
Using Text Classification Methods to Detect
Malware

Eoghan Cunningham1, Oiśın Boydell1, Cormac Doherty2, Benjamin Roques2,
and Quan Le1

1 Centre for Applied Data Analytics Research (CeADAR), University College
Dublin, Ireland

eoghan.cunningham@ucdconnect.ie, {oisin.boydell, quan.le}@ucd.ie
2 Centre for Cybersecurity & Cybercrime Investigation (CCI), University College

Dublin
{cormac.doherty, benjamin.roques}@ucd.ie

Abstract. In this paper we propose using text classification to detect
malware. In our approach, we convert each binary executable to an as-
sembly program, then use text analytics to classify whether the code
is malicious or not. Using random forests as the classification model we
achieve an F1 accuracy of 86%. Furthermore, to achieve this performance
we only examined a limited portion of each assembly program. Our find-
ings allow the development of malware detectors with fast responses as
traditionally malware detectors need to parse the whole binary before
making the decision. It also opens up the possibilities of using com-
plex classification models like deep learning to detect malicious programs
through analyzing code semantic.

Keywords: machine learning, text classification, cybersecurity, malware, reverse
engineering

1 Introduction

Malware - software written with malicious intent - is a rapidly growing problem in
cyber-security. In 2018 alone Symantec reported 246 million new malware variants
[18]. The scale of this threat means that there is an urgent need to develop accurate
as well as efficient classification tools for automatically detecting malware.

Most current methods for malware detection use signature based approaches to
identify malware already described by human analysts or by behaviour analysis through
generic heuristics detection [2]. For example, YARA rules [6] are a set of pattern match-
ing rules, similar to regular expressions, designed to help malware researchers to identify
and classify malware. They are constructed by malware analysts to match user defined
patterns (binary or text) inside malware samples. When a new sample is discovered,
if the sample matches an already existing YARA rule, then it can be classified to the
corresponding malware family. However, these approaches are time consuming, require
a high level of domain expertise, and can only be developed when the malware has
already been identified and flagged; as such there is a need to develop tools which can

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License 
Attribution 4.0 International (CC BY 4.0).



learn to detect new malware and malware variants automatically. This has stimulated
research into applying machine learning to the malware detection task.

In this work we investigate the use of text classification methods to detect malware.
We convert each input example, in the form of executable machine code in raw binary
format, into an assembly program i.e. a representation of the underlying sequence of
processor instructions. This static feature extraction is computationally efficient since
it does not require running the executable, and the assembly code is a more amenable
representation of an executable’s behaviour as compared to other static analysis meth-
ods such as working with raw byte code sequences [14]. We aim to investigate the use of
a portion of code instead of the whole assembly program to build malware detectors, as
using only a portion of the program as input will allow the development of fast malware
detectors, besides other benefits. Our contribution in this work is the analysis of how
the performance of text classifiers vary with the number of assembly code instructions
used to represent each binary. We find that the performance of classifiers trained in
this way is relatively stable across a wide range of instruction sequence lengths, which
shows that it is possible to develop very fast malware detection tools with high accuracy
using only a small input data size.

2 Related Work

In this section we review literature on malware classification using disassembled exe-
cutable code. For these works, a disassembler like IDAPro [3], Radare2 [4], or Ghidra
[1] is used to convert binary executable code into a sequence of assembly instructions
- each instruction includes an opcode (an assembly command) and the possible pa-
rameters that the command operates on. The next step is to convert the sequence of
instructions into a sequence of tokens from a vocabulary - each instruction could be
considered as a token, or the researchers may choose to keep only the opcode of each
instruction as a token to reduce the token vocabulary size. Further feature extraction
methods can then be applied on each sequence of tokens before being used as input to
train a malware classifier.

The first group of works use n-gram (sequences of n consecutive tokens) statistics
from the assembly code as input features for a classifier. In [20], the authors calculated
the frequencies of bi-grams of opcodes, and then applied feature selection to keep only
the 1,000 most important bi-gram opcodes sequences as input. They trained a number
of popular classifiers on their dataset of 1,000 malware and 1,000 benign example
binaries; and reported an accuracy of more than 90%. In [22] the authors studied
different tokenizing approaches applied to the assembly code before extracting n-gram
features to train a linear classifier. The author reported low accuracy of up to 77%.

The second group of works use generative models - e.g. Hidden Markov Models
(HMMs) - to model the relationships over sequences of instructions. In [17], the authors
trained a HMM for each of multiple malware families, then a test malware sample would
be assigned to the family whose HMM gave it the highest score. In [15] the authors use
HMMs to detect metamorphic viruses - malware which evades detection by inserting
junk codes in its body.

Recently Deep Learning [10] has been emerging as a new classification model which
can be applied across many diverse problem domains – including malware classification
– due to its ability to learn efficient task based feature extraction given a dataset of
input-label pairs. In [16] a convolutional neural network (CNN) on top of an opcode
embedding layer was trained on opcode sequences to detect whether an android app



was malware or not, and it achieved a performance of 87% accuracy and 86% macro
average F1 score on their large dataset configuration. In [13], a CNN was trained on
one-hot encoded opcode sequences to classify malware into one of 9 families, with the
neural network obtaining 91% F1 accuracy. [12] also train a CNN on opcode sequences
through an opcode embedding layer to detect malware. Due to file size restriction
the author split each assembly program into chunks of 10,000 opcode sequences and
trained them independently; the performance of the neural network was not reported
independently but as a component of an ensemble of classifiers.

In reviewing the literature, we notice that there is a lack of analysis of the ef-
fects of choosing different numbers of instructions from the assembly program on the
performance of the classifiers. Another observation is that complex models like neural
networks cannot easily process large assembly programs in whole due to memory and
computing power constraints, which informs our work on using a subset of the first n
instructions from each sample.

3 Methods

3.1 Dataset

There is a lack of standardised datasets used across the malware research community,
not least in part due to the issue of distributing known malicious executables as well
as the rapidly evolving nature of malware whereby older samples may not be represen-
tative of malware currently in the wild. Therefore we compiled our own datasets for
our research from several sources. We used 5,000 unique malicious Microsoft Windows
portable executable files (PE Win32) provided by UCD’s Centre for Cybersecurity
and Cybercrime Investigation (CCI). This collection was compiled over an eighteen
month period from publicly available sources of threat intelligence, predominantly ma-
licious URL feeds and phishing domains. These malware samples were complemented
with over 5,000 benign (non-malicious) unique samples collected from online freeware
sources, Windows ISO disk images and personal computers. In total, the dataset size
is 17 Gbytes.

In order to evaluate the generality of our malware classification approach, we cre-
ated an additional test dataset of 2,000 unique malware examples from an alternative
source, VirusTotal [5], so as to account for any potential bias in the CCI sources.
Again this was complemented with 2,000 additional unique benign samples collected
from online freeware sources, Windows ISO disk images and personal computers.

3.2 Feature Extraction

Static Analysis is the term used for analysis of executable files, namely malware, that
does not require their execution. Many statically extracted features have been shown
to have predictive power in malware detection [11], [7], however the focus of our work
is on using assembly instructions as produced from running a disassembler over each
executable. We used the same disassembly software, Radare2, across all the excecuta-
bles in our datasets for consistency.



Function Resolution Given the predictive power of API calls [11] and motivated
by the work in [22], we chose a feature representation for the assembly instructions
that, where possible, resolved any memory addresses to the function name being called,
according to the function import table. Any addresses that were not resolved to their
function names are replaced with a fixed, unique string - ’adr’ (Figure 1 ). After pre-
processing, we tokenize the assembly code at the instruction level.

Fig. 1. An example of assembly code after pre-processing

Feature Representation We then considered the task of detecting malware ex-
ecutables as a binary text classification problem. We applied the term frequency -
inverse document frequency (TF-IDF) metric from the field of information retrieval
to represent the sequences of disassembled instructions as vectors, where the terms
are represented by n-grams of assembly instructions. This prompted an analysis of the
influence of n-gram length on vector dimensionality (vocabulary size) - a very high
dimensional feature space is likely to lead to low generalization performance due to the
curse of dimensionality [8]. Figure 2 shows the dimensionality of the feature vectors
for various n-gram lengths. We chose to use n=2 (bi-grams) as this provides a balance
between a compact vocabulary size and the ability to capture consecutive instructions.
It is also the choice used in multiple research in malware classification [21][20].

3.3 Experiment Protocol

We carried out our experiments in two stages, using the dataset of 10,000 samples (5,000
maleware from CCI, 5,000 benign) as described above. In all experiments classifier
performance was measured using macro averaged F1 score.

In the first stage we wanted to identify which classification algorithm performed
best for a chosen number of instructions to be disassembled of 1000, using the feature
extraction and representation approach described above. We considered six common



Fig. 2. Dimensionality of feature vectors by n-gram length

classifiers for our experiments: Logistic Regression, Naive Bayes, Random Forest, K
Nearest Neighbors (KNN), Linear Support Vector Machines (Linear SVM), and XG-
Boost. We used the XGBoost classifier implemented in [9], and for other classifiers
we used the library scikit-learn [19]; the hyper-parameters for all classifiers were set
to default values (version 0.90 for XGBoost, and version 0.22 for scikit-learn). The
dataset was randomly split into training and test sets with a ratio of 75%:25%, and we
individually trained and evaluated all six classifiers. This was repeated five times and
the F1 score of each repeat for each classifier was averaged.

In the second stage we analyzed how the performance of the best performing clas-
sifier from stage one varied when we used different numbers of instructions from the
disassembled executables as input. For a chosen number of instructions n inst, the
classifier was only trained (and tested) with the first n inst disassembled instructions
from each executable. We tested various values of n inst between 250 and 20,000, and
used the same evaluation methodology as in stage one.

Finally, we wanted to understand how our classification approach generalises to a
previously unseen malware situation. For this we trained the best performing classifier
identified in stage one using the number of instructions, n inst, which gave the best
performance in the second stage on the full dataset of 5,000 malware examples from
CCI and the 5,000 benign examples. We then tested the performance of our model on
a test dataset comprising 2,000 malware examples from VirusTotal, along with 2,000
new benign examples.



4 Results

Table 1 shows the performance of the six classifiers when we used the first 1000 in-
structions of each assembly program to calculate its features, where random forests
consistently achieved the best performance. As the result we chose random forests as
the classifier for our next experiments.

Run 1 Run 2 Run 3 Run 4 Run 5 Average F1

Logistic Regression 0.75 0.74 0.75 0.76 0.74 0.748
Naive Bayes 0.79 0.78 0.79 0.80 0.79 0.79
Random Forest 0.86 0.84 0.84 0.85 0.84 0.846
KNN 0.82 0.83 0.82 0.83 0.82 0.824
Linear SVM 0.80 0.78 0.79 0.80 0.79 0.792
XGBoost 0.81 0.80 0.82 0.81 0.80 0.808

Table 1. F1 score of the six classifiers, for each of the five random training/test splits,
and the overall averaged F1 score for each (number of instructions = 1,000)

In the second experiment, we varied the number of instructions used in an assembly
program in the series of values [250, 500, 1000, 2000, 3000, 4000, 5000, 7500, 10000,
15000, 20000]. The performance of the random forests for the chosen numbers of in-
structions is visualized in Figure 3. Random forests achieved the lowest average F1
score of 84.7% (84.5 % accuracy) with 1000 instructions, and it achieved the highest
average F1 score of 86.4 % (86.7 % accuracy) with 7500 instructions.

As a further analysis on random forest classifier trained by assembly length of 7, 500
instructions, Figure 4 shows the time to train a random forest on a chosen number of
instructions. We carried out our experiments on using 8 cores on an Intel Xeon E5 v3
processor with 53 GB memory.

For the final test, we trained a random forest on the whole dataset and tested it on
the test set with malwares provided by VirusTotal. Our trained random forest achieved
a performance of 81% F1 score, this showed our random forest model generalized to
malware pieces from a different source.

Discussion

In the experiments our random forest classifier achieved 86.4 % macro-average F1
accuracy on a separate validation set, and 81% on a test set for the difficult scenario
where malware executables come from a separate source (VirusTotal). This compares
favourably with accuracy reported in other works, albeit on different datasets. How-
ever, our finding that good performance can be achieved by looking at only the first
7,500 instructions of the disassembled code is important. Reducing the quantity of
data that needs to be disassembled and processed allows for the development of faster
malware detectors than if the whole executable needs to be taken into account. We
also believe that our analysis of model performance vs assembly length is useful in
allowing developers to trade off model accuracy vs model speed for a specific use case:



Fig. 3. Random Forest Classifier Performance by Assembly Length

for example, a malware detector scanning email might need to be very fast, whilst a
detector protecting a high security network might trade speed for accuracy.

We believe that our approach of preprocessing assembly instructions is useful as
it reduces the vocabulary size of tokens while preserving more information than using
opcodes alone. However an important avenue of future work would be to explore pre-
processing techniques further to reduce the vocabulary size of the tokens whilst keeping
as much relevant information as possible, and whether our approach of selecting in-
structions from the start of the malware binary as opposed to other segments of the
file is optimal.

5 Conclusion

In this paper we applied text classification to detect malicious programs, and we ana-
lyzed how the performance of a malware detector changed as a function of the number
of instructions in the assembled code that it looked at. Our finding that a classifica-
tion model only needs to look at a small portion of the disassembled code to detect
malware opens up the possibilities to develop complex and powerful malware detection
models on disassembled code. It also allows the development of fast malware detectors,
which is necessary given the need to deal with a rapidly increasing number of malware
variants today.

Acknowledgement. This research was supported by a research funding grant from
Enterprise Ireland to CeADAR.



Fig. 4. Time to Train a Random Forest Classifier by Assembly Length

References

1. Ghidra - a software reverse engineering (sre) suite of tools developed by nsa’s
research directorate in support of the cybersecurity mission. https://ghidra-sre.
org/, accessed: 2019-09-30

2. Heuristic and proactive detections. https://encyclopedia.kaspersky.com/

knowledge/heuristic-and-proactive-detections, accessed: 2019-09-30
3. Ida pro combines an interactive, programmable, multi-processor disassembler cou-

pled to a local and remote debugger and augmented by a complete plugin program-
ming environment. https://www.hex-rays.com/products/ida/, accessed: 2019-
09-30

4. Radare2 - a free toolchain for easing several low level tasks like forensics, software
reverse engineering, exploiting, debugging. https://rada.re/n/radare2.html, ac-
cessed: 2019-09-30

5. Virustotal - free online virus, malware and url scanner. https://www.virustotal.
com/en, accessed:2019-09-30

6. The yara project. https://virustotal.github.io/yara/, accessed: 2019-09-30
7. Biondi, F., Given-Wilson, T., Legay, A., Puodzius, C., Quilbeuf, J.: Tutorial: an

overview of malware detection and evasion techniques. In: International Sympo-
sium on Leveraging Applications of Formal Methods. pp. 565–586. Springer (2018)

8. Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)
9. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings

of the 22nd acm sigkdd international conference on knowledge discovery and data
mining. pp. 785–794. ACM (2016)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)



11. Ki, Y., Kim, E., Kim, H.K.: A novel approach to detect malware based on api call
sequence analysis. International Journal of Distributed Sensor Networks 11(6),
659101 (2015)

12. Kim, D.: Improving Existing Static and Dynamic Malware Detection Techniques
with Instruction-level Behavior. Ph.D. thesis, University of Maryland (2019)

13. Kolosnjaji, B., Eraisha, G., Webster, G., Zarras, A., Eckert, C.: Empowering con-
volutional networks for malware classification and analysis. In: 2017 International
Joint Conference on Neural Networks (IJCNN). pp. 3838–3845. IEEE (2017)

14. Le, Q., Boydell, O., Mac Namee, B., Scanlon, M.: Deep learning at the shallow end:
Malware classification for non-domain experts. Digital Investigation 26, S118–S126
(2018)

15. Lin, D., Stamp, M.: Hunting for undetectable metamorphic viruses. Journal in
computer virology 7(3), 201–214 (2011)

16. McLaughlin, N., Martinez del Rincon, J., Kang, B., Yerima, S., Miller, P., Sezer,
S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., et al.: Deep android malware detec-
tion. In: Proceedings of the Seventh ACM on Conference on Data and Application
Security and Privacy. pp. 301–308. ACM (2017)

17. Narra, U., Di Troia, F., Corrado, V.A., Austin, T.H., Stamp, M.: Clustering versus
svm for malware detection. Journal of Computer Virology and Hacking Techniques
12(4), 213–224 (2016)

18. O‘Gorman, e.a.: Symantec internet security threat report for 2019. Volume XXIV
(2019)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. Journal of machine learning research 12(Oct), 2825–2830 (2011)

20. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode sequences as rep-
resentation of executables for data-mining-based unknown malware detection. In-
formation Sciences 231, 64–82 (2013)

21. Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., Elovici, Y.: Detecting unknown
malicious code by applying classification techniques on opcode patterns. Security
Informatics 1(1), 1 (2012)

22. Zak, R., Raff, E., Nicholas, C.: What can n-grams learn for malware detection? In:
2017 12th International Conference on Malicious and Unwanted Software (MAL-
WARE). pp. 109–118. IEEE (2017)


