
Entity Linking to Knowledge Graphs to Infer
Column Types and Properties ?

Avijit Thawani, Minda Hu, Erdong Hu, Husain Zafar, Naren Teja Divvala,
Amandeep Singh, Ehsan Qasemi, Pedro Szekely, and Jay Pujara

Information Sciences Institute, University of Southern California

Abstract. This paper describes our broad goal of linking tabular data
to semantic knowledge graphs, as well as our specific attempts at solv-
ing the Semantic Web Challenge on Tabular Data to Knowledge Graph
Matching. Our efforts were split into a Candidate Generation and a Can-
didate Selection phase. The former involves searching for relevant entities
in knowledge bases, while the latter involves picking the top candidate
using various techniques such as heuristics (the ‘TF-IDF’ approach) and
machine learning (the Neural Network Ranking model). We achieve an
F1 score of 0.826 without any training data on the 400000+ cells to be
annotated in Round 2 CEA challenge. On CTA and CPA variants, we
score 1.099 and 0.790 respectively.

Keywords: Semantic Web · Table Understanding · Knowledge Graphs

1 Introduction

The objective of our work is to investigate approaches to address the three
tasks in the ISWC Tabular Data to Knowledge Graph (KG) Matching challenge:
entity linking (CEA) to map table cells to entities in a knowledge graph,
semantic labeling (CTA) to map table columns to an ontology class, and
semantic modeling (CPA) to map column-pairs to an ontology property. While
the challenge focuses on DBpedia, we seek general approaches that effective with
other knowledge graphs, such as Wikidata.

Figure 1 shows an overview of our approach. For each cell that must be an-
notated, a candidate generation module generates a ranked list of candidate
entities in the target KG. In the next step, a feature generation module gen-
erates a vector of features for each candidate, and in the final step, a candidate
selection module scores the candidates using the feature vectors. The figure
illustrates the most important challenges: inability to generate any candidates
(row 4); generated candidates do not include the correct answer (row 5); the

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

? This material is based upon work supported by United States Air Force under Con-
tract No. FA8650-17-C-7715.



Thawani A. et al.

1
2
3
4
5

candidate
generation

feature
generation

candidate
selection

Input
Table

Wikidata
Entities

Feature
Vectors

Scored
Candidates

0.9 0.3 0.2 0.4
0.3 0.2 0.5 0.2 0.1
0.7 0.6 0.6

0.5 0.3 0.4

correct class correct answerLegend: 

Fig. 1. Overview of our approach

correct answer is not an instance of the semantic label for a column (row 2);
multiple candidates have the correct semantic label (row 3); all candidates with
the correct semantic label are incorrect (row 5).

Our approaches for CTA and CPA use the components shown in the archi-
tecture. For CTA we compute the semantic label using the scored candidates,
and for CPA we use the candidates generated in the candidate generation step.
In the following sections we describe multiple approaches for each module and
report on initial experiments to assess effectiveness.

2 Techniques

2.1 Candidate Generation

We investigated multiple approaches for candidate generation. We use Wiki-
data API to obtain up to 100 candidates for each cell with cell contents and
headers. While the results of Wikidata API are of high quality(submission with
top candidate of each cell achieves 0.7 F1-score), the maximum achievable re-
call, which is the ratio of cells having ground truths in their candidates, is still
limited. To address this recall limitation of the API, we build a Wikidata Elas-
ticsearch Index containing fields for multilingual labels, aliases and descrip-
tions and combine results from multiple queries focusing on different fields. The
combined Wikidata candidate generation approach achieves a maximum achiev-
able recall of 85%. In addition, we build a second Elastic Search index using
DBpedia labels, mapping all DBpedia URIs to their corresponding Wikidata
entity identifier (qnode), achieving the maximum achievable recall of 91%. We
use normalized reciprocal rank as scores to combine and sort candidates from
all queries. Finally, we build a Name Abbreviations Index that records ab-
breviations of person names (initials plus surname) for all instances of Human
(Q5) in Wikidata, as this format is common in the round 2 dataset.

2.2 Feature Generation

In this work we investigated a feature engineering approach. Lexical features
capture the lexical similarity between the contents of a cell and entity labels,
and semantic features capture semantic coherence among cells in a column.



Entity Linking to Knowledge Graphs to Infer Column Types and Properties

Lexical features We investigated two lexical features. The first one is the normal-
ized score from all candidate generation modules, which captures a token-based
similarity between the tokens in a cell, and the tokens in the labels, aliases and
descriptions in the KGs. For performance reasons, we limited the candidate gen-
eration to the token-based similarity and designed a second feature to measure
at character level. We generate features using several string distance metrics,
like inverse Levenshtein distance, word similarity (number of words of the label
text which were found in the DBpedia URI), etc.

Semantic features A simple approach to capture semantic coherence is to assume
that all entities in a column belong to the same ontology class. The most specific
class of all or most cells in a column, as computed in the CTA task is informative,
but not specific enough. For example, in Wikidata, all humans are instances of
class Human (Q5), and the set of athletes is identified using the occupation
property. We investigated a generalization of this idea to use all properties used
to describe entities, in addition to the instance of property that identifies the
classes of an entity.

Fig. 2. The TF-IDF approach

For example, consider a column containing names of airports. Candidate
entities that are instances of dbo:Airport are likely to be correct. The correct
set can also be identified by candidates that have values for the property dbo:

runwayDesignation.
We use candidates for all cells in a column to compile a set of all the

classes and properties used to describe them, and for each candidate, we define
a uniform-length binary sparse feature vector to record the classes and properties
used to describe it. If the features are dbo:Airport and dbo:runwayDesignation,
then the candidate entity dbpedia:Heathrow has a feature vector [1, 1]. In prac-
tice, these vectors may contain thousands of entries.

These features are not equally informative. We seek to maximize coverage
and selectivity. Intuitively, a feature has good coverage if for every cell there is a
candidate for which this feature has value 1. In our example, both Organization



Thawani A. et al.

and Airport have good coverage, but Person would not as many airports are
not named after people. A feature is selective if fewer candidates possess that
feature. For our example column, Airport is more selective than Organization

as fewer candidates have a 1 for the Airport feature.
We implement this intuition using an adaptation of TF-IDF. In our context,

we observe that the first result from candidate generation is more often a correct
candidate. Thus, a good measure of ‘Term Frequency’ of a given semantic feature
(eg. dbo:Person) is the number of cells for which the first candidate has this
feature. In Figure 2, dbo:Person occurs in the first candidate of all 5 cells, hence
its TF = 5. On the other hand, dbp:Album occurs just once in the first candidate
(as a feature of dbr:Madonna) hence its TF = 1.

Taking forward the analogy, we define the Document Frequency of a semantic
feature as the number of total occurrences of the feature (in all candidates). In
Figure 2, dbo:Person occurs in 8 out of 9 candidates, hence its IDF = log(9/8) =
0.05. Once we compute all feature weights accordingly, we can find the ‘Score’
for each candidate, which is the dot product of the weight vector (TFIDF) and
the binary feature vector (v1 or v2). As seen in Figure 2, these weights help us
select Saint Madonna as the correct entity rather than Madonna, the singer.

2.3 Candidate Selection

We investigated multiple approaches for candidate selection.

Top-1 candidate The simplest approach is to select the top-scoring candidate
from the candidate generation module, ignoring all other features. Surprisingly,
this approach is a very strong baseline: in round 1 it received an F1 score of
0.809 and a precision of 0.843 and in round 2 it received an F1 score of 0.701
and a precision of 0.768.

Heuristic linear combination We combiner the lexical and semantic features
using the following simple formula:

Sc = tfidf + 0.5× levenshstein similarity + 0.5× word similarity

This approach in round 2 received 0.826 F1-score and 0.852 precision. Please note
that this submission was the result of concatenating two different submissions,
both using the same linear combination as above but differing in that one of
them had candidates generated by using a special query in Elasticsearch for
handling abbreviations (See Section 2.6 and Table 1 for details).

Neural Network Ranking Model In the heuristic algorithm above, weights among
the three features are fixed and not adaptive to the dataset. To solve this prob-
lem, we propose a new model that learns weights and relationships from labeled
data.

Pairwise Contrastive Loss: Given set S = {(xi+, xi−) | xi+ ∈
truthc, and xi− ∈ candidatec − truthc, c ∈ φ} where (xi+, xi−) is a pair of fea-
ture vectors described in Heuristic linear combination respectively from ground



Entity Linking to Knowledge Graphs to Infer Column Types and Properties

dbo: Thing

dbo: AchtecturalStructure

dbo: City

dbo: Diploma dbo: Placedbo: Agent

dbo: Settlement

dbo: CityDistric

……

dbo: PopulatedPlace dbo: Building

dbo: Village

……

……

dbo: Region dbo: Territory

0%

……

97.2%> 𝒯2.8%

1.7% 0%98.3%> 𝒯

68.0%> 𝒯 0%11.4%

33.3%< 𝒯25.1%< 𝒯0%< 𝒯

𝒯	 = 50.8%
Legend:

Classes included in answer

Correct answer

Search path

𝒫% Percentage

Fig. 3. Demonstration of CTA algorithm

truth truthc and other wrong answers from candidatec, and c is the cell from
training set φ. Given a ranking model F : x ∈ RNf → y ∈ R where Nf is feature
length, the main idea of model training is to enforce one-dimensional model out-
put yi+ of ground truth feature vector xi+ to be far away from yi− of the wrong
candidates xi− and to make yi+ greater than yi−. For this goal we propose and
optimize a variant of contrastive loss[1] as follows.

Lcontrastive =
∑

(xi+,xi−)∈S

max{0,m+ F(xi−)−F(xi+)}+ α‖w‖1

where m > 0 is margin and α‖w‖1 is L1 normalization.

Model Structure: In this challenge we use a 2-layer neural network activated
by ReLU[2]. After training on T2Dv2 dataset[3], scores are obtained from feature
of each candidate with ranking model, and candidates with highest score is
chosen as answers for each cell. This approach received a high 0.871 F1-score with
candidates of 8% cells lacking ground truths in T2Dv2 dataset, and in round 2 it
received a lower F1 score 0.808, hinting towards distribution differences between
the two datasets.

2.4 CTA

Our approach for the CTA challenge uses the results from the CEA challenge as
illustrated in see Fig. 3:

(1) For each column C our algorithm starts from dbo:Thing on level 0 of
semantic class tree and calculates the percentages of cells in C that belong to
classes on certain level of the DBpedia class tree. In Fig. 3, on level 2 the per-
centages of dbo:Diploma, dbo:Agent and dbo:Place are 0%, 2.8% and 97.2%.

(2) The algorithm then picks most common class dbo:Place with the highest
percentage of 97.2%. Since 97.2% is greater than the threshold percentage T =
50.8%, dbo:Place is regarded as one of classes that C belongs to. The algorithm
records dbo:Place in its search path and goes back to step (1), selecting most
common classes from the children of dbo:Place.



Thawani A. et al.

(3) After selecting dbo:PopulatedPlace and dbo:Settlement respectively
on level 2 and 3, there is no class percentage greater than T on level 4, so the
search stops and the algorithm outputs the path below the root: dbo:Place →
dbo:PopulatedPlace → dbo:Settlement.

2.5 CPA

Fig. 4. Example of our CPA system on a single table

In the CPA task, the goal is to find the DBPedia ontology property that best
matches the relation between a primary column and other secondary columns.
As input, we have the ranked candidates from CEA and sample size N , which
is the top N of the candidates we want to consider, to limit the size of our
query search space. For each row, we query DBPedia for the properties between
all pairs of candidates in the primary and secondary columns. For example in
Fig. 4, the candidates for ”M. Thatcher” are paired with the one candidate
for ”Lincolnshire” and we discover dbo:birthplace among these properties.
We output the most frequent property among all the rows, in the above case
dbo:birthplace. For secondary columns consisting of literals, we transform the
value to address potential differences between the cell value and the values in
the KG. Currently we address cases of string, date, and numerical literals.

2.6 Adaptations

In our work, our primary goal was to develop effective algorithms for DBpedia
and Wikidata as target KGs. To work with the challenge files we cleaned the
input files to address issues such as files with and without headers, empty lines
before the first row and a variety of character encoding problems.

Our primary adaptation to the challenge are string similarity metrics to mea-
sure distance between cell values and DBpedia URIs. To handle abbreviations we
utilized an abbreviated Elasticsearch index to get the candidates for labels that
match the regex ^.\.\s.+. In the future we plan to use metrics that compare
the cell values to the labels of candidates.

3 Results

CEA In the upper section of Table 1 i.e. (1) Ablations with Abbreviations, we
show the gains achieved using a specialized candidate generation module (Refer
to Section 2.6) to handle abbreviations. In the lower section i.e. (2) Experiments
on number of rows, we report results by submitting predicted cell annotations



Entity Linking to Knowledge Graphs to Infer Column Types and Properties

Table 1.

Ablations with/without Abbreviations
Method Candidates Cells # Predictions Precision Recall F1 score
Heuristic API, ES All 419,921 0.766 0.694 0.728

API, ES abbreviations only 63,207 0.201 0.027 0.048
API, ES All except abbreviations 356,714 0.866 0.666 0.753
ES-abbr abbreviations only 80,451 0.788 0.137 0.233
API, ES, ES-abbr All 437,165 0.852 0.802 0.826

Experiments on # Rows
Method Candidates Files # Predictions Precision Recall F1 score
Heuristic API, ES, ES-abbr # Rows > 100 235,914 0.877 0.446 0.591

100 > # Rows > 10 171,378 0.847 0.313 0.457
10 > # Rows 29,873 0.675 0.044 0.082

for subsets of tables (a small part of our best achieved results) with restrictions
on the number of rows, as described. Our heuristic loses precision when run on
smaller tables (less than 10 cells/rows in each column) as compared to larger ta-
bles (more than 100 cells/rows). Besides, even for very large tables, our heuristic
seems to be only at a precision of 0.877.

CTA In CTA challenge we first did a grid search by submitting results with dif-
ferent T to get the best performing one. According to the results, CTA algorithm
performs best when T is set to 0.508. However, in Experiment 1 the algorithm
discards 1389 columns mistakenly annotated as dbo:Thing or dbo:Agent. In Ex-
periment 2 we tune another T ′ for these columns, increasing the score by 0.008.
The result is shown in Table 3.

We studied the sensitivity of our algorithm to the number of cells in a column.
We partitioned the collection of columns into multiple datasets and computed
the improvement on round2 primary scores between adjacent bands as shown
in Table 2. The results show a significant performance increase with tables con-
taining more than 10 rows and better performance with a larger number of cells.

Table 2. CTA performance
growth rate on different ranges

Ranges Columns Growth rate
(0,2] 0 NA
(2,3] 322 NA
(3,4] 520 3.2%
(4,5] 447 11.6%
(6,10] 2582 5.7%
(10,20] 3394 43.5%
(20,50] 2540 20.6%
(51,100] 1340 13.7%

(101,+∞) 1722 8.4%

Table 3. CTA results finetuning T , T ′

Experiment 1 Experiment 2
T Primary Secondary T ′ Primary Secondary

0.30 1.033 0.258 0.30 -0.031 0.145
0.35 1.057 0.26 0.35 -0.027 0.151
0.40 1.059 0.26 0.40 -0.025 0.152
0.45 1.063 0.259 0.45 -0.023 0.154
0.50 1.059 0.258 0.50 -0.022 0.154
0.508 1.091 0.261 0.508 0.007 0.242
0.55 1.083 0.259 0.55 0.008 0.243
0.60 1.063 0.255 0.60 0.007 0.243
0.65 1.044 0.252 0.65 0.008 0.25
0.70 1.020 0.249 0.70 0.007 0.249

CPA In CPA, our initial experiment directly used the CEA candidates with
sample size N = 10. The initial experiment performed poorly on primary
columns consisting of human names which could not be directly found in our can-
didate generation, so we augment the candidate list with a human names index



Thawani A. et al.

in the second experiment. We found that certain properties such as dbo:area

had class-specific synonyms such as dbo:PopulatedArea/area so in our third
experiment we mapped these synonymous properties to their generic analog.
These results are shown in Table 4.

Table 4. CPA result

F1 Precision Experiment Details
0.399 0.679 Basic CPA system without names index
0.786 0.788 CPA with names index
0.79 0.792 CPA with names index and synonymous property filtering

4 Conclusion

We proposed an architecture with three modules, candidate generation, feature
generation and candidate selection and implemented KG-agnostic approaches
for each module, as we are interested in using Wikidata as a target KG. We
developed an interesting feature generation module that combines classes and
properties in a uniform framework to characterize the semantic coherence of the
values in a column, and explored both heuristic and machine learning approaches
for candidate selection.

Our round 2 results are limited by insufficient recall in our candidate gener-
ation modules, so in round 3 we plan to focus on candidate generation. In round
2 our best results were obtained using a heuristic candidate selection method, so
in round 3 we plan to continue our work on the machine learning approaches. We
also plan to study sensitivity of our approaches to characteristics of the datasets,
including the number of cells in a column, distribution of length of cell values,
and effectiveness for different data types (people, organizations, places, etc.) We
propose the following modifications to the challenge:

1. Annotation of all cells in a column, with a special no annotation marker to
identify cells not present in the target KG.

2. Submission of a single class for CTA, changing the scoring function to give
partial credit for super-classes or over-specific classes (e.g., 1/2n where n is
the number of super-class or sub-class links to the correct answer).

3. Release of a subset of the ground truth for algorithm development.

References

1. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invari-
ant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06). vol. 2, pp. 1735–1742. IEEE (2006)

2. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Proceedings of the 27th international conference on machine learning
(ICML-10). pp. 807–814 (2010)

3. Ritze, D., Lehmberg, O., Bizer, C.: T2dv2 gold standard for matching web ta-
bles to dbpedia. http://webdatacommons.org/webtables/goldstandardV2.html

(2015), accessed 28-September-2019


