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Abstract

Increasing concern about discrimination and bias in data-
driven decision making systems has led to a growth in aca-
demic and popular interest in algorithmic fairness. Prior work
on fairness in machine learning has focused primarily on the
setting in which all the information (features) needed to make
a confident decision about an individual is readily available.
In practice, however, many applications allow further infor-
mation to be acquired at a feature-specific cost. For exam-
ple, when diagnosing a patient, the doctor starts with only
a handful of symptoms but progressively improves the di-
agnosis by acquiring additional information before making
a final decision. We show that we can achieve fairness by
leveraging a natural affordance of this setting: the decision
on when to stop acquiring more features and proceeding to
predict. First, we show that by setting a single set of confi-
dence thresholds for stopping, we can attain equal error rates
across arbitrary groups. Second, we extend the framework
to a set of group-specific confidence thresholds which en-
sure that a classifier achieves equal opportunity (equal false-
positive or false-negative rates). The confidence thresholds
naturally achieve fairness by redistributing the budget across
individuals. This leads to statistical fairness across groups but
also addresses the limitation that current statistical fairness
methods fail to provide any guarantees to individuals. Finally,
using two public datasets, we confirm the effectiveness of our
methods empirically and investigate the limitations.

Introduction
Recent work on fairness in machine learning-based deci-
sion making has focused on predictive models that make
decisions when all data is readily available or can be ac-
quired at little additional cost. In such a setting, the model
makes a classification decision for each individual based on
all features. In practice, however, there are many scenarios
in which the acquisition of an additional feature leads to a
feature-specific cost for the decision maker (Krishnapuram,
Yu, and Rao 2011). Consider a patient entering a hospital
seeking diagnosis. Typically, the doctor starts the diagnosis
with only a handful of symptoms. From there, the patient
undergoes a progressive inquiry by e.g. measuring vitals or
procuring lab tests. At each step, absent sufficient certainty,
the inquiry continues. Acquiring all features at once using
all possible medical tests is prohibitively expensive, so at

each time-step, the doctor is tasked with acquiring the next
piece of information that most efficiently leads to a confi-
dent diagnosis. This setting, known as prediction-time active
feature-value acquisition (AFA), is relevant in a wide range
of contexts, from credit assessment, to employee recruit-
ing, poverty and disaster mapping, and advertising (Gao and
Koller 2011; Liu et al. 2008; Shim, Hwang, and Yang 2018;
Krishnapuram, Yu, and Rao 2011).

At the same time, the machine learning community has
proposed myriad definitions for fairness (Verma and Rubin
2018), that can be broadly categorized in two groups. (1)
Statistical definitions of fairness focus on balancing classifi-
cation errors across protected population subgroups, towards
achieving equal error rates (overall accuracy equality),
equal false-positive rates (predictive equality), equal false-
negative rates (equal opportunity), or both (equal odds). Al-
though these notions are simple and can be easily verified,
they fail to give any meaningful guarantees to individuals
or subgroups within the protected groups. (2) Individual no-
tions of fairness, on the other hand, provide individual-level
guarantees, as opposed to enforcing parity of some quan-
tity that is averaged over a group. For example, (Dwork et
al. 2012) requires that ‘similar individuals should be treated
similarly’ while (Speicher et al. 2018) measure individual
fairness in terms of how equal benefits are distributed across
individuals. Unfortunately, the fact that individual fairness
is hard to enforce in practice and is often at odds with group
fairness notions, has prevented individual fairness from be-
ing used in practice.

In this work, we demonstrate that by using confidence
thresholds in AFA, we can give fairness guarantees at both
the group and the individual-level. In particular, we derive a
set of stopping criteria for AFA which ensure that we only
classify an individual’s outcome once we have acquired a
sufficient number of features to a certain level of confidence.
Because the level of confidence will be the same across in-
dividuals, we attain error parity for calibrated probabilistic
classifiers across groups and across individuals within these
groups. While our method for achieving fairness is differ-
ent from earlier work, we suggest that it is more intuitive
in many settings as it trades off inequality (the set of fea-
tures that are used for decision making are personalized and
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thus different across individuals) for equity (each of the in-
dividuals are classified with equal confidence). When a de-
cision maker encounters an individual from a subgroup that
it has less experience with, e.g. because the group is under-
represented in the training set, more information needs to
be collected to make a fair decision with a similar level of
confidence.

Moreover, our method has interesting implications on the
privacy of the individuals. While it may appear unreasonable
to require more information from those in underrepresented
groups, in fact — in contrast to methods that necessitate all
features to be collected before making a prediction — our
algorithm only acquires the smallest possible set of features
to reach a desirable level of confidence. Therefore it natu-
rally follows the ‘data minimization’ principle as expressed
in Article 5(1)(c) of the EU’s General Data Protection Reg-
ulation (GDPR) which provides that personal data shall be
‘adequate, relevant and limited to what is necessary in rela-
tion to the purposes for which they are processed’.1

Our main contribution is the formulation of confidence
thresholds, which we provide for attaining equal error rates,
equal false-positive rates and equal false-negative. Exper-
imentally, we demonstrate that our framework is effective
using two public datasets.

Related work

Prediction-time active feature-value acquisition

An AFA system consists of three components: 1) a clas-
sifier that can handle partially observed feature sets, 2) a
strategy for determining which feature to select next based
on the features that are already collected, and 3) a stopping
criterion for determining when to stop acquiring more fea-
tures and make a final prediction. First, there are different
ways that classifiers handle partial features sets. For dis-
criminative models, feature imputation is a model-agnostic
way of handling missing data but there exist also more ef-
fective model-specific methods. For the tabular datasets we
consider in this work, we found the best performance using
distribution-based imputation for random forests in which
the possible assignments of missing values are weighted pro-
portionally (Saar-Tsechansky and Provost 2007).

Second, to determine which feature to select next, we
need a method that estimates the cost-effectiveness of each
of the unselected features based on the features we have al-
ready selected. For simplicity and in line with most prior
work on AFA, we use a heuristic method that maximizes
the expected utility of a feature, where the utility function
is based on the expected increase in the absolute difference
between the estimated class probabilities of the two most
likely classes (Kanani and Melville 2008). However, our
framework is acquisition method-agnostic and works with
any strategy. A more recent approach, Efficient Dynamic
Discovery of High-Value Information (EDDI), uses a par-
tial variational autoencoder to represent the partial feature
set of already acquired features. It then computes the mutual
information between the current representation and each of

1https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

the available features to select the feature that minimizes this
information (Ma et al. 2019).

Third, to determine when to stop selecting additional fea-
tures, most prior work assumes some given feature budget
per individual such that the decision maker is tasked with
selecting the most cost-effective features within that bud-
get (Krishnapuram, Yu, and Rao 2011). The work that is
most similar to ours develops an optimization framework
that is used to find an information budget for each popu-
lation subgroup such that an AFA classifier achieves parity
in false-positive or false-negative rates (Noriega-Campero
et al. 2019). Notably, by using the information budget as
an additional degree of freedom during optimization, they
show that several statistical (group) notions of fairness can
be achieved in an AFA setting. Our work is different in that
it provides a novel framework for mitigating both group and
individual unfairness.

Finally, there is a more recent framework that considers
all three components jointly in one reinforcement learning
framework where the agent trades off the cost of acquired
features with accuracy (Shim, Hwang, and Yang 2018).
Based on the the set of observed features, the agent either de-
cides to select one of the unobserved features or to stop and
make the final prediction. (Bakker et al. 2019) extend this
framework by adding an adversarial loss to force the agent
to acquire feature sets from which one can only predict the
label but not the sensitive attribute. In this way, they guaran-
tee group fairness (demographic parity) of models that use
these feature sets.

Fairness in machine learning

Most recent work on fairness in machine learning fo-
cuses on statistical fairness by matching error rates (false-
positive, false-negative or accuracy) across protected sub-
groups. Overall accuracy equality is achieved when the total
classification error is the same across protected subgroups
(Berk et al. 2018). The measure is only useful when true pos-
itives and negatives are equally desirable but it is nonethe-
less studied in the scientific literature and in the ProPublica
analysis of COMPAS (Chen, Johansson, and Sontag 2018;
Larson et al. 2016). Second, one can consider equal false
positive rates (predictive equality) and false negative rates
(equal opportunity) when either one of them is desirable
(Hardt et al. 2016). We refer to (Verma and Rubin 2018)
for an overview of definitions.

In contrast, individual fairness definitions have no notion
of protected subgroups, but instead formulate constraints
that bind on pairs of individuals (Dwork et al. 2012; Joseph
et al. 2016). Both families of definitions have strength and
weaknesses. Statistical notions do not provide any guaran-
tees to individuals, while individual notions have obstacles
to deployment and require strong assumptions on agreed-
upon fairness metrics.

Two recent papers, (Kearns et al. 2017) and (Hébert-
Johnson et al. 2018), attempt to combine the ‘best of both
worlds‘ by asking for statistical definitions to hold on an ex-
ponential class of groups defined by a class of functions of
bounded complexity. Although promising, the approach has
proven to be difficult to implement and ultimately still in-



herits the weaknesses of statistical fairness at a smaller scale
(Chouldechova et al. 2018).

Problem setup

Let (x(i), y(i)) ∼ P be individual i in P represented by a

d-dimensional feature set and a binary label y(i) ∈ {0, 1}.
In the AFA setting, we acquire the features in sequential
order starting with the empty set O0 := ∅ at time t = 0. At
every later timestep t we choose a subset of features from

the unselected set of features, S
(i)
t ⊆ {1, . . . , d} \ O

(i)
t−1 and

examine the value of S
(i)
t at a cost c

(i)
t :=

∑

j∈S
(i)
t

cj . After

each new acquisition step, the classifier will have access to

features O
(i)
t := S

(i)
t ∪ O

(i)
t−1. We keep acquiring features

up to time T (i) when we meet a stopping criterion. At that

point, we will classify x
(i) using only the set of features

in O
(i)

T (i) . Note that the specific set of selected features

O
(i)

T (i) will be highly dependent on the individual i. The cost
vector c is equal for every individual in P and can represent
different types of costs such as monetary or privacy costs.

A decision maker acquires a unique set of features O
(i)

T (i)

for every individual i where the specific feature set is opti-
mized in order to balance the expected quality of the final
decision with the total costs of the features.

Fairness

In our population P , let us assume we have a set of disjoint
subgroups Ga with a ∈ A, which, for example, could repre-
sent subgroups split by race or gender. Generally, these sub-
groups can have different base rates µa, which represents the
probability of belonging to the positive class µa = P [y =
1 | A = a]. For classification, we train a separate prob-
abilistic classifier for each group Ga, ha : R

k → [0, 1],
predicting the probability that the individual has binary la-
bel y = 1. In practice, these separate classifiers are stem-
ming from a single classifier trained on P and only differ
because of subgroup-specific calibration. The classifiers al-
low for classification of partial feature sets ha({xj}j∈Ot

)
which we write as ha(Ot) for brevity. For the probabilistic
error rates as well as for measuring disparity, we follow the
generalized definitions introduced in (Pleiss et al. 2017):

Definition 1. The generalized false-positive rate for clas-
sifier ha is cfp(ha) = E(x,y)∼Ga

[ha(OT ) | y = 0]. The

generalized false-negative rate is cfn(ha) = E(x,y)∼Ga
[1−

ha(OT ) | y = 1]. The generalized error rate is equivalent to
the L1 loss cerr(ha) = E(x,y)∼Ga

[|y − ha(OT )|]

If the classifier would output binary predictions h ∈
{0, 1} instead of probabilities, these rates would simply rep-
resent standard false-positive rates, false-negative rates, and
the zero-one loss. Similarly, we use generalized notions of
equal accuracy, equal opportunity, and predictive equality
for probabilistic classifiers:

Definition 2. Equal accuracy for a set of probabilistic clas-
sifiers h1 and h2 for groups G1 and G2 requires cerr(h1) =

cerr(h2). Similarly, predictive equality requires cfp(h1) =
cfp(h1) and equal opportunity cfn(h1) = cfn(h2).

Exact equality is hard to enforce in practice so we study
the degree to which these constraints are violated: |cfp,1 −
cfp,2|, |cfn,1−cfn,2|, |cerr,1−cerr,2|. Furthermore, for prob-
abilistic classifiers, these fairness conditions only hold if the
classifier probabilities are calibrated. This is confirmed both
theoretically and experimentally in (Pleiss et al. 2017).

Definition 3. A classifier ha is calibrated if P(x,y)∼Ga
[y =

1 | ha(Ot) = p] = p.

In Figure 1, we observe the set of calibrated classifiers for
two groups G1 and G2. For each group, the set of calibrated
classifiers h ∈ H lie on a line with slope (1 − µt)/µt that
connects the perfect classifier at the origin with the base rate
classifier on the cfp + cfn = 1 line (Pleiss et al. 2017). The
perfect classifier always assigns the correct prediction, while
the base rate classifier has no predictive power and naively
assigns the base rate to each individual. For an AFA clas-
sifier, the base rate classifier represents the classifier before
any features have been acquired ha(∅) = µa.

0 µ1 µ2 1
cfp

0

1− µ2

1− µ1

1

c f
n

0 cfp(h1) cfp(h2) 1
cfp

0

β

1

c f
n

h1

h2

Figure 1: Left, we observe the set of calibrated probabilistic
classifiers h1 and h2 for G1 in green and G2 in blue. The
base rates are µ1 = 0.4 and µ2 = 0.65. Right, we observe
two classifiers h1 and h2 that satisfy equal opportunity with
a target generalized false-negative rate β.

Confidence thresholds
Intuitively, the stopping criteria should be chosen such
that we collect more features for individuals and groups
for which the model is less certain. By stopping later,
we acquire more features, have more predictive power,
and move down the slope in Figure 1 towards the perfect
classifier at the origin. For different measures of fairness,
we will derive an upper and lower confidence threshold
αu and αl. The upper threshold corresponds to predicting
y = 1 with confidence αu while the lower threshold
corresponds to predicting y = 0 with confidence 1−αl. We
reach these thresholds by sequentially adding features one-
by-one, slowly increasing the confidence of our classifier
(ha(Ot) → 1 or ha(Ot) → 0). We stop collecting features
when the probability meets either one of the thresholds,
ha(Ot) ≥ αu or ha(OT) ≤ αl.

In the framework that follows, we make three key assump-
tions. First, we assume that for each individual we have suf-



ficient relevant features to reach any threshold by simply
adding more features. In most real-world datasets, there will
be a non-zero classification error even when all features are
collected such that, for some individuals, we will not reach
thresholds close to 0 or 1 even with unlimited budget for
feature acquisition. To address this issue, decision makers
can either choose thresholds closer to the base rate or lever-
age the model’s ability to select a unique set of features for
each individual and collect more features that are relevant
for the set of individuals that are currently hard to classify.
Second, we assume the probabilities after stopping to be ex-
actly p = αu or p = αl while in reality we stop when we
cross the threshold and thus find p ≥ αu or p ≤ αl. When
this overshooting effect is stronger for one of the groups,
this could lead to unfairness. Finally, throughout this work,
we will treat the calibration constraint as holding exactly. In
the Supplementary Material (SM), we also present the con-
fidence thresholds for approximately calibrated classifiers.
Despite relying on these assumptions, we show in the Ex-
periments section that our framework mitigates disparity in
real-world datasets.

Equal error rates

We will derive a set of stopping criteria for each subgroup
that ensure satisfying equal error rates (similar to overall ac-
curacy equality in previous work (Verma and Rubin 2018)).
We first rewrite the expected cerr from Definition 1. We
write Ex,y∼Ga and Px,y∼Ga as EGa and PGa when it is clear
from the context.

cerr (ha) =EGa

[

|ha(OT)−y|
]

=

∫ 1

0

pPGa

[

ha(OT)=p | y=0
]

PGa

[

y = 0
]

+

(1−p) PGa

[

ha(OT)=p | y=1
]

PGa

[

y=1
]

dp

Now we apply Bayes rule to find

cerr (ha)=

∫ 1

0

(

pPGa

[

y=0 |ha(OT)=p
]

+(1−p)

PGa

[

y=1 |ha(OT)=p
])

PGa

[

ha(OT)=p
]

dp

Substiuting PGa

[

y=0 | ha(OT)=p
]

= 1 − p and

PGa

[

y=1 | ha(OT)=p
]

= p results in2

cerr (ha)=

∫ 1

0

2
(

p2−p
)

PGa

[

ha(OT)=p
]

dp

= 2(EGa

[

ha(OT)
]

−EGa

[

ha(OT)
2]
)

To attain equal error rates, we want to ensure equal
cerr(ha(OT )) in expectation for all individuals, i.e.,

cerr(ha(O
(i)
T )) = βerr, ∀a ∈ A. For a desired βerr we can

find the stopping thresholds αu and αl by ensuring equal

2(EGa

[

ha(OT)
]

−EGa

[

ha(OT)
2]
) = βerr for every indi-

vidual in group Ga.

βerr = 2(EGa

[

ha(OT)
]

−EGa

[

ha(OT)
2]
)

= 2pu(αu − α2
u) + 2pl(αl − α2

l )

2Here, we assume perfect calibration. The derivation for ap-
proximate calibration can be found in the SM.

where pu and pl are the probabilities that we reach the up-
per or lower thresholds averaged over Ga and pu + pl = 1.
When αl + αu = 1, the solution for the confidence thresh-
olds follows as

αu =
1

2
+

1

2

√

1− 2βerr αl =
1

2
−

1

2

√

1− 2βerr (1)

If, for every individual, we acquire features one-by-one
until we reach either of these thresholds, we achieve, in ex-
pectation, an equal error for every individual. Importantly,
these thresholds are independent of the subgroup label a
and will therefore lead to equal error rates for any subgroup
a ∈ A as long as the probabilities are calibrated with respect
to subgroup a.

Equal false-positive or false-negative rates

When the desired measure of fairness is equal false-positive
rates (predictive equality) or equal false-negative rates
(equal opportunity), the thresholds derived for equal error
rates will not suffice as each group has a different base rate
µa. To derive a new set of thresholds we first reformulate
cfp from Definition 1 and follow a derivation similar to that
for equal error rates.

cfp (ha) = EGa

[

ha(OT) | y = 0
]

=

∫ 1

0

p PGa [ha(OT) = p | y = 0] dp

=

∫ 1

0

p
1−PGa

[y=1 |ha(OT)=p]

1− PGa [y = 1]
PGa [ha(OT) = p] dp

Using PGa

[

y=1 | ha(OT)=p
]

= p and PGa [y = 1] = µa,
we can rewrite this as

cfp (ha) =
1

1−µq

∫ 1

0

p(1− p) PGa [ha(OT) = p] dp

=
1

1−µa

(EGa

[

ha(OT)
]

−EGa

[

ha(OT)
2]
)

Following the same steps for the false-negative rate, we find

cfn (ha) =
1

µa

(EGa

[

ha(OT)
]

−EGa

[

ha(OT)
2]
)

We define a target false positive rate βfpr to find the stop-
ping criteria for each group such that cfp(OT ) = βfpr for
all groups Ga. We then find a set of stopping criteria, analo-
gously to those for cerr,

αu =
1

2
+

1

2

√

1− 4βfpr(1− µa) (2)

αl =
1

2
−

1

2

√

1− 4βfpr(1− µa) (3)

For false-negative rates we find a similar but different set of
stopping criteria for a target false-negative rate βfnr

αu =
1

2
+

1

2

√

1− 4βfnrµa (4)

αl =
1

2
−

1

2

√

1− 4βfnrµa (5)



Note that all individuals within a group will stop at
the same thresholds. Our method therefore prevents intra-
group unfairness, an often cited limitation of other sta-
tistical fairness methods, ignoring fair assignment of out-
comes within a sensitive subgroup (Grgić-Hlača et al. 2017;
Kearns et al. 2017). Moreover, the thresholds now differ per
group, and we can therefore not achieve fairness with re-
spect to arbitrary unlabeled subgroups with different base
rates. However, when unfairness is caused only by a dif-
ference in variance across groups, for example because of
different sample sizes |Ga| or because of group-conditional
feature variance Var(x|a), the base rates across group will be
equal, leading to fairness across even unknown subgroups.

Experiments

We demonstrate the effectiveness and limitations of our
framework on two public real-world datasets. In this section
we aim to minimize the generalized error and generalized
FPR disparity while results for FNR can be found in the SM.
In each experiment we select different information budgets
by testing different values of the target error rates βerr, βfp,
and βfn. In turn, this changes the upper and lower confi-
dence thresholds αu and αl. When the thresholds αl and αu

are set closer to respectively 0 and 1, the feature acquisition
stops later leading to a higher average budget use. By using
confidence thresholds, more budget will automatically be al-
located to subgroups for which the classifier generally has
less confidence, which mitigates disparity. We benchmark
the results in each experiment against equally distributing
the budgets across groups which we call ‘equal budget’. For
the different target error rates in the experiments that fol-
low, βerr, βfn and βfp, we first calculate the average budget
consumed when using the ‘confidence thresholds’ method
and then distribute that budget equally across all individuals
to obtain the benchmark. In this way, we are able to bench-
mark the disparity for different information budgets that a
decision maker could have available. We measure the over-
all performance of the classifiers using the Area Under the
Receiver Operating Characteristics curve (AUC) to account
for the imbalanced label distributions.

Implementation

In addition to the confidence-based stopping criteria, imple-
mentation requires two more elements: a probabilistic model
and a feature acquisition strategy. First, we need a model
that allows us to estimate P (y|Ot) for arbitrary feature sub-
sets. Although implementing this is easier with generative
models like Naive Bayes, we use distribution-based imputa-
tion in random forest (Saar-Tsechansky and Provost 2007)
as random forest has superior predictive performance (AUC
0.83 using the full feature on the Mexican Poverty dataset
set versus 0.79 for Naive Bayes). Specifically, we first train
a standard random forest using the complete feature vectors
x. At prediction time, when the algorithm encounters a tree
node for which the value is missing in the feature set Ot, it
continues along both branches towards the leafs while the
outcomes in each branch are weighted based on the esti-
mated probability for the missing value. We then compute

the probabilities using a weighted average of the leaf pu-
rity across all leaves landed on by the search. Finally, the
probability is averaged across all trees. All random forests
are created using scikit-learn with 64 trees and maxi-
mally 150 leaf nodes. Additionally, we built a custom func-
tion that accounts for the missing feature values, which we
will make public.

Second, we implement a feature acquisition strategy to es-
timate which next feature should be selected based on the
current feature set Ot, while balancing cost and increas-
ing accuracy. We implement a greedy feature selection al-
gorithm based on the expected utility method introduced in
(Kanani and Melville 2008). For an individual with observed
feature set Ot, and at each iteration of the feature collec-
tion process, the algorithm searches for the feature j′ /∈ Ot

that maximizes the difference between the current predicted
probability P and the expected probability given that an ad-
ditional feature j′ is queried with cost cj , given by:

j′ = argmax
j:j 6∈Ot

1

cj

∑

v

P (xj = v | Ot)

|P (y = 1 | Ot ∪ {xj = v})− P (y = 1 | Ot)| (6)

where P (xj = v | Ot) is estimated from the training dataset.
Finally, a decision maker will generally not reason in

terms of a target confidence but instead will have a bud-
get it can spend on average for each individual, b̄ =
1
n

∑

i∈P

∑

j∈O
(i)

T
(i)

cj . The cost for each feature cj can be

different and can represent for example monetary or privacy
costs. To make the results more interpretable, we choose the
costs to be the same for each feature cj = 1. Hence, the

budget b̄ will simply be the average number of features that
can be collected across individuals. Changing these costs to
make them more realistic will only lead to a different order-
ing of features and will not further impact the results in this
section. Assuming there will not be a distributional shift be-
tween training and test time, we calibrate this average bud-
get by varying the confidence thresholds and observing the
budget spent on a hold out set.

Datasets

An overview of the datasets is given in Table 1.
All results are computed using random 60%/20%/20%
train/validation/test splits. The Mexican Poverty dataset is
extracted from a 2016 publicly available Mexican household
survey containing household binary poverty levels for pre-
diction, as well as a series of household features (Ibarrarán
et al. 2017). We will release the processed dataset. Finally,
we use the Adult Income dataset from UCI Machine Learn-
ing Repository (Lichman and others 2013) which comprises
demographic and occupational attributes, with the goal of
classifying whether a person’s income is above $50,000.

Achieving equal error rates

We empirically demonstrate that our framework mitigates
the error disparity for the Mexican Poverty dataset in Fig-
ure 2 along a range of information budgets. The results for
the Adult Income dataset can be found in Figure SM1 in



Dataset Subgroup1 Subgroup0

Name Nsamples Nfeat Acc AUC µ Label1 n1 µ1 Label0 n0 µ0

Mexican poverty 70,305 182 78.7% 0.856 35.5% Urban 63.6% 34.9% Rural 36.4% 36.6%
Adult income 49,000 14 86.3% 0.911 23.9% White 85.4% 25.4% Non-white 14.6% 15.3%

Table 1: Overview of the datasets and subgroups split by the protected attributes. Accuracy and AUC are computed on a dataset-
level using the full feature set, while µ is the dataset-level base-rate P (y). For each subgroup we compute the relative number
of individuals na and the base rate µa.

0 20 40 60 80 100

Average Budget b̄(%)

0.02

0.04

0.06

G
en
er
al
iz
ed

E
rr
or

D
is
p
ar
it
y

Conf. Thr.

Equal Budget

0 20 40 60 80 100

Average Budget (%)

0

25

50

75

100

P
er

G
ro
u
p
A
v
.
B
u
d
ge
t
(%

)
CT a = 1

CT a = 0

EB

0.02 0.04 0.06

Generalized Error Disparity

0.6

0.7

0.8

A
re
a
U
n
d
er

C
u
rv
e

Conf. Thr.

Equal Budget

All Features

Figure 2: Confidence thresholds for achieving equal generalized error rates across the Urban and Rural subgroups in the Mexi-
can Poverty dataset. In each plot, the curves are generated by sweeping the target error rate βerr, changing the average budget
allocated to each groups. Left, the residual error disparity for the confidence thresholds (blue) and the equal budget benchmark
(red). Center, the average budget per group versus the total average budget. The dashed and solid blue lines represent the average
budget used for respectively the Urban (a = 1) and Rural (a = 0) subgroups while the red line represents the average budget
for both groups using the benchmark method. Right: The Pareto front of the AUC versus disparity trade-off for our method and
the benchmark method as well as for the classifier with access to all features in black.

the SM. To ensure calibrated probabilities, we fit a sigmoid
function to the classifier’s probabilities using a validation
set; a calibration method known as Platt scaling (Platt 1999).
Crucially, we calibrate across the entire population, effec-
tively ignoring the underlying groups to show that we can
mitigate unfairness without explicitly accounting for these
subgroups.

The leftmost panel in Figure 2 shows the effectiveness
but also the limitations of our framework. For the full range
of information budgets our method outperforms the bench-
mark. For smaller information budgets, we see that the effect
is the strongest; there are sufficient relevant features for ev-
ery individual to reach the thresholds and we thus see that
our method strongly mitigates the disparity, despite higher
error rates for each group at smaller budgets. As the infor-
mation budget grows, there are an increasing number of in-
dividuals for which the algorithm exhausts all relevant fea-
tures before we reach the confidence thresholds which lim-
its the effectiveness of our framework. Eventually, when we
acquire all features for b̄ = 100% the disparity naturally ap-
proaches the disparity for the benchmark. The center panel
shows how our framework mitigates disparity by redistribut-
ing budget from the the Urban subgroup (a = 1) to the Rural
subgroup (a = 0). Finally, in the rightmost panel, we ob-
serve that the performance-disparity trade-off of our method
Pareto dominates the benchmark.

Achieving equal false-positive or false-negative
rates

Next, we show that our framework mitigates the generalized
FPR disparity for the Mexican Poverty dataset in Figure 3
along a range of information budgets. The results for the
FNR disparity in this dataset, as well as FPR disparity for
the Adult Income dataset can be found in Figure SM2 and
Figure SM3 the SMM. We now have access to the sensitive
attribute and thus calibrate the probabilities for each group
separately, effectively creating separate classifiers for each
group.

In the leftmost panel of Figure 3, we find that the
disparity-budget trade-off of the confidence thresholds
method Pareto dominates the trade-off for the equal budget
benchmark. However, for very small and large budgets, we
see that the effectiveness is limited. Initially, both thresh-
olds will be close to 0.5 while the classifier for each group
starts at the base rate when no features have been collected
leading to an immediate stop. Once the threshold crosses the
base rate, feature acquisition starts but as the most predictive
features will be acquired first this leads to an overshooting of
the probabilities, violating the assumption that the probabil-
ities stop exactly at the intended thresholds. As the budget
increases further this effect is mitigated and the effective-
ness increases. For large budgets, we see the same effect as
observed previously when mitigating the error disparity; the
algorithm exhausts all relevant features before the thresh-
olds can be reached. Eventually the disparity approaches the
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Figure 3: Confidence thresholds for achieving equal generalized FPR rates across the Urban and Rural subgroups in the Mexican
Poverty dataset. In each plot, the curves are generated by sweeping the target error rate βfpr. Left, the residual generalized FPR
disparity for the confidence thresholds (blue) and the equal budget benchmark (red). Center, the average budget per group versus
the total average budget. The dashed and solid blue lines represent the average budget used for respectively the Urban (a = 1)
and Rural (a = 0) subgroups while the red line represents the average budget for both groups when using the benchmark
method. Right, the Pareto front of the AUC-disparity trade-off for our method and the benchmark method. The black square
represents the classifier that has access to all features.

benchmark when for both methods all features are collected.
In the center panel, we observe how the method mitigates the
disparity by redistributing budget from the Urban group to
the Rural group. In the rightmost panel, we observe that our
method Pareto dominates the equal budget benchmark along
the full AUC-disparity trade-off.

Conclusion and Discussion

We introduced a framework for achieving equal error rates,
equal opportunity and predictive equality in an active
feature-value acquisition setting. The framework relates a
target generalized error, false-negative or false-positive rate
to a set of confidence thresholds, used to determine when to
stop querying features for each individual.

In addition to achieving statistical fairness, our approach
can be interpreted as staking a novel middle-ground between
individual and statistical fairness. This is most obvious in
the case where we have one set of confidence thresholds that
effectively leads to equal expected error rates for each indi-
vidual and hence to equal overall error rates across an arbi-
trary set of underlying subgroups. However, even when we
aim to equalize false positive or false negative rates across
groups, and thus use different thresholds for each group, we
naturally acquire more information for those individuals for
which the classifier faces most uncertainty, leading to equal
expected error rates for every member of a protected sub-
group. Hence, our framework mitigates intra-group unfair-
ness or ‘fairness gerrymandering‘ that is generally seen as
a strong limitation of previous statistical fairness methods
(Kearns et al. 2017).

On two public datasets, we show that our method mini-
mizes disparities. Especially for small budgets, our frame-
work strongly mitigates disparities while for large budgets
we exhaust the relevant features before reaching the con-
fidence thresholds. This issue also represents a limitation of
the datasets we use in this work. The features in both datasets
have been carefully chosen to be cost-effective for the ma-
jority of individuals in the dataset. In our framework, how-

ever, it is natural to add features that are relevant only to a
handful of individuals, as they will only be selected for that
group. Hence, we encourage future work that investigates
the applications of our framework to datasets and settings
that meet this criterion and work that extends our method
to supporting models that facilitate partial feature sets also
during training time.

Finally, we encourage further research that investigates
the implications on the privacy of individuals both at train-
ing and at prediction time. Generally, we found that active
feature acquisition is a natural framework to achieve ‘data
minimization’; it collects only the minimum set of features.
However, even though our method reduces error disparities,
it can actually create privacy disparities as for each individ-
ual a different set of features will be collected. To address
this, a natural extension would be to work towards a frame-
work that holistically trades-off monetary costs for decision
makers, privacy costs for decision subjects, and fairness.
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Confidence thresholds for approximately calibrated classifiers
This section presents the derivation of the confidence thresholds for approximately calibrated classifiers. Parts of this
derivation are adopted from (Pleiss et al. 2017). First, we define approximate calibration.

Definition 4. A classifier ha is approximately calibrated with respect to a group Ga if
∫ 1

0

∣

∣

∣
P(x,y)∼Ga

[

y=1 | ha(OT)=p
]

− p
∣

∣

∣
P(x,y)∼Ga

[

h(x) = p
]

dp ≤ δcal (7)

where Ot is the feature set at time t and δcal is the bound on the calibration error. A classifier is perfectly calibrated when
δcal = 0.

Lemma 1. If for a group Ga the calibration error is bounded by δcal then

2
(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]−δcal

)

≤cerr (ha)≤2
(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]
+δcal

)

(8)

1

1−µa

(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]−δcal

)

≤cfp (ha)≤
1

1−µa

(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]
+δcal

)

(9)

1

µa

(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]−δcal

)

≤cfn (ha)≤
1

µa

(

Ex,y∼Ga

[

ha(OT)
]

−Ex,y∼Ga

[

ha(OT)
2]
+δcal

)

(10)

where cerr (ha), cfp (ha), and cfn (ha) represent the generalized error rate, generalized false-positive rate (FPR), and
generalized false-negative rate (FNR). µa is the base rate for group Ga and ha(OT) is the classifier for group Ga.

Proof. First, for the generalized error rate we note from Definition 1 that

cerr (ha) = Ex,y∼Ga

[

|ha(OT)−y|
]

=

∫ 1

0

p Px,y∼Ga

[

ha(OT) = p | y = 0
]

Px,y∼Ga

[

y = 0
]

+ (1− p) Px,y∼Ga

[

ha(OT) = p | y = 1
]

Px,y∼Ga

[

y = 1
]

dp

Now we apply Bayes rule to find

cerr (ha) =

∫ 1

0

(

p Px,y∼Ga

[

y = 0 | ha(OT) = p
]

+ (1− p) Px,y∼Ga

[

y = 1 | ha(OT) = p
])

Px,y∼Ga

[

ha(OT) = p
]

dp

=

∫ 1

0

(

p
(

1− Px,y∼Ga

[

y = 1 | ha(OT) = p
])

+ (1− p) Px,y∼Ga

[

y = 1 | ha(OT) = p
])

Px,y∼Ga

[

ha(OT) = p
]

dp

(11)



Working out the first part of Equation (11)

∫ 1

0

p Px,y∼Ga

[

y = 1 | ha(OT) = p
]

Px,y∼Ga

[

ha(OT) = p
]

dp

=

∫ 1

0

p(p+ Px,y∼Ga [y = 1 | ha(OT) = p]− p) Px,y∼Ga [ha(OT) = p] dp

≤

∫ 1

0

(

p2 + | Px,y∼Ga [y = 1 | ha(OT) = p]− p|
)

Px,y∼Ga [ha(OT) = p] dp

≤ Ex,y∼Ga
[ha(OT)

2
] + δcal (12)

Similarly, we can work out the lower bound

∫ 1

0

p Px,y∼Ga
[y = 1 | ha(OT) = p] Px,y∼Ga

[ha(OT) = p] dp

≥

∫ 1

0

(

p2 − | Px,y∼Ga
[y = 1 | ha(OT) = p]− p|

)

Px,y∼Ga
[ha(OT) = p] dp

≥ Ex,y∼Ga [ha(OT)
2
]− δcal (13)

Working out the second part of Equation (11)

∫ 1

0

(1− p)(Px,y∼Ga [y = 1 | ha(OT) = p]) Px,y∼Ga

[

ha(OT) = p
]

dp

=

∫ 1

0

(1− p)(p+ Px,y∼Ga [y = 1 | ha(OT) = p]− p) Px,y∼Ga

[

ha(OT) = p
]

dp

≤

∫ 1

0

(p(1− p) + | Px,y∼Ga [y = 1 | ha(OT) = p]− p|) Px,y∼Ga

[

ha(OT) = p
]

dp

≤ Ex,y∼Ga
[ha(OT)]− Ex,y∼Ga

[ha(OT)
2
] + δcal (14)

and the lower bound
∫ 1

0

(1− p)(Px,y∼Ga [y = 1 | ha(OT) = p]) Px,y∼Ga

[

ha(OT) = p
]

dp

=

∫ 1

0

(1− p)(p+ Px,y∼Ga [y = 1 | ha(OT) = p]− p) Px,y∼Ga

[

ha(OT) = p
]

dp

≥

∫ 1

0

(p(1− p)− | Px,y∼Ga [y = 1 | ha(OT) = p]− p|) Px,y∼Ga

[

ha(OT) = p
]

dp

≥ Ex,y∼Ga
[ha(OT)]− Ex,y∼Ga

[ha(OT)
2
]− δcal (15)

Combining Equations (12) to (15) with Equation (11), we find

2
(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]− δcal

)

≤ cerr (ha) ≤ 2
(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]

+ δcal

)

Second, for the generalized false-negative rate we note from Definition 1 that:

cfn (ht) = Ex,y∼Ga

[

1− ha(OT) | y =1
]

=

∫ 1

0

(1− p) Px,y∼Ga
[ha(OT) = p | y = 1] dp

Applying Bayes rule

cfn (ht) =

∫ 1

0

(1− p)
Px,y∼Ga [y = 1 | ha(OT) = p]

Px,y∼Ga [y = 1]
Px,y∼Ga [ha(OT) = p] dp.

=
1

µt

∫ 1

0

(1− p) (Px,y∼Ga [y = 1 | ha(OT) = p]) Px,y∼Ga [ha(OT) = p] dp.



Substituting Equations (14) and (15) we find

1

µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]− δcal

)

≤ cfp (ha) ≤
1

µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]

+ δcal

)

Finally, for the generalized false-positive rate we note from Definition 1 that

cfp (ha) = Ex,y∼Ga

[

ha(OT) | y = 0
]

=

∫ 1

0

p Px,y∼Ga
[ha(OT) = p | y = 0] dp

=

∫ 1

0

p
1− Px,y∼Ga

[y = 1 | ha(OT) = p]

1− Px,y∼Ga [y = 1]
Px,y∼Ga [ha(OT) = p] dp

=
1

1− µq

∫ 1

0

p (1− Px,y∼Ga [y = 1 | ha(OT) = p]) Px,y∼Ga [ha(OT) = p] dp

Substituting Equations (12) and (13) we find

1

1− µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]− δcal

)

≤ cfn (ha) ≤
1

1− µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]

+ δcal

)

The respective error rates for the perfectly calibrated case can be directly obtained by dropping δcal from Equations (8) to (9)

cerr (ha) = 2
(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]
)

(16)

cfp (ha) =
1

1− µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]
)

(17)

cfn (ha) =
1

µa

(

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]
)

(18)

Confidence thresholds

There are two confidence thresholds that, when reached, stop further feature acquisition. The classifier starts with an empty
feature set at ha(∅) = µa. The effective thresholds are therefore always αu > µa and the lower threshold αl < µa. When the
classifier stops at t = T , it will find either ha(OT) = αu or ha(OT) = αl. Applying these thresholds we find

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]

=
1

|Ga|

∑

x,y∼Ga

(

pu(αu − α2
u) + pl(αl − α2

l )
)

where pu is the probability that an individual stops at αu and pl = 1− pu the probability that an individual stops at αl. Also,
we set αl = 1− αu. Therefore

Ex,y∼Ga

[

ha(OT)
]

− Ex,y∼Ga

[

ha(OT)
2]

=
1

|Ga|

∑

x,y∼Ga

(

pu(αu − α2
u) + (1− pu)((1− αu)− (1− αu)

2)
)

=
1

|Ga|

∑

x,y∼Ga

(

αu − α2
u

)

We now set a target generalized error rate cerr (ha(OT)) = βerr, equal for each subgroup a, that determines when to stop
selecting additional features for each individual. We first derive the thresholds for the perfectly calibrated classifier in
Equation (16)

βerr = 2
(

αu − α2
u

)

βerr = 2
(

(1− αl)− (1− αl)
2
)

αu,err =
1

2
+

1

2

√

1− 2βerr αl,err =
1

2
−

1

2

√

1− 2βerr

Similarly, using Equations (17) and (18), we find, when setting the target generalized FPR rate βfp and the target generalized
FNR rate βfn, the thresholds

αu,fp =
1

2
+

1

2

√

1− 4βfp(1− µa) αl,fp =
1

2
−

1

2

√

1− 2βfp(1− µa)

αu,fn =
1

2
+

1

2

√

1− 4βfnµa αl,fn =
1

2
−

1

2

√

1− 2βfnµa



Generalizing these thresholds to the approximately calibrated case using Equations (8) to (10), we find that these thresholds
will result in

βerr − δcal ≤ cerr(ha) ≤ βerr + δcal

βfp − δcal ≤ cfp(ha) ≤ βfp + δcal

βfn − δcal ≤ cfn(ha) ≤ βfn + δcal

Confidence thresholds for arbitrary cost functions

In the main text, we formulate confidence thresholds for two distinct cases. First, we formulate them for the case where true
positives and true negatives are equally desirable and one thus aims to equalize the accuracy across subgroups. Second, we
formulate them for a case where an individual cares about equal false negatives rates. Here we show that the confidence
thresholds generalize to an arbitrary cost function za, a linear function in cfp(ha) and cfn(ha)

za(ha(Ot)) = bacfp(ha(Ot)) + cacfn(ha(Ot)) (19)

with ba + ca = 1. We can reformulate this za using the generalized definitions in Definition 1

za(ha(Ot)) = ba
1

|Ga|(1− µt)

∑

(x,y)∈Ga

1y=0ha(Ot) + ca
1

|Ga|µt

∑

(x,y)∈Ga

1y=1(1− ha(Ot)) (20)

where we normalize by the total number of negative individuals |Ga|(1− µt) for cfp and the number of positive individuals
|Ga|µt for cfn. Replacing the ground truth labels with the probabilistic estimates:

za(ha(Ot)) =

(

ba
|Ga|(1− µt)

+
ca

|Ga|µt

)

∑

(x,y)∈Ga

ha(Ot)(1− ha(Ot)) (21)

Now we define a target cost function βz to find the stopping criteria for each group such that E(x,y)∼Ga
[za(OT )] = βz for all

groups a and isolate ha(OT ). We find a set of confidence thresholds that ensure

βz =

(

ba
1− µt

+
ca
µt

)

ha(Ot)(1− ha(Ot)) (22)

which leads to the stopping criteria

αu =
1

2
+

1

2

√

1− 4βz

(

ba
|Ga|(1− µt)

+
ca

|Ga|µt

)−1

(23)

αl =
1

2
−

1

2

√

1− 4βz

(

ba
|Ga|(1− µt)

+
ca

|Ga|µt

)−1

(24)

Naturally, when ba = 0 and ca = 1 we retrieve the thresholds we found for achieving equal false negative rates, while when
ba = 1 and ca = 0 we retrieve the thresholds for achieving equal false positive rates.
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Figure SM1: Confidence thresholds for achieving equal generalized error rates across the White and Non-white subgroups in
the Adult Income dataset. In each plot, the curves are generated by sweeping the target error rate βerr, effectively changing the
average budget used across groups. Left: the residual generalized error disparity for the confidence thresholds (blue) and the
equal budget benchmark (red). Center: The average budget per group versus the total average budget. The dashed and solid blue
lines represent the average budget used for respectively the White (a = 1) and Non-white (a = 0) subgroups while the red line
represents the average budget for both groups when using the benchmark method. Right: The Pareto front of the AUC versus
disparity trade-off for our method and the benchmark method as well as for the classifier with access to all features in black.
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Figure SM2: Confidence thresholds for achieving equal generalized FNR rates across the Urban and Rural subgroups in the
Mexican Poverty dataset. In each plot, the curves are generated by sweeping the target error rate βfnr. Left: the residual
generalized FNR disparity for the confidence thresholds (blue) and the equal budget benchmark (red). Center: The average
budget per group versus the total average budget across groups. The dashed and solid blue lines represent the average budget
used for respectively the Urban (a = 1) and Rural (a = 0) subgroups while the red line represents the average budget for
both groups when using the benchmark method. Right: The Pareto front of the AUC-disparity trade-off for our method and the
benchmark method. The black square represents the classifier that has access to all features.
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Figure SM3: Confidence thresholds for achieving equal generalized FPR rates across the White and Non-white subgroups in
the Adult Income dataset. In each figure, the curves are generated by sweeping the target error rate βfpr. Left: the residual
generalized FPR disparity for the confidence thresholds (blue) and the equal budget benchmark (red). Center: The average
budget per group versus the total average budget across groups. The dashed and solid blue lines represent the average budget
used for respectively the White (a = 1) and Non-white (a = 0) subgroups while the red line represents the average budget for
both groups when using the benchmark method. Right: The Pareto front of the AUC-disparity trade-off for our method and the
benchmark method. The black square represents the classifier that has access to all features.
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