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Abstract

Autonomous vehicles rely on machine learning to solve chal-
lenging tasks in perception and motion planning. However,
automotive software safety standards have not fully evolved
to address the challenges of machine learning safety such as
interpretability, verification, and performance limitations. In
this paper, we review and organize practical machine learn-
ing safety techniques that can complement engineering safety
for machine learning based software in autonomous vehi-
cles. Our organization maps safety strategies to state-of-the-
art machine learning techniques in order to enhance depend-
ability and safety of machine learning algorithms. We also
discuss security limitations and user experience aspects of
machine learning components in autonomous vehicles.

1 Introduction

Advances in machine learning (ML) have been one of the
biggest innovations of the last decade. Nowadays, ML mod-
els are used extensively in different industrial fields like au-
tonomous vehicles, medical diagnosis, and robotics to per-
form various tasks such as speech recognition, object de-
tection, and motion planning. Among different ML models,
Deep Neural Networks (DNNs) (LeCun, Bengio, and Hin-
ton 2015) are well-known and widely used for their pow-
erful representation learning in high-dimensional data. For
instance, in the field of autonomous driving, various DNN
object detection and image segmentation algorithms have
been used as perception units to process camera (e.g., Pilot-
Net (Bojarski et al. 2016), Fast RCNN (Wang, Shrivastava,
and Gupta 2017)) and Lidar (e.g., VoxelNet (Zhou and Tuzel
2018)) data.

The development of safety critical systems relies on strin-
gent safety methodologies, designs, and analyses to pre-
vent hazards at the time of failure. In the automotive field,
1SO26262 and ISO/PAS 21448 are two main safety stan-
dards used to address safety of electrical and electronic
components. These standards mandate methodologies for
system, hardware, and software development. Specifically
for software development, the process ensures traceabil-
ity across requirements, architectural and unit design, code,
and verification. In cases of autonomous software with high

complexity, iterative hazard analysis and risk assessment of

autonomous software is required to formally represent the
operational design domain.

On the other hand, ML models have numerous inherent
safety drawbacks including accuracy on their training set
and robustness in operational domain in open-world lim-
itations. For example, ML models are fragile to domain
shift (Ganin and Lempitsky 2014), data corruption and nat-
ural perturbations (Hendrycks and Dietterich 2019). Also,
prediction probability scores in DNNs do not provide a true
representation of model uncertainty. Moreover, from a secu-
rity perspective, it has been shown that DNNs are suscep-
tible to adversarial attacks that make small perturbations to
the input sample (indistinguishable by human eye) but can
fool a DNN (Goodfellow, Shlens, and Szegedy 2014). Due
to the lack of verification techniques for DNNs, validation
of ML models often relies on simple accuracy measures on
different large test sets to cover the targeted operation de-
sign domain. While an important metric to gauge the suc-
cess of the algorithm, it is definitely insufficient to measure
performance in safety-critical applications as the real-world
examples may differ from the test set.

With the realization that ML models will be increasingly
used in safety critical systems, we need to investigate gaps
these models expose in existing engineering safety stan-
dards. Several examples of these gaps have been discussed in
machine learning safety including interpretability and trace-
ability into code, formal verification, and design specifica-
tion (Salay, Queiroz, and Czarnecki 2017).

In this paper, we review challenges and opportunities in
algorithmic techniques for ML safety to complement ex-
isting software safety standards for autonomous vehicles.
Section 2 briefly reviews the two main automotive industry
safety standards and identifies their five fundamental gaps
with machine learning algorithms. Section 3 describes prac-
tical algorithmic safety techniques by surveying machine
learning research on 1) error detectors and 2) model ro-
bustness. We briefly present three of our own implemen-
tations for safety-critical applications. Section 4 discusses
open challenges, directions for future work, and concludes
the paper.

2 Background

Industrial safety broadly refers to the management of all op-
erations and events within an industry in order to protect its
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employees and users by minimizing hazards, risks, and ac-
cidents. Given the importance of correct operation of Elec-
tric and Electronic (E/E) components, the IEC 61508 is a
basic functional safety standard developed for electrical and
electronic safety related systems with two fundamental prin-
ciples: (a) Safety life cycle: an engineering process based
on best practices to discover and eliminate design errors,
(b) Failure analysis: a probabilistic approach to account for
the safety impact of system failures. IEC 61508 has several
derivations specific to different industries. For example, to
achieve safety in the automotive industry, engineers are re-
quired to follow the ISO 26262 standard to minimize safety
risks due to E/E faults to an acceptable level.

In this section, we briefly review the two main automo-
tive safety standards followed by an organized list of funda-
mental ML limitations to meet safety requirements. We note
that both automotive standards mandate a meticulous analy-
sis of hazards and risks, followed by a detailed development
process focusing on system requirements, documented ar-
chitecture and design, well structured code, and a thorough
verification strategy for unit, integration, and system-level
testing.

ISO 26262 Standard

ISO 26262 or the automotive E/E functional safety standard
defines vehicle safety as the absence of unreasonable risk
due to malfunctioning E/E components. It requires a Hazard
Analysis and Risk Assessment (HARA) to determine vehi-
cle level hazards. The potential hazards and risks guide the
safety engineers towards safety goals that are then used to
create functional safety requirements. These safety require-
ments then guide the system development process which is
then decomposed into hardware and software development
processes. Figure 1 presents an overview of this standard.
Our focus in this paper is Part 6 of ISO 26262 that defines
the V-model for the software development process.

The objective of the V-Model in Figure 1 is to ensure
that software safety requirements are sufficiently fulfilled by
the software architectural design and sufficiently tested by
the software verification tests. Similarly, the software archi-
tectural design is verified and the software integration tests
prove that the interactions between the architectural entities
including the static and dynamic aspects are tested. At the
lowest level of the V-model, the unit design specifies the de-
sign details of each unit (that is identified during software
architectural design) such as input, output error handling,
behavior of the unit so that it can be coded. Finally, the unit
tests ensure that the unit is tested so that its requirements and
design aspects are met and sufficient structural coverage of
the unit is met.

ISO 26262 also identifies the methods for fault detection
and avoidance to minimize the risk to an acceptable level.
However, when applied to autonomous driving, ISO 26262
has several limitations. It cannot account for faults occurring
due to the inability of the component to comprehend the en-
vironment - for example due to performance limitations or
robustness issues - or foreseeable misuse of the system.
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Figure 1: Comparison between the V-model in ISO 26262-6
(in Green) and ISO/PAS 21448 (in Blue) for software (SW)
safety process.

ISO/PAS 21448 Standard

ISO/PAS 21448 or SOTIF (Safety Of The Intended Func-
tionality) standard describes an iterative development pro-
cess consisting of design specification, development, and
verification and validation phases. SOTIF standard recog-
nizes performance limitations of software (including ML
components) and expects that the scenarios/inputs that be-
long to unsafe-unknown (e.g., samples out of training distri-
bution) and unsafe-known (e.g., samples out of operational
design domain) situations shall be reduced to the extent such
that the residual error risk is acceptable.

The SOTIF process augments the ISO 26262 with a SO-
TIF specific HARA and safety concept. The hazard analysis
consists of identifying the hazards due to inadequate perfor-
mance functionality, insufficient situational awareness, rea-
sonably foreseeable misuse or shortcomings of the human
machine interface. In comparison, the hazard and risk anal-
ysis of ISO 26262 is limited to hazards due to E/E failures.
If the SOTIF analysis results in risk that is higher than ac-
ceptable, functional modifications are performed to reduce
SOTIF risks. A verification and validation strategy is then
developed to argue that the residual risk is below the accept-
able level.

Safety Gaps for ML. Components

In recent years, there has been an increasing attention in
identifying safety limitations of ML models. For example,
Varshney et al. (Varshney 2016) discussed the definition of
safety for ML models and compared it with four main en-
gineering safety strategies (1) inherently safe design, (2)
safety reserve, (3) safe fail, and (4) procedural safeguards)
in industry. In a review of automotive software safety meth-
ods, Salay et al. (Salay, Queiroz, and Czarnecki 2017) pre-
sented an analysis of [ISO-26262 part-6 methods with respect
to safety of ML models. Their assessment of applicability
of the software safety methods on machine learning algo-
rithms (as software unit design) shows about 40% of soft-
ware safety methods do not apply to ML models.

Safety and robustness of ML models problem has also
been in the interest of ML scientists (Hernandez-Orallo et
al. 2019). Amodei et al. (Amodei et al. 2016) presented five



concrete research problems that could result in unintended
and unsafe behavior of real-world Al systems. They focus
and characterize safety problems of Al into defining and
evaluating the objective functions. Also, Ortega et al.(Or-
tega and Maini 2018) introduced three areas of technical Al
safety as specification (in design and emergent), robustness
(for error prevention and recovery), and assurance (for mon-
itoring and enforcement).

We categorize these open challenges in the terminology of
automotive software safety standards and briefly review rep-
resentative research (see first row of Table 1) to close these
safety gaps.

e Design Specification. Documenting and reviewing the
software specification is a crucial step in functional safety,
however, the design specification of ML models is gener-
ally not adequate, as the models learn the patterns in data
to discriminate or generate their distribution for new un-
seen input. Therefore, machine learning algorithms learn
the target classes through their training data (and regu-
larization constraints) and not using a formal specifica-
tion. The lack of specifiability could cause mismatch be-
tween “designer objectives” and “what the model actually
learned” which could result in unintended functionality of
the system. This data-driven optimization of variables to
train machine learning models makes it impossible to de-
fine and pose specific safety constraints. To this end, Se-
shia et al. (Seshia et al. 2018) surveyed the landscape of
formal specification for DNNs to lay an initial foundation
for formalizing and reasoning about properties of DNNs.
Another practical way to manage this design specification
problem is to break machine learning components into
smaller algorithms (with smaller tasks) to work in hier-
archical structures. Related to this, Dreossi et al. (Dreossi
et al. 2019) presented VerifAl toolkit for formal design
and analysis of Al-based systems.

o [mplementation Transparency. 1ISO26262 requires trace-
ability from requirements to design. However, advanced
ML models trained on high dimensional data are not
transparent. The very large number of variables in the
models makes them incomprehensible or so-called black-
box for design review and inspection. In order to achieve
traceability, significant research has been performed on
interpretability methods for DNN to provide instance
explanations of model prediction and DNN interme-
diate feature layers (Zeiler and Fergus 2014). In au-
tonomous vehicles application, using the VisualBackProp
technique (Bojarski et al. 2018) shows that a DNN algo-
rithm trained to control a steering wheel would in fact
learn patterns of lane, road edges, and parked vehicles to
execute the targeted task. However, the completeness of
interpretability methods to grant traceability is not proven
yet (Adebayo et al. 2018) and in practice interpretability
techniques are mainly used by designers to improve net-
work structure and training process rather than support a
safety assessment.

o Testing and Verification. Significant verification of work
products are required for unit testing to meet the ISO
26262 standard. For example, coding guidelines for soft-

ware safety enforce that there is no dead or unreachable
code. Depending upon the safety integrity level, com-
plete statement, branch coverage, or modified condition
and decision coverage are required to confirm adequacy
of the unit tests. Coming to DNNs, formally verifying
their correctness is challenging (provably NP-hard (Se-
shia, Sadigh, and Sastry 2016; 2016)) due to the high
dimensionality of the data. Therefore, reaching a com-
plete validation and testing bounded to the operational
design domain is difficult. As a result, researchers pro-
posed new techniques such as searching for unknown-
unknowns (Bansal and Weld 2018) and predictor-verifier
training (Dvijotham et al. 2018). Other techniques includ-
ing neuron coverage and fuzz testing(Wang et al. 2018)
in neural networks covers these aspects. Note that formal
verification of shallow and linear models for low dimen-
sional sensor data does not have the challenges of DNN
verification.

e Performance and Robustness. SOTIF standard treats the
ML models as a black box and suggests using methods
to improve model performance and robustness. However,
improving model performance and robustness in itself is
a very challenging task. In learning problems, typically
training a model ends with an error rate (due to false pos-
itive and false negative predictions) on the training set.
Empirical error is prediction error rate of the learner func-
tion on its target distribution. Generalization error refers
to the gap between model’s empirical error on its train-
ing and test sets. On top of these, operational error is
referred to model’s error rate on open-world deployment
that could be higher than test set error rate. Domain gen-
eralization refers to ability of model in learning general-
izable data representations for open-world tasks. We will
review more details and machine learning techniques to
improve model robustness in Section 3.

e Run-time Monitoring Function. SOTIF and ISO 26262
standards suggest run-time monitoring functions as soft-
ware error detection solutions. Monitoring functions in
classical software are based on a rule-set to detect cases
like transient hardware error, software crash, and exit
from operation design domain. However, designing mon-
itoring functions to predict ML failure (e.g., false positive
and false negative error) is different in nature. ML mod-
els generate prediction probability for input instances but
research shows prediction probability does not guarantee
failure prediction (Hein, Andriushchenko, and Bitterwolf
2019). In fact, DNN and many other ML models could
generate incorrect outputs with high confidence in cases
of distribution shift and adversarial attacks. We will re-
view more details of error detection techniques for ML
models in Section 3.

3 Techniques for ML Safety

We introduce algorithmic techniques for ML safety to main-
tain dependability of machine learning algorithms for safe
execution in open-world tasks. The techniques we review
in this section are meant to complement classic engineer-
ing strategies in software safety. We also connect ML safety



techniques with appropriate engineering safety strategies
(see Table 1) to help machine learning scientists and safety
engineers find a common ground in the new topic of au-
tonomous vehicle safety. We follow Varshney’s (Varshney
2016) four strategies to achieve machine learning safety to
map Al Safety techniques with engineering strategies.

Considering the research debt left to assure different
safety aspects of Al (see Section 2), we believe we are far
from reaching (1) Inherently Safe Al. Therefore, we focus
on practical machine learning solutions for the two follow-
ing safety strategies:

e (2) Safe Fail refers to strategies to keep the vehicle on
road in a safe state at the time of failure. This strategy can
mitigate hazards at the time of fault by use of monitoring
functions and graceful degradation plans such as notifying
the driver to take vehicle’s control. We propose using run-
time error detection techniques to detect erroneous output
of machine learning algorithms (e.g. misclassification and
misdetection) for the vehicle on the road.

o (3) Safety Margins in the context of machine learning is
described as difference between model’s performance on
training set and operational performance in open-world.
We propose using model robustness techniques to im-
prove resilience and hence Safety Margin of machine
learning components.

We will also briefly review the importance of (4) Proce-
dural Safeguards for non-experts end-users of autonomous
vehicles (i.e. driver and passengers) later in the discussion
about future work. To separate safety and security concerns,
we consider external factors that intentionally exploit system
vulnerabilities (e.g., sample manipulations in adversarial at-
tack) as security concerns but not safety.

Monitoring Function

Our first practical ML safety solution leverages from the
range of techniques for machine learning misclassification
error detection to achieve Safe Fail behavior. For example,
when transient errors in hardware like sensors affect the
functionality of the software like that for cruise control, an
error detection unit (monitoring function) can detect the er-
ror and degrade the system by appropriate warnings and al-
lowing the driver to take over. Similarly, various run-time
monitoring functions and error detectors could be designed
for machine learning components to predict model failure
and trigger appropriate warnings. In the following we intro-
duce three types of error detectors for machine learning and
review their relations and limitations. Note that although the
three following groups of error detectors overlap, we sepa-
rate detectors by their targeted error types.

Uncertainty Estimation Uncertainty in probabilistic
learners is an important factor to maintain fail-safety of the
system. Even well trained and calibrated predictors that are
robust to noise, corruption, and perturbations can benefit
from uncertainty estimation to detect domain shift and out-
of-distribution samples at run-time. Quantifying uncertainty
can explain what a model does not know in terms of model
confidence on its prediction (epistemic uncertainty or model
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Figure 2: Model failure prediction based on saliency map for
ConvNet regression models. We trained a student model as
monitoring function for run-time failure predictor of a Pilot-
Net model (Mohseni, Jagadeesh, and Wang 2019).

uncertainty) and uncertainty for unknown samples (aleatoric
uncertainty or data uncertainty).

Regarding importance of uncertainty methods for safety
critical applications, McAllister et al. (McAllister et al.
2017) proposed measuring uncertainties in ML models and
propagating down in the decision-making pipeline as a key
for safety of autonomous systems. However, quantifying
predictive uncertainty in DNNs is a challenging task. Typ-
ically, DNN classification models generate normalised pre-
diction scores which tend to be overconfident and regression
DNN models do not give uncertainty representation in their
output. Research in DNN presents solutions such as deep
ensembles (Lakshminarayanan, Pritzel, and Blundell 2017)
and Monte Carlo dropout (MC-dropout) (Gal and Ghahra-
mani 2016) to estimate prediction uncertainty. Uncertainty
estimation methods have been tested for various model error
types (Kendall and Gal 2017) including adversarial attack
detection (Smith and Gal 2018).

Although uncertainty estimation methods offer potential
effective solutions for DNN failure prediction — in practice —
they carry significant computation cost and latency which is
not ideal for run-time failure prediction. For example, to de-
sign an error detector for a PilotNet algorithm, Michelmore
et al. (Michelmore, Kwiatkowska, and Gal 2018) present
an implementation of MC-dropout uncertainty estimation
which needs 128 stochastic forward passes to estimate un-
certainty of the model. Therefore, in resource limited se-
tups and for reasons like computation simplicity, researchers
work on alternative error detection solutions which we re-
view in the next two subsection.

In-distribution Error Detectors Misclassification of in
domain samples often happens due to weak representation
learning. In recent years, advanced neural networks, reg-
ularization techniques, and large training datasets signifi-
cantly improved DNNs representation learning and there-
fore model performance and robustness. However, run-time
prediction error detectors are still needed to maintain safety
of the system in case of model failure. Selective classi-
fication (also known as classification with reject option)
is a technique to cautiously provide prediction for high-
confidence samples and abstain when in doubt. This method
for confident prediction can significantly improve model
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Figure 3: Out-of-distribution sample detection base on pre-
diction confidence. We proposed an out-of-distribution sam-
ple detector to train reject classes to learn outlier features in
a self-supervised step. (Mohseni et al. 2020)

performance at the cost of test coverage. Geifman and El-
Yaniv (Geifman and El-Yaniv 2017) present a simple and ef-
fective implementation of selective classification for DNNs.
They introduce a reject function which guarantees control
over the true risk based on DNN softmax output. They
later introduce SelectiveNet (Geifman and El-Yaniv 2019),
a three-headed network to jointly train classification and re-
jection functions on the normal domain. Along similar lines,
Guo et al. (Guo et al. 2017) presented temperature scaling as
a post-processing calibration technique to adjust the model
probability estimates being off due to over fitting. In an ap-
plication to autonomous vehicles, Hecker et al.(Hecker, Dai,
and Van Gool 2018) added and trained a failure head to the
network in order to learn to predict the occurrence of model
failures.

In our recent paper, we presented an error detector
for regression models in autonomous vehicle applica-
tions (Mohseni, Jagadeesh, and Wang 2019). We proposed
a new design which trains a student model (failure predic-
tor) for predicting the teacher model’s (main model) error
at run-time. Figure 2 shows how the student model learns
teacher model’s prediction loss on a validation set in order
to predict its failures on the test set. We also train the student
model using the saliency maps from the main model to im-
prove failure prediction performance. We evaluate our fail-
ure predictor model based on prediction error and the driving
safety gained by this system.

Out-of-distribution Error Detectors Out-of-distribution
(OOD) sample or outlier refers to inputs that are outside the
normal training distribution. OOD error is referred to ML
model misclassification error for OOD samples. Examples
of OOD samples in autonomous vehicles include unique, un-
usual or unknown road signs, road marks, or rare object or
scenario which either was not included in the training set
or the model was not able to learn (e.g. due to class im-
balance) during the training process. OOD error is an inher-
ent problem with ReLLU family activation functions that they
produce arbitrary high confidence as inputs get further from
the training distribution (Hein, Andriushchenko, and Bitter-
wolf 2019). However, various techniques known as OOD de-
tector, novelty detector, and outlier detector have been pro-

posed to detect OOD samples. Examples of OOD detector
techniques include revising network architecture for learn-
ing the prediction-confidence (DeVries and Taylor 2018),
employing ensemble of leaving-out classifiers (Vyas et al.
2018), and self-supervised representation learning (Golan
and El-Yaniv 2018) approaches for outlier detection. On the
other hand, a fast and low cost approach in OOD detec-
tion is to use class probabilities as a measure for OOD de-
tection (Hendrycks and Gimpel 2016). In this regard, new
techniques have been proposed to calibrate DNN decision-
boundaries for robust OOD detection (Lee et al. 2017).

In our recent work, we present a fast and memory efficient
OOD error detection technique by embedding and training
reject options into any DNN discriminative model with min-
imal architectural changes (Mohseni et al. 2020). This is
shown in Figure 3. Our fundamental idea is to exploit the
high-level feature learning capacity of DNNS to jointly learn
generalizable outlier features as well as in-distribution fea-
tures for normal classification both in one network. Figure 3
shows how we train additional reject functions in the last
layer of our neural network using a two steps of supervised
(with labeled in-distribution training set) and self-supervised
(with free unlabeled OOD natural samples) training. Our
evaluation results show the proposed self-supervised learn-
ing of OOD features can very well generalize to reject other
unseen distributions.

Algorithm Robustness

The second practical solution for ML safety leverages ro-
bustness techniques to improve Safety Margins of ML
models in autonomous vehicles. Robustness techniques in
ML research improve resiliency of the algorithms to un-
seen samples, natural corruptions and perturbations, adver-
sarial example, and domain shifts. ML literature present
multiple techniques such as dataset augmentation, noise
injection, and multi-task learning to regularize DNNs to
learning generalizable features (Goodfellow, Bengio, and
Courville 2016). Other techniques, including transfer learn-
ing (Hendrycks, Lee, and Mazeika 2019), have shown to im-
prove model robustness by transferring universal represen-
tation from a pre-trained model to the new domain. Further,
Zhang and LeCun (Zhang and LeCun 2017) explored us-
ing unlabeled free data to regularize model training for its
robustness. In the following, we review two major safety-
related types of machine learning robustness techniques for
open-world tasks. We will also briefly review robustness and
detection techniques for adversarial examples in the discus-
sion section.

Robustness to Domain Shift Domain shift (also known
as distribution shift and dataset shift) describes variations
in the input data distribution in comparison to the train-
ing set. Distribution shift reduces the operational perfor-
mance compared to the test set performance by breaking
the i.i.d assumption between training and testing data. In
this regard, domain generalization is a crucial aspect of ma-
chine learning algorithms for open-world applications such
as autonomous vehicles which data is captured from uncon-
trolled and fast changing environment. Domain generaliza-



Table 1: Table of practical machine learning techniques to improve the safety of ML algorithms. Left column presents engi-
neering safety strategies and right column maps machine learning techniques with three representative research papers for each

Trow.

Safety Strategy Practical AI Safety Opportunities

Design Specification ( (Amodei et al. 2016; Leike et al. 2017; Seshia et al. 2018))

Inherently Safe  Implementation Transparency ( (Bojarski et al. 2018; Zeiler and Fergus 2014; Adebayo et al. 2018))

Design Formal Verification ((Seshia, Sadigh, and Sastry 2016; Dvijotham et al. 2018; Wang et al. 2018))
Uncertainty Estimation ((Lakshminarayanan, Pritzel, and Blundell 2017; Gal and Ghahramani 2016))
Safe Fail In-distribution error detection ((Geifman and El-Yaniv 2017; 2019; Guo et al. 2017))
Out-of-distribution error detection ( (Mohseni et al. 2020; Golan and El-Yaniv 2018; Vyas et al. 2018))
Domain Generalization ((Zhang et al. 2019; Ganin and Lempitsky 2014; Lee, Eum, and Kwon 2019))
Safety Margin

Perturbation and Corruptions Robustness ((Geirhos et al. 2019; Huang et al. 2018; Hendrycks, Lee, and Mazeika 2019))

tion could be achieved from many different ways. One ap-
proach is adversarial domain adaptation (Ganin and Lempit-
sky 2014) that leverages from massive amount of unlabeled
data captured from the targeted domain. For example, Zhang
et al. (Zhang et al. 2019) implemented learning-based ap-
proaches to synthesize foreground objects and background
contexts for new training samples. Multi-task learning is an-
other technique to improve model robustness by simultane-
ously learning two (or more) tasks. For instance, Tang et
al. (Tang et al. 2019) presents a pose-aware multi-task vehi-
cle re-identification techniques to overcome view-point de-
pendency of the objects. They created and used large-scale
highly randomized synthetic dataset with automatically an-
notated vehicle attributes for training. From a different ap-
proach, Lee et al. (Lee, Eum, and Kwon 2019) propose us-
ing ensemble of models to capture and learn different poses
and viewing angles of objects to improve overall robustness.
Also, to improve robustness of object detection models to
occlusions and deformations, Wang et al. (Wang, Shrivas-
tava, and Gupta 2017) used an adversarial network to gener-
ate hard positive examples.

In a recent work (Wu et al. 2019), we proposed a new
technique for improving model robustness to domain shift
in unmanned aerial vehicle (UAV). We cast an object de-
tection problem as a cross-domain object detection problem
with multiple fine-grained domains. We then train our object
detection model to extract invariant features shared by many
different “non-ideal” variations (e.g., weather conditions,
camera angle, light conditions) of the target domains. In or-
der to do so, we add a nuisance disentangled feature trans-
form block on the input and nuisance prediction branches
(one for each non-ideal condition) in a modular fashion and
jointly train the final network in an adversarial setting. Our
implementation on Faster-RCNN backbone (Wang, Shrivas-
tava, and Gupta 2017) shows superior results compared to
vanilla baseline on improving model robustness to weather,
altitude, and view variations in UAV images.

Robustness to Corruptions and Perturbations Natural
data perturbation and corruption commonly exist in open-
world settings. Benchmarking DNN robustness to corrup-
tion and perturbations (Hendrycks and Dietterich 2019)

shows machine learning models exhibit unexpected predic-
tion errors on simple perturbations. Achieving model ro-
bustness to natural corruptions (e.g., due to camera lens,
snow, rain, fog in image data) and perturbations (e.g., sen-
sor transients error, electromagnetic interference on sen-
sors) requires techniques to improve model robustness above
their clean datasets. Previously, classical data augmenta-
tions were used to gain robustness to simple image variations
like rotation and scaling (Goodfellow, Bengio, and Courville
2016). Other techniques such as using adaptive algorithm
for choosing the augmentation transformations (Fawzi et al.
2016) and random patch erasing (Zhong et al. 2017) also
shown to be effective for both robustness and representation
learning. Recently, advanced augmentations such as style
transfer (Geirhos et al. 2019) have shown to improve model
robustness to texture bias. Another line of research proposes
larger networks (Huang et al. 2018) to improve DNN robust-
ness through multiscale and redundant feature learning.

Adversarial perturbation (Goodfellow, Shlens, and
Szegedy 2014), on the other hand, are small but worst-case
perturbations intentionally created by an attacker so that
the perturbed sample results in the model misclassify the
sample with high confidence. We distinguish safety hazard
due to natural perturbations from security hazard due to
adversarial perturbations as the latter intentionally exploit
system vulnerabilities to cause harm. Security concerns
related to adversarial perturbation are briefly mentioned in
the discussion about future work.

4 Conclusion and Future Work

In this work, we presented a review and categorization of
classical software safety methods with fundamental limita-
tions in machine learning algorithms. The impetus of this
work was to leverage from both engineering safety strategies
and state-of-the-art machine learning techniques to enhance
dependability and safety of machine learning components in
autonomous systems. In this regard, maintaining the safety
of autonomous vehicles requires a multidisciplinary effort
across multiple fields including human-computer interac-
tions, machine learning, software engineering, hardware en-
gineering (Koopman and Wagner 2017). We briefly review



and discuss other dimensions of safety and security of ML-
infused systems that could be benefit from research commu-
nities attention.

Security Risks of Adversarial Attacks: An adversarial ex-
ample is a clean image delicately perturbed (by an adver-
sary) with a small distortion so that it visually looks iden-
tical to the original clean image but is misclassified by the
ML model. Despite its popularity, adversarial attacks are not
considered primarily a safety concern rather a security lim-
itation (Carlini and Wagner 2017). Two main defense ap-
proaches for adversarial attacks are detection and robust-
ness. For example, Smith and Gal (Smith and Gal 2018)
present a case of MC-drop out uncertainty estimation tech-
nique for detecting adversarial examples. Further, to im-
prove model robustness and resiliency to adversary pertur-
bation Papernot et al. proposed an effective defense based
on model distillation (Papernot et al. 2016). Still, the prob-
lem of adversarial examples is an unsolved problem when
considering that attackers always react to current defense
techniques by designing stronger attacks to undermine se-
curity of machine learning components (Carlini and Wagner
2017).

Procedural Safeguards for ML Safety: Beyond func-
tional safety of the system, procedural safeguards help
operators and product end-users (e.g. driver in autonomous
vehicle) avoid unintentional misuse of system due to lack
of instructions and unawareness (Varshney 2016). User
experience (UX) design and algorithmic transparency
are two approaches to improve safety of the operation in
autonomous vehicles. In such cases, end-users can benefit
from explainable UX designs which provides useful and
comprehensible information about model reasoning (Gun-
ning 2017) and prediction uncertainty (Michelmore,
Kwiatkowska, and Gal 2018). For example, UX design
could leverage real-time visualization of model uncertainty
for vehicle detection and path planning to help improve
driver’s understanding of vehicle safety on the road.

In our future work, we plan to review recent procedural
safeguards designs and studies for autonomous vehicle ap-
plications. Including key techniques and factors in calibrat-
ing user trust in human-Al systems.
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