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Abstract. Most of all data science projects involve a time-costly data
preparation process aimed at enriching the working dataset with addi-
tional information to improve the sturdiness of resulting trained models.
How to ease the design of the enrichment process for data scientists
is defying, as well as supporting the enrichment process at large scale.
This document introduces and describes a research proposal for address-
ing such problem, which focuses on harnessing the semantics as the key
factor, by providing users with semantics-aided tools to design transfor-
mations, along with a platform to execute pipelines at business scale.
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1 Problem statement

By 2020, the information will yield revenues in the order of 200 billion dollars [4],
thanks to advancements in data science technology that have made it possible
to analyze massive amounts of data and develop highly accurate and effective
decision-making processes via analytical models. Such models require a huge
amount of high-quality data to be robust enough, but despite the tremendous
advancements achieved in processing, data sources are still filled with errors and
inconsistencies. Moreover, many analyses are focused on studying variables that
are not present in the main data source (e.g., weather-based analysis of digital
marketing campaign performance), demanding the enrichment of the dataset
with information from external sources (e.g., weather forecast web services).
The data enrichment is a specific data integration problem where a working
data source, usually known to the data scientist, is enriched with additional infor-
mation coming from external sources, usually less known to the data scientist.
In this panorama, semantic techniques can support and simplify data enrich-
ment. Nowadays the Linked Open Data (LOD) cloud provides several sources of
information, like a Knowledge Base (KB), full of valuable information for data
enrichment (high-quality and well-maintained data). Much of this information is
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Fig. 1: Infographic representing the main stages of a typical data science project
and the related stakeholders

open and accessible, but there are few attempts to use it to enrich tabular data.
The semantic data enrichment harnesses the semantics to support the user in
the enrichment task, relying on two main sub-tasks: the reconciliation, where
values in the main source are linked to entities in external KBs, and the exten-
sion, where the identifier of linked entities are used to fetch data from external
sources (which adopt the same space of identifiers) and extend the information
in the main source.

As a matter of fact, a typical data science pipeline is mostly focused on the
data preparation stage (Fig. 1), which cleans and enriches the data taking up to
80% of the time required by a project; only the remaining 20% is spent on data
analysis [6]. This issue is now widely recognized and necessitates appropriate
tools and methodologies because this imbalance foreshadows a problem that will
worsen as the volume and variability of data increase [3].

Current approaches do not provide comprehensive solutions to the problem
of data enrichment. Some solutions provide users with data-scientist-friendly
tools to data preparation, supporting the data extension at a limited extent
(i.e., requiring code scripts to link external sources), but without accounting the
development/deployment of production-ready pipelines, hence they offer limited
scalability. Otherwise, tools that support pipelines execution have been often
designed for users with programming skills, but who are usually inexperienced
in the particular domain to which the data pertain [11]. The main implication
is the emergence of a two-pronged working environment consisting, on the one
hand, of domain experts in charge of designing data transformations and, on the
other hand, of engineers who deploy them into a production environment. This
socio-occupational gap between interdependent groups pigeonholed in strictly
separated roles can cause issues and delays in the development and maintenance
of Big Data solutions and calls for specific solutions to be bridged. This research
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project aims at providing a tool to support users in semantically enriching tab-
ular data at large scale, both at schema- and instance-level (also referred as
table annotation and instance matching, respectively, both covered by the Table
interpretation field), in such a way to enable data extension.

2 Relevancy

This research proposal aims to deliver a scalable cloud-based solution to provide
data scientists with the tools to (i) design transformation pipelines on tabular
datasets that include data enrichment, harnessing the semantics to bring knowl-
edge bases information (generic or specific) to non-expert people, and (ii) record
and manage these pipelines in a repeatable form over large amounts of data,
taking full advantage of the potential for scalability and distributed computing
offered by the cloud. All people involved in data science projects could benefit
from this solution, because at the same time it (i) eases the enrichment task,
and (ii) make it repeatable in a scalable environment, reducing the overall data
processing time. Besides, the gap between data engineers and analysts will be
bridged: a single figure, the data scientist, will be able to design the transforma-
tion process and deploy it by herself, avoiding the continuous handover between
engineers and analysts. At last, the proposed solution should ease the access
to public knowledge bases also for non-expert people; in fact, so far knowledge
bases can be mostly explored by people with a background in Semantic Web.

3 Related Work

Providing support for the design and execution of data transformation based
on scale enrichment requires addressing different topics that have been investi-
gated in the literature, leading to the provision of some tools dedicated to the
transformation, reconciliation, and extension of tables.

Table transformation. We briefly discuss the table transformation litera-
ture because, even if it is not strictly related to this work, in many cases the
table transformation is preliminary to the table interpretation tasks (almost all
the table interpretation proposed methods perform a pre-processing phase to
automatically clean the values in table). The table transformation deals with
preliminary profiling and transformation of the tabular data and aims to iden-
tify and address possible data anomalies, eventually resulting in data that is
shaped in a way that is easier to work with for further tasks (e.g., data recon-
ciliation). A number of approaches and tools have been developed to deal with
data anomalies, ranging from spreadsheet software (e.g., Microsoft Excel'), to
programming languages and libraries for statistical data analysis (e.g., Agate?
Python library for data analysis), to complex systems designed to be used for
interactive data cleaning and transformation in ETL process (e.g., Pentaho Data

! https://products.office.com/en/excel
2 https://agate.readthedocs.org/en/1.3.1
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Integration® and Trifacta Wrangler*). These tools differ in the target audience
and the capabilities they offer (e.g., coverage of data anomalies, mechanisms to
address the anomalies). Recent research in this area focuses on intelligent and
semi-automated mechanisms to detect and address data anomalies to simplify
and automatize the data preparation process. A detailed discussion on the state
of the art of this field is discussed in [12]. In the Big Data context, one of the
few works on the transformation of massive datasets is discussed in [16], which
addresses how to exploit Apache Spark for iterative data preparation processes.

Table interpretation. Most of research work has traditionally focused on
schema-level alignment so [5, 7-10, 14, 15, 18]. Most of them create matches only
for columns containing mentions of a real-world entity, while [18] and [8] focus
also on literal columns. The schema-level alignment is useful and valuable to
generate KBs and lift tabular data to RDF, but also to support the instance-
level reconciliation. The latter is the key functionality in data science pipelines
because it enables the extension of a source dataset. Interesting approaches to
instance-level reconciliation have been proposed in the scientific literature. A
few semantic table annotation approaches have been proposed for exploiting the
semantics to reconcile values in tables, where most of them cover only schema-
level annotations. Approaches like [5] and [10] are sophisticated and targeted for
Web tables, which are very small (a few hundreds of rows), but require at the
same time a lot of computations, making these approaches inapplicable in big
data environments. A tool that provides an interface and algorithms to inter-
pret tables, map their schema to an ontology, and learn data transformations is
Karma [14]; however, Karma does not support external services for value-level
reconciliation and data extension. Finally, we remark that the topic of data ex-
tension has not been addressed adequately in the scientific literature. Most of the
approaches to fuse two tables have focused on conflict resolution strategies [1],
i.e., how to deal with overlapping information. In data extension though, data
to be added can be assumed to be new, and the conflict resolution problem may
occur but is not the objective of the fusion operation. The most popular tool
that supports instance-level reconciliation and extension is OpenRefine. It pro-
vides interactive user-interfaces with spreadsheet-style interaction embedded in
a desktop application designed for people who are experts in semantics, and al-
lows users to extend tables only with information contained in the same KB used
for the reconciliation task (sameAs links cannot be used for entering a different
KB), or by manually invoking third-party services with the string-content of a
cell as parameter (i.e., it requires a short script to invoke an external service).
Although the OpenRefine design phase is well supported, the tool comes with-
out any support for batch execution of pipelines; thus it can only process data
that can be entirely stored in memory, which is not suitable for the Big Data
context. The community around OpenRefine proposed some tools for extending
such tool with support to large data processing. Among them, the most remark-

3 http://community.pentaho.com/projects/data-integration
4 https://www.trifacta.com/products/wrangler
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able is OpenRefine-HD?, which extends OpenRefine to use Hadoop’s MapReduce
jobs on HDFS clusters. Unfortunately, documentation is missing for such a so-
lution, and it is not stated how it can support scalability when more distributed
datasets, exposed by external services, are involved.

To summarize, the application spotlighted in this work differs from the ex-
isting tools because (i) it aims at supporting all the above functionalities (table
manipulation, reconciliation, and extension), bridging the gap left from existing
tools that tend to focus on one or a subset of them; (ii) it foresees an automatic
deployment of the pipelines created at design time, providing the user with an
executable model that allows her to re-apply the same pipeline several times (i.e.,
applying the same pipeline to different datasets, which share the same schema
but have different row values), while all the above proposals require manual
preparation of the executions, and do not consider the repeatability of a task
over different datasets.

4 Research Questions

The research project aims at addressing the following research questions:

RQ1: Are the current state of the art reconciliation approaches executable in a
Big Data environment?

RQ2: Is it possible to insert the human in the enrichment process, in such a
way to use her feedback to improve the system performance?

RQ3: Is it achievable to use the history of enrichment pipelines to give sugges-
tions to the user about creating a new pipeline?

5 Hypotheses

The research questions stated in Section 4 will be addressed driven by the fol-
lowing hypotheses:

(RQ1) H1: State of the art reconciliation approaches can be executed in a
Big Data environment, but they do not scale as the dataset size
increases.

(RQ1) H2: Making state of the art reconciliation approaches scalable requires
to rely on a smaller set of information, leading to worse perfor-
mance.

(RQ2) H1: Users feedback can be learned with machine learning models (e.g.,
neural networks) and reused for subsequent executions to improve
the performance.

(RQ2) H2: Enrichment steps can be executed in near-realtime on in-memory
datasets to support the human-in-the-loop interactively.

® https://github.com/rmallal/OpenRefine-HD
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(RQ3) H1: Deep learning architectures can be used to learn how users design
enrichment pipelines. Once the network is trained, it can be fine-
tuned to support this task in different domains (similarly to transfer
learning approaches).

6 Preliminary results

To obtain preliminary results that demonstrate the soundness of this project
proposal, we started by extending Grafterizer, a tool that supports data trans-
formation pipelines design and execution, with a new embedded application,
ASTA (Assisted Semantic Interpretation and Annotation Tool), which supports
users in semantically extending their data. ASTA has been designed as a set of
micro-services, namely reconciliation and extension services, each one dedicated
to reconcile/extend data to/with a specific KB. Those services are put behind a
gateway, which allows users to use different KBs at a time to enrich their data. To
test the flexibility and scalability of such architecture based on micro-services, we
executed three experiments on real datasets; within all experiments, we designed
an enrichment pipeline that extends the dataset by querying a weather KB, by
reconciling and extending city toponyms to a geospatial service (based on GeoN-
ames (GN)). Both GN and the weather KB have been exposed as distributed
services, thus ASTA must perform a series of HTTP requests for reconciling and
extending the dataset.

First, we simulated the scenario where the data scientist executes the en-
richment pipeline on a commodity machine (small-scale). The main objective
was to assess how much the performance is affected by HT'TP requests in a
distributed environment, and how much it boosts the system performance by
adding different levels of cache. We started by testing the reconciliation per-
formances with no caching strategy whatsoever: 200 thousand rows from a real
company dataset featuring 2227 different toponyms (from Germany and Spain)
have been extracted and a pipeline featuring only reconciliation executed. The
measured average execution time per row was 12.927ms. The same test has been
then repeated enabling a cache implemented at the reconciliation service level.
This cache system improved the performances achieving on average 2.558ms per
row (5x times faster with respect to the previous baseline). At last, a second
cache layer has been enabled, which is implemented locally on ASIA. The ob-
jective is to avoid the network latency, which is substantial even in a local setup
(via the loopback interface). The pipeline, in this case, ran ~770 times faster
than the baseline (0.0168ms/row on average).

In order to analyze the behavior of the cache over time, a second experi-
ment has been designed extending the first one as following: a more complex
pipeline is considered, which reconciles city toponyms to GN, extends reconciled
entities with their first administrative level (i.e., regions), and fetches weather
information about regions (i.e., temperature for a specific date and the day after)
generating a new dataset with 25 columns. This pipeline has been employed first
to enrich a dataset derived from one of the first experiments filtering out the
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Fig. 2: Request execution time in milliseconds for the second experiment.

duplicates in the reconciliation target column (i.e., each value occurs at most
once); thus, resulting in 2227 unique cities (and rows). The outcomes of this
experiment, where the cache did not significantly improve the performance (as
it was built but never used), are depicted in Fig. 2a%. Afterward, a synthetic
dataset was built where each line from the previous dataset is repeated four
times, allowing to exploit the local cache. As reported in Fig.2b, spikes are still
visible due to cache building, but the cache reuse speeds up the process progres-
sively (4x on average), reducing the execution time (which tends to be purely
cache access time) considerably.

The final experiment was devoted to investigate the system scalability. First,
a commodity machine is used (this experiment like the previous ones have been
performed on a multi-tenant machine with 4 CPUs Intel Xeon Silver 4114 -
2.20GHz, and 125GB RAM) and ASIA deployed singularly. The same pipeline
was used to enrich datasets of different size: 100MB, 1GB, 5GB, and 10GB,
divided into 10 chunks of equal size and assigned to 10 agents (i.e., components
that execute the pipeline). Performance results (in blue), reported in Fig. 3 as
dataset size/total completion time, show a linear trend, which highlights the
scalability of the proposed solution. Finally, the enrichment of a 100GB dataset
(~500 million rows, 21 columns) was performed; the pipeline was run on the Big
Data Environment deployed on a private cloud infrastructure featuring an 8-node
cluster of heterogeneous hosts. Five of the nodes have 4-core CPUs and 15.4GB
RAM and three nodes with 12-core CPUs, 64GB RAM, with six 3TB HDDs
holding a GlusterF'S distributed file system (shared across the whole cluster).
The enrichment agents were deployed on the three servers. The transformation
accessed a load-balanced (using round-robin load balancing) set of 10 ASIA ser-
vices deployed on the same stack. The linear trend with R?=0.998 is maintained
also when the 100GB experiment is considered (the orange point in Fig. 3),
despite the different context in which the experiments have been carried out.
This is mainly due to similar access and reconciliation times between the two
configurations used.

S Initial spikes are due to the system startup (e.g., database connectors initialization).
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Fig. 3: Total execution time (in seconds) and the linear regression line, for dif-
ferent dataset sizes and two experimental hardware (HW) setups.

7 Approach

The approach proposed in this research project to facilitate data processing
and enrichment at scale is inspired by a small-scale design/full-scale execution
principle, harnessing the semantics to support reconciliation operations that are
required for data enrichment. The high-level description of this principle can
be sketched as in Fig. 4. The overall design decision is to separate the trans-
formation process in two phases: the design phase, where the user defines the
transformation pipeline working on a sample of the original dataset, and produce
an transformation model (i.e., an executable representation of the transforma-
tion pipeline), and the processing phase, where the model is executed against the
original dataset to obtain the enriched dataset to feed the analytical activities.
Both phases rely on distributed datasets and services to support reconciliation
and extension activities. In the data science context, this separation brings an-
other advantage in terms of privacy and security: pipelines can be designed on
a small sample, keeping private the entire company dataset. At last, since the
design phase exploits only a sample, the limited quantity of the data to be
transferred and manipulated simplify the infrastructure required to execute the

SAMPLE gy DATASET
ENRICHMENT STACK
/ DESIGN CONFIGURATION \
SMALL-SIZE TRANSFORMATION BATCH
PROCESSING MODEL PROCESSING
\ QUALITY QUALITY
INSIGHTS ASSESSMENT
enricreo B %ENRICHED
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Fig. 4: The Design/Processing approach at a glance
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enrichment tools (i.e., they can run in browsers on regular laptops). Instead, the
execution phase can be enacted on-premise, thus exploiting the actual corporate
infrastructure and tools, without moving the original dataset.

The data enrichment solution has been conceived to obtain large volumes
of value-adding data to train analytical models in the easiest way (i.e., without
requiring comprehensive programming skills). Most of all approaches available
in state of the art are fully-automated approaches that are not suitable for this
purpose, even if they represent the easiest way to transform the data, since
they would entirely remove the human control over the process and results.
Consequently, the above principle allows to give the human control over the
quality of the results (e.g., she can fix errors introduced by the reconciliation)
during the design phase, and then her choices are packaged within an enrichment
pipeline runnable in batch over a different (possibly massive) dataset.

7.1 Design phase

In the design phase the user is involved in the design of the pipeline, by inter-
actively performing three steps: (i) the enrichment pipeline design, where the
transformation pipeline is built by means of a graphical interface that facilitates
and automates interactions with reconciliation and extension services, (ii) the
pipeline execution (small-size processing), where each step of the enrichment
pipeline is performed over the small-sized data, and the (iii) quality insights
evaluation, where the user is provided with a few statistics that give a general
understanding of the overall quality of the result (e.g., number of missing values).
This interactive process is executed every time the user edits the pipeline defini-
tion (e.g., adding a new step in the pipeline); thus, when the user is required to
enrich considerable volumes of data (or at least larger than can be interactively
managed), this approach envisages that the user carries out the design phase
using a representative sample of the original dataset. It is essential to point out
that the end-user might not necessarily proceed to the processing stage in the
case when she needs to enrich tables with a few thousand rows, which can be
achieved in the design phase.

Finally, the user-defined enrichment pipeline is turned in an executable trans-
formation model (e.g., packaged in a Java archive (JAR)), which can be down-
loaded from the user interface and reused as the main step within the processing
phase.

7.2 Processing phase

The goal of this phase is to execute the pipeline designed and tested during the
previous stage on a smaller (loadable in memory) dataset on a large (Big Data)
dataset through parallelization.

As in the previous phase, three steps can be identified: (i) the data flow
definition (Stack configuration), which includes the enrichment pipeline, (ii) the
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batch execution (possibly in parallel) of the pipeline, and (iii) the quality as-
sessment of the resulting dataset. If the result does not achieve an acceptable
quality level, the user could go back and design a new pipeline.

As data flows we refer to an extension of the enrichment pipeline with pre-
and post-processing actions, such as decompression of the input table from user
archives, creation of chunks for parallelizing the process, and so on.

It is important to underline that the services implementing the reconciliation
and extension functionalities must be available to be invoked (as a service) as
the KBs essential to their operations can be massive, making impracticable to
encapsulate them within the executable transformation model. This architec-
tural choice, which derives from precise requirements such as modularity and
flexibility, constitutes the main limitation preventing the scalability of the entire
enrichment process.

8 Evaluation plan

The outcome of this research project will be a tool for supporting data scientists
in enriching their datasets with third-party sources, at large scale. Many features
must be evaluated to understand the success of the proposed approach:

— reconciliation performance: the reconciliation services should be com-
pared with state of the art approaches in terms of precision and recall; a
lower performance is expected, due to the high complexity of state of the art
approaches that is not sustainable at large scale. The best tradeoff between
performance and execution time should be found (RQ1 H1).

— system scalability: the preliminary results discussed in Section 6 show that
the current system can scale, but this condition must be verified again when
more sophisticated data reconciliation service will be adopted (RQ1 H2).

— human-feedback learning capability: quality insights given to the user
at design time should be compared with the quality assessment results made
after the large-scale execution phase, in order to assess the learning capability
of the adopted machine learning models (RQ2 H1).

— execution time: the transformation and enrichment pipeline steps must be
performed in near-realtime in the small-scale case, in such a way to guarantee
interactivity in the design phase (RQ2 H2).

— transfer learning: transformation models can be used to train a network
and learn how users design enrichment pipeline. Given a set of enrichment
pipelines performed over a dataset that pertain to a specific domain (e.g.,
marketing), new pipelines for enriching datasets from a different context
(e.g., e-commerce) can be automatically created using such network. The
suggested pipeline must be compared with a human-designed pipeline de-
signed for the same dataset (RQ3 H1).

9 Reflections

The objective of this research project is to provide a scalable system able to sup-
port users with semantic enrichment. Unlike other state of the art approaches,
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which start by designing the most effective algorithm, and consider scalability
issues only later, we act in the opposite way; we proceeded bottom-up by de-
signing a scalable architecture, based on micro-services, and then we increment
the usage of semantic techniques until the scalability property of our system
holds. We believe that the scalability property is the most important if we want
to push this system towards a different user base, i.e., data scientists, who of-
ten operate on very large datasets. For this reason, in this section, the lessons
learned and the current limitations are discussed, along with some aspects that
could be improved to bring a not marginal improvement to the performance of
the entire process.

Data Locality. In the initial release of the Big Data Environment, the data
locality principle is limited to the life-cycle management of data of the KB em-
ployed for enrichment that are brought into the environment; thus, reconciliation
algorithms have direct access to the KB. Similarly, the working data are stored
in a distributed file system and accessible through the network. This architec-
tural choice uniforms access times to data, but also raises the average read/write
times by twice the network latency. There is the chance to improve the perfor-
mance by distributing the chunks among the machines that execute the agents’
containers.

Distributed Caching. The current caching system has the main issue of being
local, i.e., attached to each ASIA replicated deployment. Since the load bal-
ancer runs a round-robin dispatching policy, it occurs that identical requests
are assigned to different replicas of ASTA, causing preventable cache misses. A
better solution entails the use of a distributed cache shared among the various
instances of ASTA and among the agents that carry out the pipeline in parallel.
Such a service (for example Ehcache [17]) would reduce the number of misses,
guaranteeing a rapid synchronization of the content of the local caches.

Efficient API interaction. At present, for both the design and processing
phases, reconciliation and extension are invoked for every single row of the work-
ing table. As a consequence, for each line the agent running the pipeline waits
a time equal to the Round-trip Delay Time (RTD) for each line, forcing the
system to wait time equal to twice the network latency for each line. Group-
ing the invocations to the service would improve the performance considerably.
The processing times of the input dataset could be further improved if light
network protocols (such as Websocket [2]) were used together with APIs that
better exploit message serialization (such as Google Protobuf [13]).
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