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Abstract. The present study compared several state of the art neu-
ral embedding models for the correlation of their embeddings with hu-
man judgements, relating to both human memory and relevance ranking.
These models included two embedding models, DeepRank and Ranknet;
two classification models, ConvNet and VisNet; and a Variational Au-
toencoder. To assess each model’s performance, two custom evaluation
metrics were developed: a fine detail coefficient and a coarse detail co-
efficient. These measures revealed that the embeddings produced by the
DeepRank model had the highest correlation with human judgement.
This design combination of a tri-linear architecture, triplet loss function
and semi-hard negative sampling did best at capturing the similarities
between the images, achieving the highest overall result for both the
fine detail and coarse detail coefficients. The embeddings produced by
the DeepRank model were then used to investigate the memorability of
each company logo. However, as image memorability cannot be charac-
terised by low-level features alone our results suffered. In addition, the
results show that deep features extracted from the embedding models
show markedly better results on fine classification and retrieval tasks
than their classification counterparts.
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1 Introduction

Think clothes, TVs, computers, food, cars. From the moment we wake to the
moment we sleep, we are constantly being bombarded with logos. Logos repre-
sent an interesting form of visual information, as they are specifically designed
to be relatively simple, recognisable and memorable all in an attempt to improve
brand recognition. But just how accurately can we remember these famous sym-
bols?. In pursuit of an answer, the company Signs.com decided to carry out a
study, “Branded in Memory”, in which consumers were asked to draw several
well-known company logos from memory1. Each individual image was given an
accuracy score by a group of marketing experts as part of the study, creating a
rich resource for computer vision and machine learning algorithms. A subset is
shown in Fig. 1.

1 https://www.signs.com/branded-in-memory
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Fig. 1: A sample of the data set. Left: original logos. Right: logos for one company
as drawn by subjects, arranged from left to right and top to bottom in increasing
similarity to the true logo. From Signs.com.

Previous literature has shown that humans have a very strong visual memory.
Each individual memory is stored and protected from interference, even when
hundreds of images intervene between the first and second appearance of an
image [14]. Research has also indicated an immense capacity for visual detail in
long-term memory [3]. However the Signs.com data set apparently contradicts
these statements as only a handful of the drawings are highly accurate. Despite
a strong body of research showing that multiple exposures to stimuli can result
in relatively accurate memory, other studies have demonstrated that exposure
does not necessarily lead to enhanced memory but may contribute to more gen-
eral, gist based memory. While psychologists have studied human capacity to
remember visual stimuli little work has been conducted on the differences in
stimuli that make them more or less memorable. While image memorability is
partly subjective, some images are intrinsically more memorable than others, in-
dependent of context and subjects’ biases [10]. This paper describes an attempt
to automatically recreate some findings from the Signs.com study using several
computer vision models.

Many computer vision models involve embeddings, that is lower-dimensional
spaces to which the original data space (e.g. the space of images) is mapped. Em-
beddings are useful if topological properties of the embedding such as distances
are well-aligned with human perception. However, in many contexts it is difficult
for humans to give assessments of image dissimilarity since it is entangled with
semantic and cultural factors: is an image of a dalmatian similar to an image
of a zebra, or not? In this context, the Signs.com dataset is particularly inter-



esting because it is in a highly constrained domain and it includes approximate
dissimilarity labels. It allows us to investigate whether the embeddings created
by common computer vision models have the desirable property of correlation
between embedding distance and human perception of image dissimilarity.

Our study thus directly compares several state of the art neural models for
the correlation of distances in their embeddings with human judgements. This
also allows insight into logo memorability. The study demonstrates that embed-
dings created by explicit embedding models show markedly better results on fine
classification and retrieval tasks than their classification counterparts.

2 Related work

Traditionally, feature extraction was accomplished by designing hand crafted
features with the aid of an expert. However, in recent years many known typical
image descriptors like SIFT, HOG and local binary patterns [13], [5], [1] have
been replaced by state of the art image CNN’s which learn the set of features di-
rectly from the observations themselves by undergoing supervised training. With
regards to training a multi-class classification model, softmax cross-entropy loss
is still the most popular choice [12]. Although this loss function has been success-
fully applied across numerous domains, this metric inherently cannot learn from
the between-class relationships which can be very informative and will become
necessary in our study as discussed in section 4 [9].

In order to capture between-class relationships, several embedding models
were introduced. These models explicitly learn a mapping to a new feature space
by varying the position of each sample point in this new space relative to another
point. For example, triplet loss operates by minimising the distance between a
sample image and a positive anchor whilst maximising the distance between the
sample and a negative anchor.
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Despite embedding model’s ability to capture the between-class relationships,
they do have some inherent drawbacks. The models converge at a very slow and
unsteady rate during training and they also require complicated sampling op-
erations. In the literature it has been common to select from all possible pairs
at random for contrastive loss [2]. On its own, random sampling of triplets may
mostly yield “easy” examples that induce no loss [20]. Hard negative mining has
been shown to contribute to faster convergence [17]. In contrast, hard negative
mining paired with triplet loss can lead to a collapsed model (where every im-
age has the same embedding). Thus in response semi-hard negative mining was
created, first used in FaceNet. It is widely accepted as the standard sampling
approach for triplet loss [15]. In this study a random approach was chosen for
the contrastive loss implementation and a semi-hard method for the triplet loss
function. As a result of this complexity, these Siamese architectures are much
more difficult to optimise in comparison to their cross-entropy counterparts [20].



3 Models

In total six models were created and tested, including the raw pixel value repre-
sentation as a baseline. Each of the 5 neural models were trained on the entire
data set which contained 10 classes/brands and 1440 images in total. Of these 5
neural models, four were trained under supervised conditions with the exception
of the VAE. Both DeepRank and RankNet are embedding models that explicitly
learn the embeddings directly. Whereas, both VisNet and ConvNet are classifi-
cation models that implicitly learn the embeddings, thus the penultimate layer
was used as the embedded representation in these cases. The differences in model
architectures and training regimes are described in the following sub sections.

3.1 The Base Model

To mitigate experimental bias each of the neural models were constructed around
a shared base deep residual convolutional neural network inspired by the ILSVRC
2015 winner Resnet [18]. The base model was constructed using skip gram con-
nections to increase the training efficiency of the model as it contained just over
50 layers in total. The model takes a [50x50] RGB image as an input and outputs
a 32 dimensional L2 normalised embedded representation in the form of a dense
vector. The base model is comprised of 6 residual blocks in conjunction with
other standard layers such as convolution, pooling, normalisation and activation
layers. There are two types of residual blocks implemented in this model, the
identity block and the residual block. The identity block contains the basic skip
gram connection and is used when the input and output are of the same di-
mension, whereas the residual block is used when the dimensions differ. Identity
mapping still takes place, however an adjustment to the resolution and channels
of the alternative pathway occurs by means of a 1x1 convolution operation before
recombination. In both blocks the main pathway is subjected to a sequence of
3x3 convolution, batch normalisation, max pooling with a 2x2 kernel and RELU
activation layers. Each residual block is three layers deep meaning that the main
path goes through nine successive layers following the sequence described above
before being combined with the skip connection. The output feature map from
the successive residual blocks are then reduced using average pooling and flat-
tened into a 32 dimensional vector. Each model is built on this base model by
applying different loss functions and additional architectures.

ConvNet The first model implemented in this study was ConvNet [18]. This
network follows a classic structure that uses the categorical cross entropy (neg-
ative log likelihood) loss function in conjunction with the base model. This loss
function simply measures the dissimilarity between the true and predicted proba-
bility distributions obtained from the final softmax activated layer. Once training
was complete, the 32 dimensional dense vector located before the final softmax
activated layer was extracted and used as an embedded representation.



VisNet Visnet expands on ConvNet by introducing a tri-linear parallel CNN
structure by combining the base model with two smaller shallow networks [6].
This has the added benefit of using the base model to encode strong invariance
that can capture image semantics, while the other two parts of the network take
down-sampled representations that have less invariance and capture more of the
input’s visual appearance. Both of the smaller networks contain an [8x8] con-
volutional layer but differ in stride length and max pooling filter size. All three
outputs from the base model and two shallower architectures are L2 normalised
before being concatenated together to produce a 32 dimensional embedded rep-
resentation. Similar to ConvNet, during training a 10 dimensional softmax layer
was used with the categorical cross-entropy loss.

Fig. 2: Visnet Tri-linear Network Architecture [19]

DeepRank DeepRank is an embedding model where the network can be thought
of as a function that simply maps an input to a point in Euclidean space. Unlike
the original implementation [19], which evaluates the hinge loss of a triplet, this
study utilised the triplet loss function to learn the appropriate embeddings [4].
The model takes an image triplet as an input. Each image is then fed indepen-
dently to three identical deep neural networks with a shared architecture and
parameters. This architecture follows the tri-linear CNN structure seen above to
capture both the image semantics and visual appearance. The triplet loss func-
tion operates by minimising the distance between a sample image (the “anchor’)
and a same-class image whilst maximising the distance between the anchor and
a different-class image.
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The margin α defines a minimum threshold between the positive and negative
images. This encourages the positive samples to maintain a minimum distance
between each other. However, this parameter has an optimal balance point, as
if the margin is increased the number of hard negatives or good training sam-
ples falls. Thus, for this implementation an alpha value of 0.2 was heuristically



chosen [19]. An offline approach for choosing semi-hard triplets was also im-
plemented to improve convergence time [15]. Triplets are chosen by choosing a
random image as anchor and then negative and positive images based on the
constraint:

|f(xai )− f(xpi )|2 + alpha < |f(xai )− f(xni )|2

This ensures that the no “easy” samples are produced which give zero loss and
hence do not improve weights.

RankNet As with DeepRank, RankNet uses a Siamese architecture and also
seeks to learn an embedding directly. However, RankNet uses the contrastive loss
function. As with any other distance-based loss function, it aims to produce an
embedding that captures the semantic similarity between images. This function
can be expressed mathematically as [7]:
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When a similar image pair (label Y = 0) is fed to the network, the first part
becomes 0 and the loss becomes equal to the positive pair distance between two
similar images. Gradient descent will push them closer together. On the other
hand, when two dissimilar images (label Y = 1) are fed to the network, the
second part of the equation disappears and the remainder works as a hinge loss.
This allows the function to directly optimise the distance between samples by
encouraging all positive pair distances to approach 0, whilst keeping negative
pair distances above a certain threshold m. However, one defect of contrastive
loss is that a constant margin m has to be applied for all negative pairs. This
causes visually diverse classes to be embedded in the same small space as visually
similar ones. In contrast, triplet loss tries to keep all positive points closer than
any negative points for each image. This allows the embedding space to be
distorted and does not enforce a constant margin [16], [20].

Variational Autoencoder The variational auto encoder is the only unsuper-
vised model used. Similar to the standard autoencoder, the VAE encodes the
input image to a reduced latent space [11]. The network has an encoder-decoder
architecture where the encoder produces a latent space representation and the
decoder reconstructs the original image from a sampled point in the latent space.
The VAE constrains the encoder network to create latent vectors that follow a
Gaussian distribution. The network accomplishes this by producing both a mean
and standard deviation for each latent variable. To extract the image embed-
ding the mean latent vector from the encoder was chosen as opposed to the
sampled latent vector. Both values were tested with the mean latent vector giv-
ing marginally better results.

Raw Pixels Finally, we take the raw pixel space (50x50x3) as a baseline.



4 Experiments and Results

This section compares the embeddings created by the models. Three evaluation
metrics were used.

4.1 Measuring Model Success and Logo Memorability

We firstly discuss the measures of success used to assess the performance of the
embeddings and the memorability of each company’s logo. Firstly, the quality
of the embeddings produced by the different architectures were evaluated using
two measures of success, the coarse detail coefficient and the fine detail coeffi-
cient, described below. These metrics provided a means to identify and select
an appropriate model that best suited our needs. This model was then used to
investigate which company logo is the most memorable, using the Memorabil-
ity Coefficient. All three of these metrics rely on a distance metric to quantify
the separation between two images in the latent space. As the embeddings are
L2 batch normalised this allows the squared Euclidean distance between these
normalised vectors to be proportional to their cosine similarity.

Coarse Detail Coefficient An accurate embedding should minimise within-
class distances whilst maximising between-class distances (where each company
is considered a class). We can measure this using the nearest neighbour classi-
fication accuracy. As we do not require a model capable of making predictions
on new data, we do use any evaluation on unseen data.

Fine Detail Coefficient Between-class clustering alone can only capture the
coarse details of an image. To measure each model’s success at producing an
embedding in which distances correlate to human judgement, a further measure
is proposed. The data set contains 10 x 144 hand-drawn imitations of ten different
logos, each labelled with a measure of similarity to the original logo provided
by marketing experts in the original study. A model-derived ranking was then
created by sorting the Euclidean distances between the embedded vectors of
the actual logo design and each hand-drawn imitation logo. This new ranking
vector can then be compared to the original ranking sequence using Kendall’s
Tau Correlation.

Memorability Coefficient To estimate the visual memorability of a com-
pany’s logo design, the total Euclidean distance between the actual brand logo
and every hand-drawn imitation was calculated. This measure is predicated on
the logic that each hand-drawn image is an attempt to recreate the true logo.
The accuracy of each image can therefore be estimated by calculating its dis-
tance to the actual logo design in the embedding. It is an assumption for this
that distance in the embedding is correlated with perceptual dissimilarity, an
assumption partly supported by results of the coarse and fine detail coefficients.



Furthermore, calculating the total distance to every hand drawn image gives an
indication on the total accuracy of the drawings. As these drawings are recre-
ated from memory a smaller distance indicates a more memorable and more
re-creatable design. However, this measurement takes no account of differing
exposure of each subject to the brands.

4.2 Results: Quality of Embeddings

Embeddings are visualised in Figure 3. The clusters formed by RankNet and
Visnet are visually much tighter, but the between-class positioning of the Deep-
Rank embedding leads to superior overall performance when measured numeri-
cally. Each model was individually trained ten times on the entire data set and
the average of each measure of success was calculated.

Fig. 3: Embeddings visualised with t-SNE. ’×’ designates each actual logo image.

Numerical results are shown in Table 1. As expected the Raw Pixel representa-
tion performs poorly. However, it does retain some information as measured by
the fine detail coefficient. This may be mostly due to correct colour-matching.



Table 1: Performance of each representation. DeepRank and RankNet consis-
tently outperform other models, with DeepRank achieving the highest results
in the Fine Detail Coefficient, while RankNet scored the highest in the Coarse
Detail Coefficient.

Model Name Fine Detail Coefficient Coarse Detail Coefficient

Raw Pixels 0.14 0.5
VAE 0.15 0.56
ConvNet 0.2 0.85
Visnet 0.23 0.91
RankNet 0.28 0.94
DeepRank 0.35 0.92

The VAE attained the lowest model score. This poor result could be due to its
unsupervised nature which causes the dominant information in the latent layer
to be influenced solely on what contributes the most towards the loss function
applied in the reconstruction, meaning that each dimension in the latent space
can become entangled. Supervised methods can instead encourage the embed-
ding to favour information about a specific feature of interest (cluster identity,
etc.) between each logo. We believe this effect is exacerbated by the within-class
disorder of various different logo iterations coupled with the poor quality draw-
ings causing confusion and entanglement in the embedding space. To test this
hypothesis it would be interesting to compare a Beta VAE which can mitigate
the effect of entanglement in the latent space. It is also interesting to see that
the performance of each model was correlated with the complexity and resources
needed to train them, with the exception of the VAE. The results revealed that
DeepRank was the best overall model. Achieving the highest combined score
with an average fine detail score of 0.35 and an average coarse detail value of
0.92. In general the low scores in the fine detail could be affected by the chal-
lenging nature of the data set as learning fine image similarities is a challenging
task in itself, as it needs to capture both the between-class and within-class
image differences. In contrast, the coarse detail coefficient displayed a more op-
timistic result. Each model except for the VAE displayed a high propensity to
produce useful embeddings that could capture the between-class differences. The
RankNet model produced the most dense clustering and obtained the highest
average coarse score of 0.94 making it the best model for a classification task.
However, both Visnet and DeepRank achieved similar average performances with
scores of 0.91 and 0.92 respectively.

The addition of multi-linear layers in the model architecture were hypothe-
sised to have less within class variance and simply capture more of the input’s
visual appearance or low level features. This statement was supported by the
increased performance in VisNet’s ability to capture the coarse details in the im-
ages, achieving a coarse detail score of 0.91 compared to ConvNet’s 0.85. Within
this experiment there was also evidence to support the separation in performance



between the embedding models and their classification counterparts. With the
embedding models performing better in both aspects of the evaluation including
both fine and coarse-grained classification. However, this separation may not be
reliable as it depends upon pair selection in the training process. In this exper-
iment, a sampling process that could create a random semi-hard negative for
every pair of anchor and positive [15] was implemented. However both the em-
bedding models could benefit from an even more accurate sampling approach
utilised in [19]. This method uses a pairwise relevance score for within class
images, where the probability of an image being chosen as a query image is pro-
portional to its relevance score. Applying this sampling technique would encode
the fine details of the within-class images into the embeddings, where similar im-
ages within the same class will be embedded closer to one another. Nevertheless,
this improvement would degrade the equality and efficacy of testing between the
two model groups. These findings are not alone as previous literature has shown
that the performance of the classification based features are heavily dependent
upon the size of training set. When the size of the data set is small or the num-
ber of classes is very large, the embedding models will outperform classification
models [8].

4.3 Results: Memorability of Logos

Table 2: The ranked mem-
orability of each company
logo where the actual rank
refers to the annotated
data set and the predic-
tions were made with the
DeepRank embeddings.

Brand Name Actual Ranking Predicted Ranking
Ikea 1 1
Target 2 2
Apple 3 3
7 Eleven 4 8
Burger King 5 4
Dominos 6 10
Adidas 7 6
Walmart 8 5
Foot Locker 9 9
Starbucks 10 7

In the final set of results, we compare logo designs for memorability as opposed
to comparing neural models. Table 2 shows the results of the DeepRank Memo-
rability coefficient for each company logo and compares it to expert judgements
made as part of the Signs.com study. Simple and effective designs such as the
Ikea, Apple and Target logos were consistently ranked among the more memo-
rable designs by DeepRank (and other models), in accordance with the expert
judgements. However, the models penalised companies who had multiple logo de-
sign iterations throughout their history such as Starbucks, Dominos and Adidas.
Also designs based around text such as 7-eleven and Walmart were predicted by
models to be more memorable. Both of these conflicted with the experts’ opinion.



We also measure the correlation between the experts’ and models’ rankings
of memorability. Despite memorability being an intrinsic property of an image,
it cannot be characterised by common low-level image features. Indicatively, this
makes it a difficult task for computer vision and the results here demonstrate
this: the correlation was low, with a value of 0.11. This poor result can be
partly attributed to the evolution and re-branding strategies of the companies
themselves, and the use of text which is not processed as such by the models.
Another source of error within the memorability coefficient could be explained
by the poor image quality of the actual brand logos. In contrast to the training
images these images had to be expanded from a dimension of [32x32] to [50x50]
in order to run them through the networks. Also, it could be argued that some of
the annotated scoring is unrealistic especially in its depiction of intricate logos
such as Foot Locker and Starbucks, which are hindered by the drawing program
used and the subject’s drawing ability.

5 Conclusion

In this paper a novel method was presented to automatically recreate the findings
from the study “Branded in Memory by Signs.com”. The embeddings produced
by the DeepRank model had the highest correlation with human judgement.
Its combination of a tri-linear architecture, triplet loss function and semi-hard
negative sampling allowed the model to capture the similarities between the
logos. It achieved the highest result for both the fine detail and memorability
coefficients with values of 0.35 and 0.25 respectively. Despite this success it would
be naive to expect to replicate the complexities of human memory with a single
model and the results for each individual model reflect this, with an average score
of 0.11 for the memorability coefficient. The results also suggest that, overall,
the embedding models performed better than their classification counterparts.
However, it is vital not to over-interpret these results. Instead this study should
be seen as motivation to conduct a further comparison, by highlighting the gaps
in our algorithmic understanding of logo dissimilarity and memorability.
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