


A (single-valued) synchronization block S is an octuple (A,B,C,D,ΦA−C ,ΦB−D, f, g) that declares a syn-
chronization action given a pair (a, c) ∈ ΦA−C : A ∼= C of corresponding elements in a base isomor-
phism ΦA−C . For each such a tuple in states (ωL, ωR), the synchronization block specifies that the elements
(f(a, ωL), g ↗ (b, ωR)) ∈ B ×D gained by the lenses f and g are isomorphic with regard to ΦB−D.

A C

B D

ΦA−C

f g

ΦB−D

Figure 1: Schematic overview of unidirectional synchronization blocks

A schematic overview of a synchronization block is depicted in Figure 1. The usage of lenses allows this
declarations to be enforced automatically and in both directions. The engine simply computes the value that
the right selector should have and enforces it using the Put operation. Similarly, a multi-valued synchronization
block is a synchronization block where the lenses f and g are typed with collections of B and D, for example
f : A ↪→ B∗ and g : C ↪→ D∗ where stars denote Kleene closures.

Synchronization Blocks have been implemented in NMF Synchronizations, an internal DSL hosted by C# [3],
[5]. For the incrementalization, it uses the extensible incrementalization system NMF Expressions [6]. This DSL
is able to lift the specification of a model transformation/synchronization in three quite orthogonal dimensions:

• Direction: A client may choose between transformation from left to right, right to left or in check-only
mode

• Change Propagation: A client may choose whether changes to the input model should be propagated to
the output model, also vice versa or not at all

• Synchronization: A client may execute the transformation in synchronization mode between a left and a
right model. In that case, the engine finds differences between the models and handles them according to
the given strategy (only add missing elements to either side, also delete superfluous elements on the other
or full duplex synchronization)

The check-only mode has been implemented very recently and the BibTex to DocBook case has been the
first actual usage. In this mode, the engine will try to match the given model and report inconsistencies. This
direction is compatible with incremental execution. However, one-way change propagation is not supported1

(must be two-way or disabled) and the synchronization is required to be bidirectional.
This flexibility makes it possible to reuse the specification of a transformation in a broad range of different

use cases. Furthermore, the fact that NMF Synchronizations is an internal language means that a wide range of
advantages from mainstream languages, most notably modularity and tool support, can be inherited [7].

3 Solution
When creating a model transformation with NMF Synchronizations, one has to find correspondences between
input and target model elements and how they relate to each other. The first correspondence is usually clear and
is the entry point for the synchronization process afterwards: The root of the input model is known to correspond
to the root of the output model, in our case the BibTeXFile element should correspond to the DocBook element.

For the isomorphism from a BibTex file to a DocBook, we need to override the creation of target models. If
the DocBook element is missing, it should be created with the required sections right from the start. For this,
the initialization syntax as depicted in Listing 1 can be used.

To synchronize the contents of a BibTexFile with the contents of a DocBook, we need to specify synchroniza-
tion blocks accordingly. As an example, the synchronization of the BibTex entries with the paragraphs in the
references list is depicted in Figure 2. Because the DocBook does not have a direct reference to the references
list, we created a helper method to identify the references list.

1The problem here is that the internal DSL of NMF Synchronizations allows a write-only interface for one-way synchronization
blocks. Thus, an incrementally maintained list of inconsistencies can only take changes in the source model into account and could
therefore produce misleading results which is why the feature has not been implemented, yet. For a bidirectional transformation,
this is not a problem, because the list of inconsistencies can always be kept consistent.



1 protected override DocBook CreateRightOutput(...) {
2 return new DocBook() {
3 Books = {
4 new TTC2019.LiveContest.Metamodels.Docbook.Book() {
5 Id = "book",
6 Articles = {
7 new TTC2019.LiveContest.Metamodels.Docbook.Article() {
8 Title = "BibTeXML␣to␣DocBook",
9 Sections_1 = {

10 new Sect1() { Id = "se1", Title = "References␣List" },
11 new Sect1() { Id = "se2", Title = "Authors␣list" },
12 new Sect1() { Id = "se3", Title = "Titles␣List" },
13 new Sect1() { Id = "se4", Title = "Journals␣List" }
14 }
15 }
16 }
17 }
18 }
19 };
20 }

Listing 1: Creating the default output model for the DocBook metamodel

BibTeXFile DocBook

BibTexEntry∗ Para∗

ΦBibTexToDocBook

.Entries GetSection(ReferencesList)

ΦReferenceToPara

Figure 2: Synchronization block to synchronize entries with the paragraphs in the references list

The implementation for the synchronization blocks from Figure 2 is depicted in Listing 2. In particular, line
1 defines the isomorphism φBibTexToDocBook, lines 3-5 implement the synchronization block from Figure 2.

NMF Synchronizations uses the incrementalization system of NMF Expressions, which allows to incrementalize
also more complex queries. However, queries only have a readonly interface, which is why the C# compiler throws
an error if we tried to use it for a bidirectional synchronization. To aid this problem, our solution uses a mocked
class PseudoCollection that mimics a collection interface on top of a query but throws runtime exceptions
if the collection is attempted to be modified. With this trick, the synchronization blocks for the remaining
correspondence criteria can be implemented as in Listing 3.

In particular, lines 1-7 specify the synchronization of authors that appear in any of the authored entries with
the paragraphs in the authors list. For this, we just iterate over all entries that are authored entries, select all
their autors, do a deduplication and sort the result by the author name. Lines 9-13 specify the synchronization
of titles in a very similar way. Last, lines 15-21 synchronize the journal names with the paragraphs in the
corresponding section.

These synchronization blocks all reference other synchronization blocks responsible for how the paragraphs
are laid out exactly. In particular, the synchronization rule ReferenceToPara has an instantiating rule2 for each
concrete type in the BibTex model.

Furthermore, the synchronization rules can (and in general should) specify when NMF Synchronizations
should establish a correspondence link between two existing model elements. This is in particular required if a

2NMF Synchronizations – as NMF Transformations – supports a form of transformation rule superimposition. This concept is
called transformation rule inheritance as it is realized through inheritance of the respective transformation rule or synchronization
rule. In contrast, an instantiating rule is a child rule that maps a part of the input space (usually denoted through a subtype of the
input type) to a part of the output space (again, usually denoted through a subtype of the output type), cf. [8].

1 public class BibTexToDocBook : SynchronizationRule<BibTeXFile, DocBook> {
2 public override void DeclareSynchronization() {
3 SynchronizeMany(SyncRule<ReferenceToPara>(),
4 bibTex => bibTex.Entries,
5 docBook => GetSection(docBook, "References␣List"));
6 }
7 }

Listing 2: Definition of synchronization blocks from Figure 2 in NMF Synchronizations



1 SynchronizeMany(SyncRule<AuthorToPara>(),
2 bibTex => new PseudoCollection<IAuthor>(
3 bibTex.Entries.OfType<IAuthoredEntry>()
4 .SelectMany(entry => entry.Authors)
5 .Distinct()
6 .OrderBy(a => a.Author_)),
7 docBook => GetSection(docBook, "Authors␣list"));
8
9 SynchronizeMany(SyncRule<TitledEntryToPara>(),

10 bibTex => new PseudoCollection<ITitledEntry>(
11 bibTex.Entries.OfType<ITitledEntry>()
12 .OrderBy(en => en.Title)),
13 docBook => GetSection(docBook, "Titles␣List"));
14
15 SynchronizeMany(SyncRule<JournalNameToPara>(),
16 bibTex => new PseudoCollection<string>(
17 bibTex.Entries.OfType<Bibtex.IArticle>()
18 .Select(article => article.Journal)
19 .Distinct()
20 .OrderBy(journal => journal)),
21 docBook => GetSection(docBook, "Journals␣List"));

Listing 3: Synchronization blocks to synchronize the authors in the authors list, the titles in the titles list and
the journals in the journals list.

1 public override bool ShouldCorrespond(IBibTeXEntry left, IPara right, .. context) {
2 return right.Content != null && right.Content.StartsWith($"[{left.Id}]");
3 }

Listing 4: Specification when a paragraph should be considered corresponding to a BibTex entry

synchronization is applied to existing models.
In our case, we could establish a correspondence link in case the article starts with the Id of the entry in

square brackets as implemented in Listing 4. This allows to synchronize elements with custom global identifiers.
The solution offers two ways to execute it. In the batch mode, the synchronization is run in check-only

mode without change propagation, loading the reference BibTex model and the mutated DocBook model. The
implementation is depicted in Listing 5.

Alternatively, the incremental version synchronizes the initial BibTex model with the initial DocBook model,
but with change propagation set to two-way as depicted in Listing 6. Afterwards, the solution loads the target
model changes and applies them. Because the changes are propagated as they are applied, the collection of
inconsistencies is already maintained.

Besides the synchronization engine also supports a greenfield transformation (i.e. where no target model
exists when the transformation is started), the solution is configured to run the initial synchronization in a
brownfield setting both in incremental and batch mode. In the batch mode, only inconsistencies between the
source model and existing target model are collected, in the incremental setting the synchronization engine
collects inconsistencies (there are none as the source model and initial target model are consistent) and installs
change propagation hooks to get notified when further changes cause new inconsistencies or resolve existing ones.

In the solution, the inconsistencies are only counted. As an alternative, the changes can be inspected to find
out what these inconsistencies actually look like and offer functions to resolve them on either left or right model.

4 Evaluation
We noted that the original solution produced different results in batch or incremental mode. The reason for
this was that the definition of correspondence between authors and paragraphs being that a correspondence
should be established if the content of the paragraph is the name of the author. However, this is sensitive to
changes that modify the contents of the paragraph. While the incremental execution is aware that the paragraph

1 var context = transformation.Synchronize(ref bibTex, ref docBook,
2 SynchronizationDirection.CheckOnly,
3 ChangePropagationMode.None);
4 Report("Run", context.Inconsistencies.Count);

Listing 5: Running the synchronization in batch mode



1 var context = transformation.Synchronize(ref bibTex, ref initialDocBook,
2 SynchronizationDirection.CheckOnly,
3 ChangePropagationMode.TwoWay);
4 var changes = repository.Resolve(...).RootElements[0] as ModelChangeSet;
5 Report("Load");
6 changes.Apply();
7 Report("Run", context.Inconsistencies.Count);

Listing 6: Running the synchronization incrementally

corresponds to the author and therefore reports a single inconsistency (that the content of the paragraph no
longer matches the name of the author), the batch execution reports two inconsistencies: One that a paragraph
has no corresponding author and another that an author has no corresponding paragraph. The reason for this
is that the batch mode does not have the history and is not aware that the paragraph was corresponding to the
author before.

This behavior can be easily fixed by actually using the unique identifiers that happen to exist in the metamodel
in question as they can be used to identify the same paragraph even though its contents have changed. Doing
so, also the batch execution detects that the contents of the paragraph have changed. The default behavior for
matching elements is currently not taking identifiers into account, because NMF Synchronizations is independent
of the model representation of NMF.

●
● ●

●

● ●

●
● ● ● ● ●

● ●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

● ● ● ●

●

●

●

● ●

●

●
● ● ●

● ●
●

●

●

10

100

1000

10000

1e+05

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647484950
ChangeSet

T
im

e 
(m

s)

Tool
● AOF

Epsilon
NMF
NMF−Batch

Xtend
XtendEVL

YAMTL
YAMTL.full

random1000.bibtex−triple, Function: Run

Figure 3: Performance results of the solutions at the TTC 2019

Figure 3 shows the performance results of the solutions submitted to the TTC 2019 for the largest input model
provided with triple changes. These results were produced through a Google Cloud Compute Engine c1-standard-
4 machine with 16GiB of RAM and 30GB SSDs, using a Docker image produced through the Dockerfile in the
root of the benchmark repository. For NMF, two versions are depicted. The NMF version uses the incremental
change propagation of inconsistencies. In contrast, the NMF Batch solution runs a complete consistency check on
the source model and modified target model, reflecting a scenario where a description of changes is not available.

The results show that the batch version is significantly slower than competing solutions, which is clear, given
that the entire modified target model has to be considered and correspondence relations have to be established.
The incremental solution, however, is among the fastest solutions, indicating that it is about as fast as solutions
that basically analyze the target model changes manually.

At the TTC 2019, the NMF solution was the only solution that was able to entirely use the same consistency
specification for transforming the source model to the target model and to identify inconsistencies afterwards.
Further, the NMF solution has won the best integration award and the first place in the audience award.



5 Conclusion
We think that the NMF solution highlights the advantages model transformations based on synchronization
blocks can offer in terms of flexibility. A single specification of consistency relationships between the BibTex
model and the DocBook model suffices to transform an existing BibTex model to a DocBook model or identify
inconsistencies between an existing source and an existing target model. Furthermore, both the transformation
and the consistency check can be run incrementally, i.e. the synchronization engine attaches to the source (or
target) model and reports or resolves inconsistencies as they occur.

References
[1] M. E. Kramer, “Specification languages for preserving consistency between models of different languages,”

PhD thesis, Karlsruhe Institute of Technology (KIT), 2017, 278 pp.
[2] A. Garcia-Dominguez and G. Hinkel, “The TTC 2019 Live Case: BibTeX to DocBook,” in Proceedings of the

12th Transformation Tool Contest, a part of the Software Technologies: Applications and Foundations (STAF
2019) federation of conferences, ser. CEUR Workshop Proceedings, CEUR-WS.org, 2019.

[3] G. Hinkel and E. Burger, “Change Propagation and Bidirectionality in Internal Transformation DSLs,” Soft-
ware & Systems Modeling, 2017.

[4] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt, “Combinators for bidirectional
tree transformations: A linguistic approach to the view-update problem,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 29, no. 3, 2007.

[5] G. Hinkel, “Change Propagation in an Internal Model Transformation Language,” in Theory and Practice of
Model Transformations: 8th International Conference, ICMT 2015, Held as Part of STAF 2015, L’Aquila,
Italy, July 20-21, 2015. Proceedings, Springer International Publishing, 2015, pp. 3–17.

[6] G. Hinkel, R. Heinrich, and R. Reussner, “An extensible approach to implicit incremental model analyses,”
Software & Systems Modeling, 2019.

[7] G. Hinkel, T. Goldschmidt, E. Burger, and R. Reussner, “Using Internal Domain-Specific Languages to inherit
Tool Support and Modularity for Model Transformations,” Software & Systems Modeling, pp. 1–27, 2017.

[8] G. Hinkel, “An approach to maintainable model transformations using an internal DSL,” Master’s thesis,
Karlsruhe Institute of Technology, 2013.


