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Abstract. As the volume and variety of data that many modern organ-
isations deal with continue to grow, graphs are becoming increasingly
important and relevant as a means of organising this data. This work
looks at a possible way to improve the training of some state-of-the-art
machine learning models in the area of knowledge graph embeddings.
Where the interest of the user is on the ability to predict the existence of
a particular link type as opposed to predicting links generally, subsets or
sub-graphs could possibly be used to train the model more effectively
than the entire graph. We evaluate the performance of two state-of-
the-art knowledge graph embedding models on the task of predicting
a specific link type. The models are first trained with all of the avail-
able training data and subsequently with subsets or sub-graphs based
on the locality of the link type we wish to predict. We find that there
is evidence that using less training data can in some cases actually im-
prove the performance of the model. Finally, we look at some graph
features and examine if there is any correlation between these and the
accuracy/performance of the machine learning models. While no strong
correlation is found, the results point to further work being required to
understand this phenomenon.

1 Introduction

Modern organisations deal with ever-increasing amounts of data from multi-
ple sources and in many different formats and structures. In a widely quoted
statistic, Grimes reports that 80% of the most business-relevant data comes in
unstructured form, mostly text[8]. A key challenge then is the ability to organ-
ise and establish links between diverse data types. One way to achieve this is
through the use of Natural Language Processing (NLP) to extract “facts® from
unstructured text and and graph technology to link these facts together into an
overall knowledge base or Knowledge Graph.

Once such knowledge graphs are constructed, challenges such as how to keep
them up to date and how to mine them for insights arise. The task of predicting
links between nodes (people, organisations, etc) in the graph can lead to insights
where the relation was not believed to exist previously. However, as opposed to
generally predicting links for a graph overall, we are interested in the ability
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to predict specific link types. For example, in a knowledge graph of movies,
we might be interested in predicting who directed a movie, i.e. the “director”
relation between a person and a movie; instead of generally predicting links
between actors, movies, places, etc. Similarly, a large commercial organisation
might be interested in predicting the existence of links between customers and
new product lines. A pharmaceutical research organisation may want to predict
a potential link between a drug and a specific protein, which may indicate the
genetic profile of the population segment that the drug might be effective for.
In all of these cases, we are interested in the effectiveness of predicting specific
link types within the overall graph.

2 Related Work

Knowledge Graphs (KGs) are knowledge bases that store factual information in
the form of graph data [17]. As such, a knowledge graph is a directed, multi-
relational graph. These graphs are typically represented as a set of triples in
the form of (subject, predicate, object) where each triple represents a single fact
and the predicate is the link or relation between the subject and object entities.
Figure 1 shows a very simple sub-graph and Table 1 describes the triples. Such
facts are frequently, but not necessarily, encoded using the Resource Description
Framework (RDF) triples format.

Sp()ck Science Fiction Obi-Wan Kenobi

N oA KR

played characterIn genre  genre characterIn played

CS* slan‘ch Marrcdln ‘é

Leonard Nimoy Star Trek Star Wars Alec Guinness

Fig. 1. Sample knowledge graph [17]

Subject (head)|Predicate (relation)|Object (tail)
Star Wars genre Science Fiction
Alec Guinness |starredIn Star Wars
Obi-Wan Kenobi [characterIn StarTrek

Table 1. Example triples



KGs continue to grow in popularity. In addition to well-know instances on
the Web such as the Google knowledge graph [23], (which has incorporated an
earlier KG, Freebase [3]), WordNet [14], DBPedia [2], BabelNet [16] and NELL
[7], KGs are finding increasing use within within organisations such as Amazon
[11]and were added to the Gartner Hype Cycle for Emerging technologies in 2018
[20].

One of the main problems with all knowledge graphs to date is that they
are very far from complete. For example, Freebase has no place of birth for over
70% of the person entities it contains. Even amongst the 100k most frequent
person entities on Freebase, almost a quarter (24%) do not have a profession
recorded [28]. This incompleteness has lead to much research effort in the area
of knowledge graph completion. Knowledge graph completion generally breaks
down into the sub-tasks of entity creation or extraction and link prediction [17].
The former involves adding new entities or nodes to the graph while the latter
involves adding new links between existing entities.

Statistical Relational Learning: The prediction of missing links or re-
lations has been the focus of Statistical Relational Learning (SRL), a sub-field
of machine learning that focuses on graph data. SRL covers a number of ar-
eas including collective classification, link prediction, link-based clustering, so-
cial network modelling and object identification [21]. According to [17], there
are two main classes of SRL techniques. The first contains those that capture
the correlation between nodes (or links) based on the observable features of
the graph. The second captures the correlation using latent variables. Models
based on observable graph features can be divided into two approaches: a near-
est neighbour approach based on node similarity using measures such as cosine
similarity, mutual information, Dice coefficient, distance-based measurements,
binary classifiers and more [13], [22] or a topological approach where prediction
is based on patterns extracted from local or global topology such as Common
Neighbours, Jaccard Index, Adamic Adar [1], Resource Allocation Index [30],
Katz Index [10], Hitting Time [6], Rooted PageRank [12] and SimRank [9]. In
models based on latent variables, each node in the knowledge graph is assumed
to have a latent feature vector which must be learned; the relationships between
nodes are explained by these latent features [17]. As an example, Nickel et al.
[17] propose that Alec Guinness received the Academy Award because he was a
“good” actor. The property “good” here is a latent feature of the Alec Guinness
entity because it is not directly observable in the data. A key task of all latent
feature models is to learn the latent features, or “embeddings”, for the nodes in
the graph. The “embeddings” refers to how entities and relations in a knowledge
graph are embedded into continuous vector spaces. This gives advantages such
as simplifying manipulation of the graph, while at the same time preserving its
inherent structure [27].

Knowledge Graph Embeddings: Wang et al [27] summarise the ap-
proaches to KG embeddings into two classes : “Semantic Matching Models” and
“Translational Distance Models”. Translational distance models exploit distance-
based scoring functions. The Translating Embeddings or TransE approach([4]



models each entity as a vector in space R? and each relation as a vector trans-
formation that maps the subject to the object of the relationship. The accuracy
of a relation or link is measured as the distance between the entities after the
transformation has been applied. TransE would allow for AlfredHitchcock +
DirectorO f ~ Psycho and JamesCameron+ DirectorO f ~ Avatar. Semantic
matching models differ from translational-distance models in that they use a
similarity scoring approach as opposed to distance-based scoring. The likelihood
of a fact or triple is calculated using the latent semantics of the entities and
relations. RESCAL [19] and its derivatives/extensions such as DistMult [29)],
Holographic Embeddings (HolE) [18] Complex Embeddings (ComplEx) [26] are
examples of this approach.

Model Evaluation: A common approach to evaluating the accuracy of em-
beddings models is described by Bordes et al [5]. For all training and testing
triples (s, p, o), the subject entity, s, is removed and the likelihood of all possible
triples/facts (e, p, o) is calculated where e € D, and D is the entire dictionary
of entities in the graph. Triples other than the original correct one are referred to
as the corrupted triples. The results are then sorted in decreasing order of their
likelihood according to the model and the rank of the correct triple is recorded.
The process is repeated for the object entity o. Evaluation is then similar to
that used for question answering in information retrieval where the Mean Rank
of the correct triple is measured.

Bordes et al [4] report the mean of the predicted rank of the subject and
object entities and the Hits@10, i.e. the proportion of correct triples in those
ranked as the top 10. One potential issue with this metric is that there may
be triples amongst the corrupted triples that are correct. For example, if the
original triple was the one relating to the actor Alex Guinness in Table 1, i.e.
Alec Guinness, characterIn, Star Wars, then we would remove the subject entity
(Alec Guinness) and predict the accuracy of all other entities in the graph (i.e.
Freebase in this case) against the same predicate (relation) and object entity.
However, there were more characters in the same movie so some of the corrupted
triples will actually be true. In order to avoid this scenario, Bordes et al [4]
removed all valid triples that appear in either the training, test or validation data
sets from the corrupted triples. They referred to this as the “Filtered” setting
and report metrics against both the original, “Raw”, data and the “Filtered”
version. They then reported both the Mean Rank and Hits@n (e.g. Hits@1,
Hits@3 & Hits@10) for both the original triples (raw) and those with the valid
triples removed (filtered). Nickel et al [18] followed this evaluation approach and
measured the quality of the ranking using the Mean Reciprocal Rank (MRR)
which is less sensitive to outliers than the mean rank. Again, this is reported for
both the raw and filtered settings.

3 Research Question

This work seeks to address whether more (relevant) training data is always
better (i.e. produces higher accuracy in tests) when training a knowledge graph



embedding model to predict a specific link/relation type. Our research question
is thus - Does locality (i.e. the local sub-graph around the relation type we are
interested in) of training data have a disproportionate effect on the accuracy of
the model and, if so, how much local data can effectively train the model? Our
null hypothesis is that more data will always lead to better accuracy as this is
commonly the case for machine learning models. From some of the most recent
work in the knowledge graph embedding space, we choose two models for this
study - ComplEx and DistMult. Both models perform very well in benchmark
tests in the literature [17]. We select two datasets that are representative of real-
world knowledge graphs upon which to carry out the experiments - Freebase
[3] & NELL[7]. We adopt the version of Freebase that has been refined for link
prediction experiments by Totuanova and Chen [25]. This dataset, often referred
to as FB15k-237, contains approximately 15k entities with 237 relations. Table
2 shows a summary of the two datasets used in this work.

Dataset |Entities|Relations|Training Set|Test Set Re-|Validation
Relations lations Set Rela-
tions
fb15k-237|15k 237 272k 18k 20k
NELL239|48k 239 74k 3k 3k

Table 2. Dataset Statistics

Sub-Graph Selection: Figure 2 describes visually the first level of the sub-
graph. At the centre of the diagram, the graph nodes shown in dark colour
with the bold link between them represent an instance of the relation that we
are interested in. Starting with this relation, we gather all of the relations that
connect into or out of either end of this one. We refer to these as “Level 17
relations. This set consists of the relations and nodes inside the circle with the
darker shading.

Fig. 2. Graph Local- Fig. 3. Graph Local- Fig. 4. Graph Local-
ity Level 1 ity Level 2 ity Level 3



The next sub-graph extracted is called the “Level 2” sub-graph. The process
for extracting it is similar to that described for Level 1. Again we start with the
relation type of interest and select all of the adjacent relations. For Level 2, we
also select all of the relations adjacent to the Level 1 relations. In other words,
we select all of the relations that are 2 hops from the relation type of interest.
This is shown visually by the darker shaded circles in Figure 3. Level 2 contains
all of the relations in Level 1 plus those immediately adjacent to them. Lastly,
the Level 3 sub-graph contains all of the relations in Level 2 as well as the set
of relations immediately adjacent to these, i.e. all relations that are 3 hops from
the relation type of interest. This is shown visually by the darker-shaded circles
in Figure 4.

If we were interested in predicting the existence of the /film/film/genre rela-
tion type from the Freebase dataset, we would find that there are 3756 instances
of it in the training data. When the sub-graph levels are extracted we get sub-
graphs of the sizes shown in Table 3. As we can see, the Level 3 sub-graph is close
to the the size of the full training graph/dataset (full graph has approximately
272k relations).

Level|# Relations
0 272115

1 31552

2 46586

3 227982

Table 3. Sub-graph Levels Example Sizes

Normally, the evaluation of a model is against the full set of test data. In
this case, we are only interested in the performance of the trained model on the
specific relation we are interested in. For example, if we are interested in the
relation /film/film/genre, we filter the test dataset to only contain this relation.
We are not interested in the model performance on the prediction of any of the
other relations or the overall graph.

4 Implementation and Evaluation Details

All of the experiments in this work were carried out on a Linux server with
Intel(R) Core(TM) i70.4790K CPU 4.00GHz processor, 32 GB RAM, and an
nVidia Titan X GPU. The operating system of the server was Ubuntu Server
16.04.5 LTS. The code was written in Python 3.5. The KGE models were de-
veloped on top of the TensorFlow[24] (GPU) framework. The implementation of
the KGE models has been provided by SK Mohamed et al. [15]. This implemen-
tation is not (yet) available as an open source release. It is planned to release
the software code developed for this work as open-source once the underlying
KGE libraries have also been released.



Evaluation Metrics: We evaluate our results using the Mean Reciprocal
Rank (MRR) and the Hits@10 on the Filtered dataset (MRR_FIL). The MRR
measures the mean of the reciprocal of the rank of the correct triple as pre-
dicted by the model. Hits@10 records the number of correct triples in the top
10 predicted by the model.

5 Results

In the experiments, both models performed poorly when trained with the Level
1 sub-graphs when compared with the same model trained with the Level 0
graph. The models trained with Level 1 sub-graphs resulted in average accuracies
ranging from 50% to over 80% less than the same model trained on the Level 0
graph. This contrasted with significantly better relative performance seen when
the models were trained on Level 2 & 3 sub-graphs. We focus on these results
here, starting with the ComplEx model (Table 4).

ComplEx Summary
Dataset|Filter Level |Difference in|Difference in|Outperforms
Training Data|Accuracy (vs|Level O for
(vs Level 0) Level 0)

Freebase |2 -71% -24% 0-30k relations
Freebase |3 -27% -29% 20-50k relations
NELL |2 -89% 10% All of Level 2
NELL 3 -67% 55% All of Level 3

Table 4. Summary Results using ComplEx Model

The most immediately interesting results are where the ComplEx models
trained on a sub-graph outperformed those trained on the full Level 0 graph. As
Table 4 shows, the ComplEx model trained with either the Level 2 or 3 NELL
sub-graph outperformed the same model trained with the entire Level 0 NELL
sub-graph. This suggests that there are scenarios where less training data can
lead to a more accurate link prediction model for specific links of interest.

We do not see the same overall outperforming of the Level 0 model for a
full Level 2 or 3 when ComplEx was trained with Freebase data. We do notice
that the drop in accuracy of Levels 2 & 3 from Level 0 is far less than the
corresponding reduction in the amount of training data used. For example, the
models trained with Level 2 sub-graphs experienced an average drop in accuracy
of 24% versus Level 0 for a reduction in training data of 71%. This suggests that
there isn’t a linear relationship between the amount of training data and the
model performance.

These averages for the full level also mask some additional findings within
that level. For example, the Freebase Level 2 sub-graphs contained a range of
relations from approximately 2k to 200k relations. When this was broken out



into ranges of relation counts, we saw that ComplEx models trained on Level 2
sub-graphs with a size of up to 30k relations (approximately) outperformed the
model trained on the overall Level 0 graph. Drilling into the Level 3 results in
a similar way shows that the ComplEx models trained on Level 3 sub-graphs of
sizes from 20-50k relations also outperformed the overall average.

Results of the experiments conducted with the DistMult model are sum-
marised in Table 5. As was the case with the ComplEx model, we see scenarios
where the model trained with a sub-graph outperforms the model trained with
the full Level 0 graph. In this case, the Freebase Level 2 and NELL Level 3
average accuracy (MRR_FIL) outperforms the overall Level 0 average.

DistMult Summary
Dataset|Filter Level |Difference in|Difference in|Outperforms
Training Data|Accuracy (vs|Level 0 Level 0 for
(vs Level 0) Level 0)

Freebase |2 -71.22% 5.5% All Level 2
Freebase |3 -27% -16% 0-200k relations
NELL |2 -89% -38% 70-80k relations
NELL |3 -67% 14% All of Level 3

Table 5. Summary Results using DistMult Model

For the other scenarios - DistMult trained with Freebase Level 3 or NELL
Level 2 - we again see that the reduction in accuracy versus Level 0 is significantly
less than the reduction in the training data used, which again supports the
suggestion that there is not a linear relationship between the two here. As before,
we can drill into these results to get a detailed breakdown by ranges of relations
within both Level 2 & 3. For the Freebase Level 3 average, the breakdown by
range of relations shows that DistMult models trained with Level 3 sub-graphs
of size up to 150k relations outperform the overall Level 0 average. It is when the
Level 3 sub-graph sizes go beyond 200k relations (up to a max of 300k relations)
that the average accuracy drops well below the overall average. Looking at the
NELL Level 2 averages breakdown, we see that DistMult models trained with
70-80k relations outperformed the overall average. However, most of the NELL
Level 2 sub-graph ranges performed less well than the overall average.

5.1 Correlating Model Accuracy with Graph Features

The results discussed so far show that there are some scenarios where the models
trained with a subgraph outperform those trained with the overall graph in the
prediction of specific link types. Why might this be? Is there some feature of these
subgraphs that distinguishes them from others? To examine this, the average
clustering coefficient and the density were calculated and recorded alongside the
other results. The charts in Figure 5 show the variation in both the average



clustering coefficient and the density of the subgraphs against the accuracy of
the trained ComplEx model (using MRR_FIL for accuracy).

Table 6 below summarises the observations from these charts. There is a
slight trend of models showing higher accuracy being those trained with sub-
graphs of a lower clustering coefficient. The density of the sub-graphs remains
relatively constant regardless of the resulting accuracy of the trained models.

Model |Dataset|Level|Clustering Coefficient|Density
ComplEx|Freebase |1 Slightly down Almost level
ComplEx|Freebase |2 Down Almost level
ComplEx|Freebase |3 Scattered Level
ComplEx|NELL |1 Level Level
ComplEx|NELL |2 Down Level
ComplEx|(NELL (3 Slightly down Level
DistMult |Freebase |1 Scattered Level
DistMult |Freebase |2 Down Level
DistMult |Freebase |3 Scattered Level
DistMult [NELL |1 Level Level
DistMult [NELL |2 Scattered Almost level
DistMult [NELL |3 Up Level

Table 6. Summary of Clustering Coefficient and Density variation of sub-graphs versus
accuracy of the resulting trained model

It would seem that the density of the sub-graph is independent of the accu-
racy of the model trained on that data. The additional relations in the subgraphs
of higher density do not seem to be providing any additional value in training
the model. With clustering coeflicient, there is a slight pattern of the subgraphs
used to train models with higher accuracy having a lower average clustering coef-
ficient. However, the pattern is not strong enough to draw confident conclusions
from.

6 Conclusion

The findings from the experiments show a pattern where models trained with
sub-graphs of certain sizes either outperformed the model trained with the entire
graph or at least showed a decrease in accuracy that was significantly smaller
than the decrease in the amount of training data used. However, there was no
consistent pattern in terms of the optimal sub-graph to use to train the model.
What is it then that causes some “levels” of sub-graph to perform better than
others in training the model? Two specific graph properties were identified as po-
tential candidates - average clustering coefficient and density; however our results
do not point towards either property being clearly correlated with the accuracy
of the resulting trained model. Further work is required to look at additional
graph features/characteristics that may be correlated with model accuracy, such
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Fig. 5. Average clustering coefficient (left) and density (right) against MRR_FIL (ac-
curacy) for ComplEx & DistMult models trained on Level 2 and 3 Freebase & NELL
sub-graphs



as Average Node Degree, Edge Betweenness or Graph Connectivity. Finally,
edge/link direction could be considered in the selection of the sub-graph to train
the model. The experiments in this work used sub-graph levels that consisted of
adjacent links/relations that were extracted independently of the direction of the
relation. Future work will examine if relation directionality should be considered
when constructing sub-graphs.
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