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Abstract 

Multi-agent environments pose unique challenges for the 
agents that interact with them. The complex behaviors of 
other agents can lead to novel modes of failure. Anticipating 
and mitigating failures due to other agents requires reason-
ing about their goals and beliefs, called theory of mind 
(ToM) reasoning. In this paper, we outline types of multi-
agent scenarios that require ToM reasoning and discuss the 
complexity of mental models required to address them.  

Introduction   

Anticipatory thinking allows agents to manage risks posed 

by their environments (Amos-Binks & Dannenhauer, 

2019). More complex environments pose a greater chal-

lenge for anticipatory thinking, since they make it more 

difficult to identify and mitigate potential risks. In particu-

lar, the presence of other agents can lead to unforeseen 

modes of failure. Agents may be capable of complex au-

tonomous behavior, may pursue a variety of helpful or 

harmful objectives, and are likely to be motivated by unin-

spectable internal states. To adequately deal with the risks 

posed by other agents, an agent should have the ability to 

infer and reason about their beliefs, goals, and preferences. 

 In humans, reasoning about others’ internal states is re-

ferred to as theory of mind (ToM; Premack & Woodruff, 

1978). It is an integral part of social interaction ranging 

from everyday communication to complex team dynamics. 

ToM allows humans to anticipate others’ reactions and 

behaviors, leading them to modify their own behaviors and 

plan for potential challenges. In short, humans use ToM for 

anticipatory thinking in social contexts.  

 Artificial agents in multi-agent environments would 

benefit from this capability, as well. For one agent to coop-

erate, compete, or coexist with another in a principled way, 

it should take ToM reasoning into account. In this paper, 
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we outline the potential failure modes introduced by the 

presence of other agents and discuss how ToM can help an 

agent properly anticipate them. We also address the related 

question of how thorough a ToM model needs to be in or-

der to sufficiently cope with these challenges. We end by 

proposing future directions for ToM reasoning in its appli-

cation to anticipatory thinking. 

Previous Work 

Because the ability to anticipate the mental states of others 

affects most aspects of human interaction, ToM has been 

well-studied by psychologists (Wellman, 1992). Although 

several areas of prior research intersect with ToM, explicit 

ToM reasoning is a relatively new area for artificial intelli-

gence research1. For example, Belief-Desire-Intention 

(BDI) frameworks (Bratman, 1987; Rao & Georgeff, 1991) 

provide a rich set of representations for reasoning about 

agents’ internal states. However, BDI has largely been ap-

plied as a self-model, rather than being used as a formalism 

for reasoning about other agents. Other research has dealt 

with specific aspects of ToM such as those involved in 

collaborative planning and building up common ground 

(e.g., Allen et al., 1995; Rich & Sidner, 1998; Grosz & 

Kraus, 1999). These approaches account for task-related 

mental states of other agents, but do not attempt full ToM 

reasoning. Some recent work has also focused on task-

specific implementations of ToM (e.g., Rabinowitz et al., 

2018). The majority of recent work on ToM, however, has 

focused on modeling human ToM reasoning more general-

ly.  

 The Bayesian Theory of Mind (BToM; Baker, Saxe & 

Tenenbaum, 2011) models ToM reasoning as inference 

over a partially observable Markov decision process 

(POMDP) with a stochastic policy. Given an agent’s be-
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havior, BToM generates hypotheses about its beliefs and 

desires. The POMDP can be defined over any combination 

of action and state spaces, making BToM a domain-general 

model of ToM. Versions of BToM have been used to mod-

el children’s ToM reasoning (Goodman et al., 2006) as 

well as adults’ plan and intent recognition (Baker & 

Tenenbaum, 2014; Shum et al., 2019). 

 Other models of human ToM have been positioned with-

in cognitive architectures. Hiatt and Trafton (2010) and 

Arslan, Taatgen, and Verbrugge (2013) have proposed 

models of children’s ToM development in ACT-R. Alt-

hough both models have been extended to encompass sec-

ond-order ToM reasoning (Hiatt & Trafton, 2015; Arslan, 

Taatgen & Verbrugge, 2017), neither model has been ap-

plied to tasks outside of the cognitive modeling context. In 

other work, Hiatt, Harrison, and Trafton (2011) used a ro-

bot’s ACT-R based self-model to reason about the decision 

making of its human teammates and found that humans 

preferred teaming with robots who performed such reason-

ing. 

 The Analogical Theory of Mind (AToM; Rabkina et al., 

2017), built within the Companion cognitive architecture 

(Forbus & Hinrichs, 2017), models children’s ToM reason-

ing and development. It treats ToM as an analogical pro-

cess, with most reasoning occurring from inferences based 

on analogical comparison. Because these inferences de-

pend on the cases in the Companion’s memory, AToM is 

domain general. As with BToM, AToM has been used to 

model intent recognition and action prediction (Rabkina & 

Forbus, 2019). 

 Although BToM and AToM have demonstrated some 

success outside of the specific modeling contexts in which 

they were developed, neither has been applied to situations 

in which an agent must recognize and mitigate potential 

failures (i.e., in which anticipatory thinking is required). 

On the other hand, Hiatt et al.’s (2011) findings point to 

the promise of ToM in practical applications but could 

benefit from a more complete model of ToM. More work 

is needed to develop a complete computational model of 

ToM and situate it in a framework where it can be used to 

guide an agent’s reasoning. 

Anticipation in Multi-Agent Environments 

To successfully navigate a multi-agent environment, an 

agent should be able to anticipate complications caused by 

the presence of others. We identify three broad types of 

multi-agent interaction: competition, cooperation, and in-

cidental interaction. For each, we describe potential failure 

modes and the role of ToM reasoning in identifying and 

mitigating them. We use the open-world game Minecraft 

as a running example. 

Competition 

In a competitive multi-agent scenario, agents may have 

competing goals, not all of which are known a priori. To 

properly cope with competition, an agent should be able to 

identify its competitors, their goals, and the actions they 

intend to take to fulfill them.  

 To identify the role of ToM reasoning in competitive 

scenarios, it is useful to distinguish between two types of 

competition: 1) resource scarcity and 2) intentional inter-

ference. Resource scarcity occurs when two or more agents 

engage in a zero-sum competition for the same limited 

resource. Consider a Minecraft agent whose goal is to arm 

itself with a diamond sword, the strongest weapon availa-

ble, in case a battle breaks out. Other players may have the 

same goal. Because diamonds are a scarce resource on 

most Minecraft maps, a competitor mining the diamonds 

first would hinder a player’s ability to reach its objective. 

Upon recognizing competition, the agent should evaluate 

its options: it may need to choose another objective or find 

a way to deal with the threat. Successfully anticipating 

competing goals requires consideration of other agents’ 

internal states in addition to their observed actions. 

 Intentional interference occurs when a competitor ac-

tively attempts to prevent an agent from achieving its 

goals. This may take the form of deception, affecting the 

agent’s knowledge about the world, or sabotage, affecting 

the agent’s ability to act on its knowledge. In both cases, 

the actions of the competitor impair the agent’s ability to 

achieve its goals as planned. But where sabotage only re-

quires reasoning about the competitor’s intentions, decep-

tion involves more sophisticated ToM reasoning. 

 For example, when an agent is attempting to craft a dia-

mond sword, a competitor may sabotage its attempt by 

killing it. Upon respawning, the agent would no longer 

have the tools necessary to mine diamonds, a setback to 

achieving its goal. As in the case of resource scarcity, ToM 

reasoning is necessary to recognize hostile intention and 

plan accordingly.  

 On the other hand, identifying deception requires an 

additional level of ToM reasoning. Deception exploits a 

victim’s mental states, causing them to be inconsistent with 

the real world. Identifying deception therefore requires not 

only recognizing the intent to deceive, but also the nature 

of the deception. This is an example of second order ToM 

reasoning, where the agent must accommodate the compet-

itor’s ToM capabilities when making decisions. 

 Often, deception occurs through communication. For 

example, a competitor may send a message telling an agent 

that there are diamonds in a location where there is actually 

lava, playing on the agent’s credulity. However, deception 

by action is also possible. Consider a Minecraft player 

helping an agent build a fortress. This may be a well-

intentioned attempt to help the agent survive, a scheme to 



gain the agent’s trust for later betrayal, or cover for an im-

mediately harmful action, such as laying a trap. In the latter 

two cases, recognizing that deception is occurring is cru-

cial for the agent’s survival. Moreover, identifying the goal 

of the deception allows the agent to form appropriate miti-

gation strategies. For example, allowing a competitor to 

keep building the fortress may be advantageous in the short 

term if the competitor is planning a later betrayal, but may 

prove deadly if the competitor is laying a trap.  

Cooperation 

Even when an agent has teammates genuinely working 

toward the same goal, the presence of other agents can lead 

to new forms of failure. Unlike competitive failure modes, 

cooperative failure modes are not intentionally harmful to 

the agent, but rather are due to a misunderstanding or other 

inconsistency between teammates’ internal states and the 

real world. 

 Consider a Minecraft scenario in which players are try-

ing to maximize the harvest from a farm. Crops are worth 

different food points and can be combined into recipes, 

usually with increased value. Maximizing the farm’s out-

put requires growing the optimal combination of crops, 

given seed availability. Due to the types of work involved, 

this is a natural opportunity for cooperation. 

 This domain provides examples of three key types of 

cooperative failure which can be mitigated by ToM reason-

ing. The first two involve correcting a teammate’s beliefs, 

while the third involves repairing a teammate’s plan. We 

describe each in turn. 

 First, a teammate may not have access to the information 

it needs to complete its task. For example, it may not know 

where the seeds are for a high-value crop, and so choose to 

pursue a low-value crop instead. In the absence of a fully-

inspectable teammate, it is necessary to infer the team-

mate’s lack of knowledge in order to address the problem, 

either by providing missing information or delegating 

around it.  

 Similarly, a teammate may have incorrect or outdated 

information about the world which interferes with proper 

planning. Such errors are particularly difficult to recognize 

and properly address, as the degree of misconception can 

be arbitrarily large. In a simple case, however, the ap-

proach should be similar to dealing with missing infor-

mation. If a teammate is acting on a mistaken belief (e.g., 

that seeds needed for a given recipe are available, when in 

reality those seeds have been used elsewhere), correcting 

the misconception should be sufficient for correcting the 

teammate’s behavior. In a broader sense, recognizing not 

only what the teammate is doing, but also what beliefs 

could be driving the behavior, will lead to improved out-

comes in cooperative scenarios. 

 Finally, a teammate’s incorrect actions might be caused 

by a faulty plan, rather than incomplete or mistaken beliefs 

about the world. In this case, it is important to recognize an 

agent’s plan well enough to anticipate potential failures. 

For example, in Minecraft, the recipe for cake requires 

milk, sugar, an egg, and wheat. To correct a teammate that 

is trying to bake a cake with only wheat, milk, and sugar, 

an agent must recognize the intended goal, infer the miss-

ing step, and correct the teammate’s model. Note that this 

is a correction to procedural knowledge, rather than seman-

tic, and may require alternate mitigation techniques. 

Incidental Interaction 

It is important to note that the presence of other agents in 

an environment can cause failures even if there is no ex-

plicit competition or collaboration involved. One clear ex-

ample of this is changes to the environment. Simply by 

interacting with the environment, an agent may change its 

structure or resource availability.  

 In Minecraft, this may take the form of using a resource 

or creating a structure in an unexpected location. These 

changes may help or hinder an agent’s goals. However, 

such effects are a byproduct of the other player’s goals, 

undertaken without consideration of their effects on the 

agent. In order to navigate a dynamic multi-agent envi-

ronment, an agent would benefit from considering the in-

ternal states of others and anticipating incidental, in addi-

tion to intentional, acts of cooperation or competition.  

Levels of Complexity in ToM Modeling 

We have presented three classes of problems that can arise 

in multi-agent scenarios and which can be mitigated with 

the help of ToM reasoning. However, not all of these prob-

lems require a complete model of other agents. We propose 

a spectrum of ToM models, ordered by complexity, that 

can be used in various multi-agent scenarios (Figure 1). 

 The broadest level consists of causal reasoning, where 

agents are treated as factors in the environment. No special 

care is taken to differentiate agents from other entities in 

the world, and agent behavior is predicted without refer-

ence to their internal states (i.e., ToM reasoning). This may 

be sufficient to capture simple agent behaviors but is not 

enough to handle complex situations like those described 

above. 

 For example, mobs in Minecraft are computer-controlled 

agents with simple behaviors that populate the game world. 

A zombie mob will always attack the nearest player, while 

a sheep will run from the player if attacked. Knowledge of 

these behaviors is sufficient for any and all reasoning about 

mobs, without resorting to more complicated models.  

 In the middle of the spectrum is generic or stereotyped 

reasoning. This involves reasoning about agents whose 



behavior is driven by unobservable internal states, but in-

dividual models of whom have not been built up. Generali-

zations may be formed about such agents based on trends 

in past experience and used for ToM reasoning. 

 In Minecraft, unfamiliar players (i.e., those who have 

not been encountered in the past) can be modeled at the 

generic level. Their behaviors can be predicted based on 

stereotypes: new players may need to be taught certain 

aspects of the game, while experts may be useful sources 

of knowledge. As a player becomes familiar, the agent may 

build up an individual model of that player and rely less on 

the stereotype. 

 The narrowest type of ToM reasoning is at the individu-

al level and consists of models about specific players’ 

goals, behaviors, and internal states. This level of reason-

ing has the greatest potential to accurately capture the fac-

tors determining an agent’s behavior but comes at the cost 

of more complex modeling and the need to update infor-

mation over time.  

 The formulation of individual models can also play a 

role in the formation of broader categories of ToM reason-

ing. For example, if all the new Minecraft players an agent 

has interacted with were unaware that an iron pickaxe is 

necessary for mining diamonds, this fact may be assimilat-

ed into the agent’s generic model of new players. It will 

then assume that every new player it meets does not know 

about the iron pickaxe requirement and can plan according-

ly.  

 Ultimately, the level of ToM needed for any given agent 

depends on the task it needs to perform. ToM reasoning 

encompasses a variety of potential approaches to reasoning 

about others. Choosing the right level of specificity entails 

a tradeoff between simpler, broader models that may not 

explain the full range of agent behavior and more detailed, 

specific models that require more complex representations 

and reasoning. 

Conclusions & Future Directions 

In this paper, we have outlined some of the scenarios in 

which agents would benefit from ToM reasoning for miti-

gating risks posed by other agents. Without the ability to 

model other agents’ internal states, an agent cannot proper-

ly anticipate their behavior and adjust its own accordingly. 

This plays a role in competitive scenarios, where another 

agent is actively trying to interfere with the agent’s goals, 

as well as in cooperative scenarios, where a teammate’s 

behavior may be driven by flawed semantic or procedural 

knowledge. Further, ToM reasoning is helpful for antici-

pating environmental changes caused by other agents, even 

when those agents are not directly competing or cooperat-

ing. 

 For designers of cognitive systems, determining the 

complexity of ToM model necessary for a given task also 

poses a challenge. We have proposed a spectrum of ToM 

models that enable a designer to tailor an agent’s ToM ca-

pabilities, given the needs of the environment and the data 

available. Implementing these models remains an area for 

further research.   

 Although the simplest level of ToM reasoning (i.e., 

causal views of agents) is often implicit in existing multi-

agent models, the more complex levels require more so-

phisticated representation and reasoning techniques. Ana-

logical Theory of Mind (Rabkina et al., 2017) and Bayesi-

an Theory of Mind (Baker et al., 2011) have taken steps 

towards functional implementations of ToM reasoning but 

are not yet sufficiently developed for complex anticipatory 

thinking. Developing these and other models to handle the 

full spectrum of ToM will lead to agents that are better 

capable of navigating multi-agent environments. Moreo-

ver, designing agents from the ground up with ToM capa-

bilities will lead to a better understanding of both ToM 

reasoning and anticipatory thinking in multi-agent con-

texts. 
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