is penalised if it stays
still and the shaped reward signal can be controlled using the reward coefficient
C. This ensures that the episodic shaped rewards cannot exceed terminal positive
reward. There is a balance between positive and negative rewards since they are
both relative to the change in distance. The agent receives the highest reward
when it moves closest to the target and the highest penalty when it moves
furthest away. This means that the shaped reward function is policy invariant
i.e. it does not alter the goal of the agent to learn the optimal path to the target.

Since the rewards are shaped exclusively based on distance metrics that do
not take into account the specific dynamics of the environment, the same function
can be used across different environments, and in general, for navigation tasks.
A limitation of this approach is that the target location needs to be known.
We have investigated using ray casts to find the location of the target if it is
unknown, however, the scope of this research is to teach an agent to navigate
past obstacles and find an optimal path, given a starting point and a destination.
The definition of the task changes drastically, from a navigation-based one to
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a goal-finding or search task, when the location is unknown. This is a possible
area for future work.

3.2 Curiosity-Driven Exploration

Pathak et al. [17] formally defined a framework for training curious agents that
involves training two separate neural-networks: a forward and an inverse model
that form an Intrinsic Curiosity Model (ICM). The inverse model encodes the
current and next observation into a feature space ¢ and learns to predict the
action a; that was taken between the occurrence of the two encoded observations.
The forward model is trained to take the current encoded observation and action
and predict the next encoded observation.

rt = 216(su01) = dlseen)l (1)

In order to generate a curiosity reward signal, the inverse and forward dy-
namics models’ loss functions are jointly optimised i.e. curiosity is defined as the
difference between the predicted feature vector of the next state and the real
feature vector of the next state. 7 is a scaling factor.

As an agents explores, it learns more about its environment and becomes less
curious. A major benefit of this approach is that it is robust: by combining the
two models, the reward only captures surprising states that have come about
directly as a result of the agents actions.

3.3 Intelligent Exploration

We propose hybridising curiosity [17] and distance-based reward shaping. Using
reward shaping alone is flawed since the agent cannot navigate past obstacles
to find a target. Using curiosity alone may cause the agent to spend too much
time exploring, after the target has been found, and get trapped in a suboptimal
state. By combining the two approaches the agent is able to explore and learn
about the dynamics of the environment, while always keeping in mind its goal
of finding an optimal path to the target. The agent learns in a more directed
and intuitive manner. Curiosity enables the agent to find the target, while the
shaped rewards provide feedback to the agent that enables it to learn a path to
the goal.

Directed Curiosity simultaneously maximises two reward signals. The reward
function components are somewhat conflicting so it is essential to find a balance
between them. The agent needs sufficient time to explore the environment, while
also ensuring that it does not converge to a suboptimal policy too quickly. This
is similar to the exploration vs exploitation Problem in RL. We balance the
reward by manually tuning weights attached to both the constituent reward
signals. In future work, we wish to find a means of dynamically weighting the
reward signals during training. We also wish to investigate alternative means of
combining them.
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Algorithm 2 Directed Curiosity-Driven Exploration

Input: Initial policy mo, extrinsic reward weighting w., intrinsic reward weighting w;,
max steps T', decision frequency D
for i <+ 0to T do
Run policy 7; for D timesteps
Calculate distance-based shaped reward rf (Algorithm 1)
Calculate intrinsic reward ! (Equation 1)
Compute total rewards r, = w; - rf + we - ré
Take policy step from 7; to 41, using PPO [20] with reward function r¢
end for

PPO [19] is a popular policy gradient method that is robust and simpler than
alternative approaches. Our algorithm is trained using PPO though an arbitrary
policy gradient method can be used.

4 Methodology

4.1 Learning Environment

A custom testing environment was created to analyse the performance of our
technique, based on the principal of pathfinding. It consists of a ball and a
target. The ball is an agent that must learn to navigate to the target, in the
shortest possible time (see Fig. 1). The agent is penalised every time it falls off
the platform, since there are no walls along the boundaries and it receives a
positive reward upon reaching the target. An episode terminates upon falling off
the platform, reaching the target, or after a maximum number of steps.

The benefit of this environment is that it defines a simple base task of finding
an optimal path to a target. This allows us to perform thorough analysis of the
algorithm by continuously increasing the difficulty of the task. In this way, we
are able to identify its limitations and strengths. The environment represents
a generalisation for navigation tasks wherein an agent only receives positive
feedback upon reaching its destination.

The agent is equipped with a set of discrete actions. Action 1 defines for-
ward and backward movement while action 2 defines left and right movement.
Simultaneously choosing the actions allows the agent to move diagonally. The
agent’s observations are vectors representing its current position and the target
position. It is not given any information about the dynamics of the environment.
The agent must learn an optimal policy that finds the shortest path to the target.

The baseline reward function was carefully tuned: a +100 reward is received
for finding the target, -100 penalty for falling off the platform and -0.01 penalty
every timestep. The reasoning behind the selected values is to remove bias from
the experiments. An agent cannot fall into a local optimum by favouring a single
suboptimal policy. This is because a policy that immediately falls off the platform
and a policy that learns to remain on the platform for the entire episode, without
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finding the goal, will both return roughly the same episodic reward. This function
was used as a baseline that was tuned for each new environment.

) BasicNav ) HardNav ) ObstacleNav ) MazeNavl ) MazeNav2

Fig. 1: Learning Environments. The agent is shown in the top left in red and the
target is shown in the bottom right in green.

For the simplest version of the task, the agent and target are placed at fixed
locations, on the opposite sides of the platform, without any obstacles between
them. We term this an easy exploration task since it is possible for an agent
trained with only the sparse reward function to find the target. This is achieved
by tuning the floor to agent ratio and agent speed. The shaped reward coefficient
C in Algorithm 1 was amplified to 0.1 due to the simplicity of the environment.
This is referred to as BasicNav (see Fig. 1a).

The next environment, termed HardNav (see Fig. 1b), is significantly larger.
It is a hard exploration environment [17], since an agent trained with a sparse
reward function is never able to find the target. Due to the increased number of
episode steps, the shaped reward coefficient C' in Algorithm 1 was dampened to
0.001.

We also perform testing in environments with walls that block the direct
path to the goal and make finding the target more difficult. ObstacleNav (see
Fig. 1c) has a single obstacle that is deliberately placed perpendicular to the
optimal path to the target, forcing the agent to have to learn to move around the
obstacle. The agent is never explicitly given any information about the obstacle.
This environment was designed to test the limitations of Directed Curiosity since
shaping the reward to minimise the distance to goal is counter-intuitive because
it leads the agent directly into the obstacle. The coefficient C' in Algorithm 1
was dampened to 0.001.

The remaining set of environments contain multiple walls and obstacles in
a maze-like structure. These environments were designed to investigate if the
agent can learn to move further away from the target at the current timestep,
in order to pass obstacles and reach the target at a later timestep i.e. it needs
foresight to succeed. We term the first maze as MazeNav1 (see Fig. 1d).

The last environment is the most difficult version of the task since it has dead-
ends and multiple possible paths to the goal. This allows us to investigate the
robustness of Directed Curiosity. Even after finding the target, it is difficult to
generalise a path from the starting point to the destination since it is easy for the
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agent to get stuck in dead-ends or behind obstacles. We term this environment as
MazeNav2 (see Fig. le). Due to the increased complexities, the terminal reward
was increased to +1000 and the shaped reward coefficient C' in Algorithm 1 was
dampened to 0.000001.

4.2 Hyperparameter Optimisation

It is important to carefully tune the hyperparameters for each environment. The
success of the algorithms hinge on these values. Although literature guided this
process, the hyperparameters were manually optimised, since the experiments
were performed in custom environments. The base hyperparameters were found
in BasicNav and then fine-tuned for all other environments, in order to cater
for the increased complexities. PPO is a robust learning algorithm that did not
require significant tuning [7], once the base hyperparameters were identified and
this is a major reason for its selection.

Hyperparameter tuning was essential in ensuring that the algorithms were
able to perform meaningful learning. By attempting to tune the parameters to
the best possible values, we were able to perform a fair comparison. The notable
parameters are a batch size of 32, experience buffer size of 256 and a learning
rate of 1.0e — 5. The strength of the entropy regularization § is 5.0e — 3 and
the discount factor = for both the curiosity and extrinsic reward is 0.99. The
extrinsic reward weighting is 1.0 and the curiosity weighting is 0.1. The network
has 2 hidden layers with 128 units. The baseline parameters were adjusted for
each environment: the maximum training steps is 50000 in BasicNav, 250000 in
HardNav, 750000 in ObstacleNav and 1000000 in MazeNavl and MazeNav2.

5 Results

Each algorithm was run five times in every environment. 30 parallel instances of
the same environment are used for data collection during training.

@ sSparseReward @ Shaped Reward @ Curiosity @ Directed Curiosity

Normalised Episodic Extrinsic Reward
Normalised Episodic Extrinsic Reward

o 10000 20000 30000 40000 50000 [ 50000 100000 150000 200000 250000
Step Step

(a) BasicNav (b) HardNav
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@ sSparseReward @ Shéped Reward @ Curiosity @ Directed Curiosity

Normalised Episodic Extrinsic Reward

o 100000 200000 300000 400000 500000 600000 700000
Step

(c) ObstacleNav

Normalised Episodic Extrinsic Reward
< < ° < <
=
Normalised Episodic Extrinsic Reward

0 200000 400000 600000 800000 1000000
0 200000 400000 600000 800000 1000000 Step

Step

(d) MazeNavl (e) MazeNav2

Fig.2: Learning curves for all environments. The average curve from the five
runs is shown.

The sparse rewards agent does not perform consistently in BasicNav. The
agent is able to find the target and learn an optimal policy on some runs only.
This is the reason for the high variance in Fig. 2a. In the hard exploration
environments, the agent learns to avoid falling off the platform but is unable to
find the target on all runs and therefore receives no positive rewards in training.
This highlights the need for an exploration strategy.

The reward shaping agent performs well in BasicNav. This is because the
shaped rewards act as a definition of the task since there are no obstacles blocking
the direct path to the goal. Continuously moving closer to the target on every
timestep leads the agent to the goal in the shortest time. Even in HardNav, the
agent is able to learn an optimal policy very quickly, for the same reasons.

The deficiencies of using the shaped reward only are exposed when obstacles
are introduced (see Fig. 2¢, Fig. 2d). The agent fails to find the target on all runs
in ObstacleNav and MazeNav1 and gets stuck behind obstacles. This is because
the shaped reward function is a greedy approach and the agent is not equipped
with the foresight to learn to move around the obstacles. It cannot learn to move
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further away from the target at the current time, in order to reach the target at
a later stage.

In MazeNav2 (see Fig. 2e), the agent was able to find the target on two
runs. Even though there are multiple obstacles, the optimal path to the goal in
MazeNav2 is similar to that in HardNav. The agent “ignores” the obstacles and
avoids dead-ends by acting simplistically. By the end of training, however, the
agent was unable to converge to an optimal policy on any of the runs.

These results show that distance-based reward shaping provides the agent
with some valuable feedback, but without an intuitive exploration strategy, the
agent lacks the foresight needed to moves past obstacles that block it’s path to
the target.

The curiosity agent was able to consistently learn an optimal policy in the
environments without obstacles. However, Fig. 2a shows that the curiosity agent
takes longer to converge to an optimal policy in BasicNav. This highlights that
curiosity is not necessary in environments that are not hard exploration. In
HardNav (see Fig. 2b), the curiosity agent is still able to find an optimal policy
on all runs, but it is significantly slower than the shaped reward function.

The necessity of the curiosity signal is highlighted when obstacles are in-
troduced. Not only does it enable the agent to find the distant target, it also
implicitly learns about the dynamics of the environment, allowing the agent to
learn how to move past multiple obstacles.

In ObstacleNav (see Fig. 2¢), the agent is still able to learn an optimal policy
on most runs. The performance of the agent is not as successful in MazeNav1
(see Fig. 2d) and MazeNav2 (see Fig. 2e).The agent successfully learns an opti-
mal policy on two of the runs. In these environments, it is difficult to converge
to an optimal policy, once the target has been found. One reason for this is that
the agent keeps exploring after initially finding the target and gets stuck behind
obstacles and in dead-ends, eventually converging to an unsuccessful policy, with-
out being able to reach the target again. The curiosity signal is insufficient to
direct the agent back to the target and learn a path to the destination. This is
the reason for the increase of the average reward in the early stages of training
and the subsequent drop thereafter in Fig. 2e.

These results indicate that curiosity equips an agent with the ability to find
a target in hard exploration environments with obstacles, but the agent requires
additional feedback to consistently learn a path from the start point to the
destination.

The Directed Curiosity agent is shown to be the most robust technique.
Fig. 2a and Fig. 2b show that Directed Curiosity always finds an optimal policy
in BasicNav and HardNav. It converges to a solution faster than the curiosity
agent in HardNav, due to the additional shaped reward feedback.

The hard exploration environments highlight the benefits of the technique.
It is the only technique that converges to an optimal solution on all runs in
ObstacleNav (see Fig. 2¢). Curiosity enables the agent to find the target and
move past the obstacle, while the shaped rewards provide additional feedback
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that allows the agent to learn an optimal path to the target, once it has been
found.

MazeNavl (see Fig. 2d) and MazeNav2 (see Fig. 2e) exhibit promising results
since the Directed Curiosity agent learns an optimal policy on more runs than
any other technique i.e. on three of the five runs. Training is more stable than
the Curiosity agent. The agent always finds the target during training, however,
it is unable to consistently find an optimal policy on all runs. A major reason
is due to the limitations we have highlighted with the shaped reward function.
In future work, we wish to investigate a more intuitive reward function that
has foresight. Another reason is due to the complexities we have introduced in
these environments. The reward feedback is not sufficient to guide the agent out
of dead-ends back to the target. However, these results indicate that the two
components of Directed Curiosity, when balanced correctly, allow the agent to
learn in a more directed and intuitive manner.

For all algorithms, the variance of the results increase with the difficulty of
the task since the agents do not always converge to an optimal policy i.e. when
the agent does not learn a path to the target, it does not receive the terminal
reward and hence its episodic rewards are significantly lower. PPO learns a
stochastic policy, hence, even on the successful runs, the algorithms converge
at different times. Due to the inherent randomness in the algorithm, the agent
explores differently on every run and thus visits states in a different order.

6 Conclusions and Future Work

A new approach to learning in hard exploration, sparse reward environments,
that maximises a reward signal made up of a hybrid of Curiosity-Driven Explo-
ration [17] and distance-based reward-shaping, is presented. This algorithm is
compared to baseline algorithms in a custom pathfinding environment and it is
shown that the technique enables agents to learn in a more directed and intuitive
manner.

The Directed Curiosity agent was the most robust technique. It was able
to consistently learn an optimal policy in hard exploration environments with a
single obstacle, and learned optimal polices more often then the other techniques,
in hard exploration environments with multiple obstacles and dead-ends.

In future work, we wish to investigate alternative reward functions that are
more flexible than the current greedy approach. We would like to perform fur-
ther testing in existing benchmarked environments and in domains other than
navigation. This requires further research into “intelligent exploration”, through
hybridising different shaped reward signals and exploration strategies. Another
interesting direction is to create environments with multiple targets and agents.
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