

In subsequent sections we present the YAMTL solution for the mandatory requirement, followed by the
solution to the optional one. Finally, we discuss the main strengths of the approach.

2 Solution to Mandatory Requirement
YAMTL has been extended with an inconsistency specification DSL to filter out updates that are not valid
w.r.t. the consistency relation specified by the transformation. This facility is generic and can be reused for any
type of consistency relation. In this section, we describe how YAMTL’s inconsistency specification language has
been used to check for inconsistencies in updates without having to re-execute the transformation. Inconsistency
reporting is considered in the next section, on the optional requirement.

2.1 Inconsistency Specification

An inconsistency specification consists of a list of possible inconsistency types. Each inconsistency type is declared
by using the class whose instances may affected by an update, the feature that may be updated, and a list of
conflictive update types. Each conflictive update type is declared with an informative error, the type of update
(ADD, REMOVE, MOVE, UPDATE), and an inconsistency guard that determines whether the update is conflictive or
not. The inconsistency guard is optional. When none is required, the TRIVIAL_CHECK should be used. The
inconsistency specification DSL allows for the definition of fine-grained inconsistency types for feature bindings.

According to the acceptable mutations provided in [GH19], the inconsistency specification of our solution,
listed below, contains the following inconsistency types:

• Within Sections: swapping paragraphs breaks consistency (line 10) and paragraphs cannot be deleted (line
11).

• Within Articles: deleting sections is not allowed (line 16).

• Within Sect1s: deleting sections is not allowed (line 21), and paragraphs can only be added if they do
not match one of the authors, titles, or journals in its Sect1 (lines 24-28). The last inconsistency type is
captured using an inconsistency guard, which checks whether there is a paragraph in Sect1 whose contents
match the contents of the paragraph being added.

1 class YAMTLSolution {
2 val static DocBook = DocbookPackage.eINSTANCE
3
4 val static TRIVIAL_CHECK = [EObject eObj , Object value | true] as (EObject ,Object)=>boolean
5
6 @Accessors
7 val public static inconsistencySpec = #{
8 DocBook.section -> #{ ’paras’ ->
9 #{

10 ’Swapping paragraph ’ -> (YAMTLChangeType.MOVE -> TRIVIAL_CHECK),
11 ’Deleting paragraph ’ -> (YAMTLChangeType.REMOVE -> TRIVIAL_CHECK)
12 }
13 },
14 DocBook.article -> #{
15 ’sections_1 ’ -> #{
16 ’Deleting sections ’ -> (YAMTLChangeType.REMOVE -> TRIVIAL_CHECK)
17 }
18 },
19 DocBook.sect1 -> #{
20 ’sections_2 ’ -> #{
21 ’Deleting sections ’ -> (YAMTLChangeType.REMOVE -> TRIVIAL_CHECK)
22 },
23 ’paras ’ -> #{
24 ’Adding an existing paragraph to Sect1’ -> (YAMTLChangeType.ADD -> [EObject eObj , Object value |
25 val sect1 = eObj as Sect1
26 val para = value as Para
27 sect1.paras.exists[it.content.startsWith(para.content)]
28] as (EObject , Object)=>boolean)
29 }
30 }
31 } as Map <EClass ,Map <String ,Map <String ,Pair <YAMTLChangeType ,(EObject ,Object)=>boolean >>>>
32 }

2.2 Admissibility Tests

The YAMTL model transformation T between the BibTeX metamodel MBibTeX and the DocBook metamodel
MDocBook , can be regarded as the definition of a consistency relation T (MBibTeX ,MDocBook), and the predicate
T |= (mBibTeX ,mDocBook) denotes that a source model mBibTeX is consistent with a target model mDocBook

according to T .
An inconsistency specification defined over the target metamodel, I(MDocBook), as presented in the previous

section, defines the type of inconsistencies that are not allowed for target models. A target model update δt is
admissible, T |=I δt, if and only if I(MDocBook) 6|= δt. That is, when it does not yield any inconsistency. In
YAMTL, T |=I δt is implemented with the expression

xform.admissibleChange(model, delta, iSpec)

which checks whether the delta for model is valid according to the inconsistency specification iSpec for the
transformation xform. This is the operation that has been used to report whether a model update is consistent
or not in the solution and it does not require the transformation xform to be re-executed.

3 Solution to Optional Requirement
The reference ATL transformation used to transform documents from Bibtex to Docbook was improved1 by using
rules that capture the four possible combinations of title and journal in BibTeXEntry objects using multiple
rule inheritance in EMFTVM [WTCJ11]. EMFTVM matches those rules using a layered algorithm that uses a
network of model constraints such that rules whose parent rules’ matching conditions are not satisfied are not
eligible to be matched, thus skipping rules during the matching phase.

In this section, the performance of the YAMTL implementation of the improved ATL transformation has been
empirically evaluated using the TTC benchmark harness and compared against the analogous ATL transforma-
tion on EMFTVM. The traceability support built in the YAMTL transformation engine has been used to report
inconsistencies according to the inconsistency specification presented in the previous section.

3.1 Transformation Re-Implementation in YAMTL

YAMTL also supports multiple rule inheritance [Bor18], benefitting from a thrifty application of rules as explained
above, and the improved ATL transformation has been mirrored in an improved YAMTL transformation.2 The
results of both transformations have been checked for correctness and their outputs are identical but for the
randomly generated identifiers. For obtaining performance results, we have executed the benchmark for models
corresponding to size factors up to 10,000, for one single mutantSet and for one single mutant, as transformations
are executed in batch mode, without propagation of updates. In addition, one thousand iterations were run for
each input model and the results correspond to cold run times. Table 1 shows mean run times (in ms. unless
stated otherwise) used by both tools. YAMTL takes about a third of the time used by EMFTVM as the size
factor increases.

Size factor ATL (EMFTVM) YAMTL
10 352 84
100 456 143

1,000 766 297
10,000 3.6 s. 1.3 s.

Table 1: Model element cardinalities and run times in ms. (unless stated otherwise)

3.2 Reporting: Finding All Inconsistencies

The tool also provides the operation

xform.findInconsistenciesInChange(model, delta, iSpec, enableReport),

1http://bit.ly/ttc19live-emftvm
2The full solution included the original YAMTL transformation and the improved one was produced after the contest.

http://bit.ly/ttc19live-emftvm

which finds all of the inconsistencies that are found in T 6|=I δt. The signature of the operation is the same
as for admissibleChange but, in addition, it provides a boolean flag enableReport. If reporting is enabled, a
graphical report is generated with all of the found inconsistencies, as shown in Fig. 1. For each inconsistency, the
report includes the reason for the inconsistency (stating the description of the inconsistency, the object affected,
the feature that was updated, the type of update and the value that was affected) and the transformation step
that has been invalidated by the target model update (stating the rule that was applied, the excerpt of the source
model mBibTeX involved in the rule application, the excerpt of the target model mDocBook produced by the rule
before the update, and the same excerpt of the target model after the update, i.e. δt(mDocBook)). Graphical
representation of models are obtained using PlantUML.

Figure 1: Outline of Solution

When reporting is enabled, the transformation xform must be executed by YAMTL in advance in order to
provide traceability information from source to target models. Although the reporting feature is experimental, it
serves as a proof-of-concept of the possibilities that YAMTL offers when informing modellers about inconsistencies
that are created by target model updates, providing traceability to the affected part of the source model.

4 Conclusions
In this paper, we have discussed a full solution to the TTC’19 live case, including the use of YAMTL’s in-
consistency specification language for identifying inconsistencies in model updates (mandatory task) and a re-
implementation of the ATL transformation (optional task) in YAMTL, which facilitates reporting inconsistencies
when model updates are applied to the generated target model. Our solution provides the following strengths:

Granularity of Inconsistency Detection. Inconsistency specifications enable the identification of atomic
model updates that lead to inconsistencies at binding level, including the possibility of defining complex
checks that traverse the affected model using inconsistency guards. Inconsistencies in composite model
updates are analysed by decomposing the model updates into atomic ones.

Reuse. Inconsistency specifications are defined at the metamodel level and the specification language itself is
metamodel agnostic. Therefore it can be used for defining the language of admissible model updates for any
consistency maintainer that defines a consistency relation between metamodels.

Reporting. The graphical reports generated by YAMTL enumerate all of the possible inconsistencies in model
updates. YAMTL exploits the traceability links built during a transformation execution in order to illustrate
the impact of a model update on a target model in the source model.

Performance. The goal of the optional part of the case consisted in providing an improvement of the original
model transformation. The YAMTL transformation is analogous to the improved ATL transformation using
multiple rule inheritance, and it has been shown that YAMTL executes the transformation in about one
third of the time that EMFTVM uses to run the improved ATL transformation.

Some of the YAMTL features used in this case are experimental and their refinement is reserved for future
work.

References
[Bor18] Artur Boronat. Expressive and efficient model transformation with an internal DSL of Xtend. In

MODELS 2018, pages 78–88. ACM, 2018.

[Bor19] Artur Boronat. Offline delta-driven model transformation with dependency injection. In FASE 2019,
volume 11424 of LNCS, pages 134–150. Springer, 2019.

[BRVV12] Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró. Change-driven model transfor-
mations - change (in) the rule to rule the change. Software and System Modeling, 11(3):431–461,
2012.

[GDH19] Antonio García-Domínguez and Georg Hinkel. The TTC 2019 Live Case: BibTeX to DocBook. In
Antonio García-Domínguez, Georg Hinkel, and Filip Krikava, editors, Proceedings of the 12th Trans-
formation Tool Contest, a part of the Software Technologies: Applications and Foundations (STAF
2019) federation of conferences, CEUR Workshop Proceedings. CEUR-WS.org, July 2019.

[GH19] Antonio García-Domínguez and Georg Hinkel. The TTC 2019 Bibtex to Docbook Case. In Antonio
García-Domínguez and Georg Hinkel, editors, Proceedings of the 12th Transformation Tool Contest
(TTC@STAF), CEUR Workshop Proceedings. CEUR-WS.org, July 2019.

[OMG16] OMG. Meta Object Facility (MOF) 2.5.1 Core Specification, 2016.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

[WTCJ11] Dennis Wagelaar, Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Towards a General Composition
Semantics for Rule-Based Model Transformation. In MoDELS, volume 6981, pages 623–637. LNCS,
2011.

