A Note on the Descriptional Complexity of Semi-Conditional Grammars

Tomáš Masopust
Dept. of Information Systems, Faculty of Information Technology, Brno University of Technology, Božetěchova 2, 61266 Brno, Czech Republic
masopust@fit.vutbr.cz

Abstract

The descriptional complexity of semi-conditional grammars is studied. A proof that every recursively enumerable language is generated by a semi-conditional grammar of degree $(2,1)$ with no more than seven conditional productions and eight nonterminals is given.

Keywords: formal languages, descriptional complexity, semi-conditional grammars

1 Introduction

This paper studies the descriptional complexity of semi-conditional grammars (see [4, 7-9] for more details) with respect to the number of conditional productions and nonterminals.

Semi-conditional grammars are modified context-free grammars, where a permitting and a forbidding context is associated with each production. This means that a production is applicable if its permitting context is contained in the current sentential form and its forbidding context is not. As a special case of semiconditional grammars, we obtain simple semi-conditional grammars introduced in [3], where one of the contexts is required to be a special symbol 0 , i.e., either a permitting or a forbidding context is associated with each production.

Whereas the descriptional complexity of simple semi-conditional grammars has been studied carefully (see $[5,7,8,10]$), the descriptional complexity of semiconditional grammars has not been studied at all, and all results concerning the descriptional complexity of semi-conditional grammars are consequences of results concerning the descriptional complexity of simple semi-conditional grammars. Specifically, in [8], a proof that every recursively enumerable language is generated by a (simple) semi-conditional grammar of degree $(2,1)$ with no more than twelve conditional productions and thirteen nonterminals was given. Later, in [10], this result was improved and a proof that every recursively enumerable language is generated by a (simple) semi-conditional grammar of degree $(2,1)$ with no more than ten conditional productions and twelve nonterminals was given. Finally, the result from [10] was improved in [5], where a proof that every recursively enumerable language is generated by a (simple) semi-conditional
grammar of degree $(2,1)$ with no more than nine conditional productions and ten nonterminals was given. However, a better result can be achieved for semiconditional grammars than for simple semi-conditional grammars. In this paper, a proof that every recursively enumerable language is generated by a semiconditional grammar of degree $(2,1)$ with no more than seven conditional productions and eight nonterminals is given.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of formal languages (see $[1,6]$). For an alphabet V, V^{*} represents the free monoid generated by V. The unit of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$. Set $\operatorname{sub}(w)=\{u: u$ is a substring of $w\}$.

In [2], it was shown that every recursively enumerable language is generated by a grammar

$$
G=(\{S, A, B, C\}, T, P \cup\{A B C \rightarrow \varepsilon\}, S)
$$

in the Geffert normal form, where P contains context-free productions of the form

$$
\begin{array}{ll}
S \rightarrow u S a, & \text { where } u \in\{A, A B\}^{*}, a \in T \\
S \rightarrow u S v, & \text { where } u \in\{A, A B\}^{*}, v \in\{B C, C\}^{*}, \\
S \rightarrow u v, & \text { where } u \in\{A, A B\}^{*}, v \in\{B C, C\}^{*}
\end{array}
$$

In addition, any terminal derivation is of the form

$$
S \Rightarrow^{*} w_{1} w_{2} w
$$

by productions from P, where $w_{1} \in\{A, B\}^{*}, w_{2} \in\{B, C\}^{*}, w \in T^{*}$, and

$$
w_{1} w_{2} w \Rightarrow^{*} w
$$

by $A B C \rightarrow \varepsilon$.
A semi-conditional grammar, G, is a quadruple

$$
G=(N, T, P, S)
$$

where

- N is a nonterminal alphabet,
$-T$ is a terminal alphabet such that $N \cap T=\emptyset$,
$-S \in N$ is the start symbol, and
$-P$ is a finite set of productions of the form

$$
(X \rightarrow \alpha, u, v)
$$

with $X \in N, \alpha \in(N \cup T)^{*}$, and $u, v \in(N \cup T)^{+} \cup\{0\}$, where $0 \notin N \cup T$ is a special symbol.

If $u \neq 0$ or $v \neq 0$, then the production $(X \rightarrow \alpha, u, v) \in P$ is said to be conditional. G has degree (i, j) if for all productions $(X \rightarrow \alpha, u, v) \in P, u \neq 0$ implies $|u| \leq i$ and $v \neq 0$ implies $|v| \leq j$. For $x \in(N \cup T)^{+}$and $y \in(N \cup T)^{*}, x$ directly derives y according to the production $(X \rightarrow \alpha, u, v) \in P$, denoted by

$$
x \Rightarrow y
$$

if $x=x_{1} X x_{2}, y=x_{1} \alpha x_{2}$, for some $x_{1}, x_{2} \in(N \cup T)^{*}$, and $u \neq 0$ implies that $u \in \operatorname{sub}(x)$ and $v \neq 0$ implies that $v \notin \operatorname{sub}(x)$. As usual, \Rightarrow is extended to \Rightarrow^{i}, for $i \geq 0, \Rightarrow^{+}$, and \Rightarrow^{*}. The language generated by a semi-conditional grammar, G, is defined as

$$
\mathscr{L}(G)=\left\{w \in T^{*}: S \Rightarrow^{*} w\right\} .
$$

Let $G=(N, T, P, S)$ be a semi-conditional grammar. If $(X \rightarrow \alpha, u, v) \in P$ implies that $0 \in\{u, v\}$, then G is said to be a simple semi-conditional grammar.

3 Main Result

This section presents the main result concerning the descriptional complexity of semi-conditional grammars.

Theorem 1. Every recursively enumerable language is generated by a semiconditional grammar of degree $(2,1)$ with no more than 7 conditional productions and 8 nonterminals.

Proof idea.

The main idea of the proof is to simulate a terminal derivation of a grammar, G, in the Geffert normal form.

To do this, we first apply all context-free productions as applied in the G 's derivation, and then we simulate the production $A B C \rightarrow \varepsilon$ so that we mark with ' only one occurrence of A, one of B, and one of C and check that these marked symbols form a substring $A^{\prime} B^{\prime} C^{\prime}$ of the current sentential form. If so, the marked symbols can be removed, which completes the simulation of the production $A B C \rightarrow \varepsilon$ in G; otherwise, the derivation must be blocked.

The formal proof follows.
Proof. Let L be a recursively enumerable language. There is a grammar

$$
G=(\{S, A, B, C\}, T, P \cup\{A B C \rightarrow \varepsilon\}, S)
$$

in the Geffert normal form such that $L=\mathscr{L}(G)$. Construct the grammar

$$
G^{\prime}=\left(\left\{S, A, B, C, A^{\prime}, B^{\prime}, C^{\prime}, \$\right\}, T, P^{\prime} \cup P^{\prime \prime}, S\right)
$$

where

$$
P^{\prime}=\{(X \rightarrow \alpha, 0,0): X \rightarrow \alpha \in P\}
$$

and $P^{\prime \prime}$ contains following seven conditional productions:

1. $\left(A \rightarrow \$ A^{\prime}, 0, \$\right)$,
2. $\left(B \rightarrow B^{\prime}, A^{\prime}, B^{\prime}\right)$,
3. $\left(C \rightarrow C^{\prime} \$, A^{\prime} B^{\prime}, C^{\prime}\right)$,
4. $\left(B^{\prime} \rightarrow \varepsilon, B^{\prime} C^{\prime}, 0\right)$,
5. ($\left.C^{\prime} \rightarrow \varepsilon, A^{\prime} C^{\prime}, 0\right)$,
6. $\left(A^{\prime} \rightarrow \varepsilon, A^{\prime} \$, 0\right)$,
7. $\left(\$ \rightarrow \varepsilon, 0, A^{\prime}\right)$.

To prove that $\mathscr{L}(G) \subseteq \mathscr{L}\left(G^{\prime}\right)$, consider a derivation

$$
S \Rightarrow^{*} w A B C w^{\prime} v \Rightarrow w w^{\prime} v
$$

in G by productions from P with only one application of the production $A B C \rightarrow$ ε, where $w, w^{\prime} \in\{A, B, C\}^{*}$ and $v \in T^{*}$. Then,

$$
S \Rightarrow^{*} w A B C w^{\prime} v
$$

in G^{\prime} by productions from P^{\prime}. Moreover, by productions $1,2,3,4,5,6,7,7$, we get

$$
\begin{aligned}
w A B C w^{\prime} v & \Rightarrow w \$ A^{\prime} B C w^{\prime} v \\
& \Rightarrow w \$ A^{\prime} B^{\prime} C w^{\prime} v \\
& \Rightarrow w \$ A^{\prime} B^{\prime} C^{\prime} \$ w^{\prime} v \\
& \Rightarrow w \$ A^{\prime} C^{\prime} \$ w^{\prime} v \\
& \Rightarrow w \$ A^{\prime} \$ w^{\prime} v \\
& \Rightarrow w \$ \$ w^{\prime} v \\
& \Rightarrow w \$ w^{\prime} v \\
& \Rightarrow w w^{\prime} v .
\end{aligned}
$$

The inclusion follows by induction.
To prove that $\mathscr{L}(G) \supseteq \mathscr{L}\left(G^{\prime}\right)$, consider a terminal derivation. Let $X \in$ $\{A, B, C\}$ be in a sentential form of this derivation. To eliminate X, there are following three possibilities:

1. If $X=A$, then there must be C and B (by productions 6 and 3) in the derivation;
2. If $X=B$, then there must be C and A (by productions 4 and 3) in the derivation;
3. If $X=C$, then there must be A and B (by productions 5 and 3) in the derivation.

In all above cases, there are A, B, and C in the derivation. By productions 1,2 , 3 , and 7 , there cannot be more than one A^{\prime}, B^{\prime}, and C^{\prime} in any sentential form of this terminal derivation. Moreover, by productions 3 and $4, A^{\prime} B^{\prime} C^{\prime}$ is a substring of a sentential form of this terminal derivation, and there is no terminal symbol between any two nonterminals; otherwise, there will be a situation in which (at
least) one of productions 3 and 4 will not be applicable. Thus, any first part of a terminal derivation in G^{\prime} is of the form

$$
\begin{equation*}
S \Rightarrow^{*} w_{1} A B C w_{2} w \Rightarrow^{3} w_{1} \$ A^{\prime} B^{\prime} C^{\prime} \$ w_{2} w \tag{1}
\end{equation*}
$$

by productions from P^{\prime} and productions 1,2 , and 3 , where $w_{1} \in\{A, B\}^{*}$, $w_{2} \in\{B, C\}^{*}$, and $w \in T^{*}$. Next, only production 4 is applicable. Thus,

$$
\Rightarrow w_{1} \$ A^{\prime} C^{\prime} \$ w_{2} w
$$

Besides a possible application of production 2, only production 5 is applicable. Thus,

$$
\Rightarrow^{+} w_{1}^{\prime} \$ A^{\prime} \$ w_{2}^{\prime} w
$$

where $w_{1}^{\prime} \in\left\{A, B, B^{\prime}\right\}^{*}, w_{2}^{\prime} \in\left\{B, B^{\prime}, C\right\}^{*}$. Besides a possible application of production 2 , only production 6 is applicable. Thus,

$$
\Rightarrow^{+} w_{1}^{\prime \prime} \$ \$ w_{2}^{\prime \prime} w
$$

where $w_{1}^{\prime \prime} \in\left\{A, B, B^{\prime}\right\}^{*}, w_{2}^{\prime \prime} \in\left\{B, B^{\prime}, C\right\}^{*}$. Finally, only production 7 is applicable, i.e.,

$$
\Rightarrow^{2} w_{1}^{\prime \prime} w_{2}^{\prime \prime} w
$$

Thus, by productions $1,2,3$, or 1,3 , if production 2 has already been applied, we get

$$
\Rightarrow^{*} u v w
$$

Here,

$$
u v w \in\left\{u_{1} \$ A^{\prime} B^{\prime} C^{\prime} \$ u_{2} w: u_{1} \in\{A, B\}^{*}, u_{2} \in\{B, C\}^{*}\right\}
$$

or $u v=\varepsilon$.
Thus, the substring $A B C$ and only this substring was eliminated during the previous derivation. By induction (see (1)), the inclusion holds. This derivation can be performed in G with an application of the production $A B C \rightarrow \varepsilon$, too.

This work has been supported by the Grant Agency of the Czech Republic within the project No. 102/05/H050, FRVS̆ grant No. FR762/2007/G1, and the Czech Ministry of Education under the Research Plan No. MSM 0021630528.

References

1. J. Dassow and Gh. Păun. Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin, 1989.
2. V. Geffert. Context-free-like forms for the phrase-structure grammars. In M. Chytil, L. Janiga, and V. Koubek, editors, MFCS, volume 324 of Lecture Notes in Computer Science, pages 309-317. Springer, 1988.
3. A. Gopalaratnam and A. Meduna. On semi-conditional grammars with productions having either forbidding or permitting conditions. Acta Cybernetica, 11(4):307-324, 1994.
4. J. Kelemen. Conditional grammars: Motivations, definitions, and some properties. In Proc. Conf. Automata, Languages and Mathematical Sciences, pages 110-123, Salgótarján, 1984.
5. T. Masopust. An improvement of the descriptional complexity of grammars regulated by context conditions. In Second Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS 2006), pages 105-112, Mikulov, 2006.
6. A. Meduna. Automata and Languages: Theory and Applications. Springer-Verlag, London, 2000.
7. A. Meduna and M. Švec. Reduction of simple semi-conditional grammars with respect to the number of conditional productions. Acta Cybernetica, 15:353-360, 2002.
8. A. Meduna and M. Švec. Grammars with Context Conditions and Their Applications. John Wiley \& Sons, New York, 2005.
9. Gh. Păun. A variant of random context grammars: Semi-conditional grammars. Theoretical Computer Science, 41:1-17, 1985.
10. Gy. Vaszil. On the descriptional complexity of some rewriting mechanisms regulated by context conditions. Theoretical Computer Science, 330:361-373, 2005.
