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Abstract. Time Series Analysis has long been used as a method to
help predict future events based on previous data. This area is well-
defined and studied but there are still areas of Time Series Analysis
that are problematic. One such problem is isolating patterns in highly
volatile datasets over long time intervals. In an effort to help with such
issues e.g. those seen in fluctuating financial datasets, a new approach
is needed. Borrowing its name from Music and more recently Compu-
tational Biology, Motifs are small repeating patterns in datasets. Using
these subsequences, further forecasting can be improved as Motifs can
be shown to aid algorithms which require certain initial conditions. This
method will potentially lead to new insights in the study of cryptocur-
rencies. This paper will present a case where an optimized Motif length
will be used to aid the prediction of Bitcoin through the use of an LSTM
Neural Network, yielding an 8% decrease in RSME for one test case.
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1 Introduction

Forecasting has derived many methods for calculating the future behaviour of a
system. Statistical methods, for instance, look to predict the relationship between
variables when they are reduced to a simplistic expression. The area of statistical
forecasting looking at the effect time has on a system is known as Time Series
Analysis and this area will form the core of this work. Most aspects of forecasting
Time Series data revolve around finding patterns within said data, as an attempt
to see if these patterns can be projected into the future. As put forward by [12]
Time Series problems can be reduced down to data = pattern + error. Therefore,
if we can isolate the patterns and reduce the error (or noise) in a dataset we can
decompose a series into something we can extend forward in time. However,
what happens if the data has little to no “obvious” patterns? Here traditional
methods can begin to fail and the picture they project becomes less accurate and
hence less reliable. A new method is needed to try and better model these volatile
systems, a change in point of view from the big to the little. Using improvements
in computational power, we are no longer limited to looking at coarse granularity
to try to model patterns. We can now begin to look at microscopic intervals and
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a new world of pattern repetition becomes apparent. In this paper, we look at
bringing together the power of time series Motifs to optimize Neural Network’s
(NNs) ability to recognise patterns.

In Section 2 we examine previous research in the areas of Motifs with a special
focus on the area of matrix profiles. We also examine prior work in Bitcoin
forecasting as well as looking at some inherent challenges presented. In Section
4 we detail the results of the work in terms of Similarity Scores and Occurrences
before looking at the overall accuracy and a comparison between LSTMs with
and without Motifs. Section 4.4 discusses these results, while Section 5 concludes
with some possible future directions.

2 Related Work

2.1 Motifs

Certain bodies of work have introduced Motifs (unknowingly) as opposed to in
a theoretical framework for their study and evolution. For this, we need to look
to three particular papers that represent a linear progression of the work.
Although there have been several co-writers across the three papers [11], [2]
and [14], Eamonn Keogh features heavily in all and he can be considered the
instigator of the field. The fundamental concept of Motifs is encapsulated by
Keogh in [11] where he defines a Motif as the subsequence within a time series
which is most similar to the most other subsequences in that series, D(Ci,Cj) >
2R, for all 1 < i ≤ K. Here R is a numeric value picked using a Distance Measure
such as the Euclidean norm. A consequence of the definition is that all C i are
mutually exclusive. In Figure 1, A, B and C are a single repeating structure found

Fig. 1. A Motif in Time Series data from [2].

at different points in the time series. This can be seen to be nearly identical in
structure by eye and when compared mathematically they are seen to fall within
our distance range to be called the “same” i.e. our R from above.

2.2 Matrix Profile Work

The goal of most research within the field of Matrix Profiles, is to reduce the
run time of the Brute Force approach (O(n2m) [11]). The method known as
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STAMP (Scalable Time series Any-time Matrix Profile) uses the Fast Fourier
Transform to reduce the computation time to O(n2logn) [2]. The method used
here is STOMP (Scalable Time series Ordered-search Matrix Profile) which runs
in O(n2) [10]. In this algorithm, through algebraic changes that better use the
component order and invariance of the matrix, run time is improved.
The algorithm uses Piecewise Aggregate Approximation to reduce dimension-
ality and then Discretization is performed to transform the time series into
“Words” which can be easily compared. This allows for a more efficient cal-
culation of distances exactly [14] (unlike other methods).

2.3 Bitcoin and its Modelling Challenges

Operating under the pseudonym “Satoshi Nakamoto”, a developer published a
paper [15] where they propose the idea of a Cryptocurrency. From that point
onwards the rise of cryptocurrencies has been exponential and highly volatile 1.
The rise and fall of Bitcoin has led many to try to predict what it will do next [4].
The price of Bitcoin has been modelled by, among others, Krystoufek [9] who
found by studying Bitcoin Price according to fundamental Economic laws, the
price is not ever-increasing. Since 2018 Bitcoin is close to its model-implied price.
This finding would seem to back up the notion that Bitcoin had entered a Mature
Phase [4]. Due to the (relatively) low amount of trading done on Bitcoin pre-April
2017, the price remained less volatile. With Bitcoins increased popularity, its
value changed wildly from day to day. Hence Bitcoin is best considered in 2 ages,
its Immature state and its Mature state. As the price of Bitcoin in the Immature
state has been found to be almost perfectly correlated with other Cryptocurrency
prices [3], this has given rise to arbitrage opportunities which have been pursued
as a means to find the ”next” Bitcoin. Further investigation of the variability of
Bitcoin price has taken the form of research into existence of regime changes in
the price, [8] found that Recurrent Neural Networks outperform Hidden Markov
Models at predicting volatility spikes.
Other authors have also found challenges due to the extreme fluctuations seen
in the Bitcoin market over small increments of time. For example in July 2017,
its value increased 25% in a single day. Previous research has attempted to solve
the problem using the correlation between the number of transactions and price.
This yielded positive results for Bitcoin returns without, however, being able
to predict volatility [1]. The issue with this approach is the need to know the
number of transactions in order to create a prediction. A method is needed that
can model forward the market with less restrictive input parameters.
A statistical approach is taken by Shah and Zhang [16] where they use Bayesian
Regression to model future values of Bitcoin. They achieve good results with
this approach and are able to nearly double their initial investment in less than
a 60-day period.

LSTM RNNs have been found to be an efficient way to predict Bitcoin price
from historical prices and moving average technical indicators. Other Machine

1 Its max value over $18,000 to current ≈ $8,000 (coinbase.com/price/bitcoin).
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Learning methods, e.g. [13] found LSTM RNNs produced the highest accuracy on
price prediction. [6] used LSTM model to predict Bitcoin price with, as model
inputs, macroeconomics factors such as global currency ratios and blockchain
information. [7] have used them to mine news articles and tweets to infer the
relationship between their information, certain commodity prices and Bitcoin
price direction yielding an accurate prediction technique.

(a) Immature Bitcoin (b) Mature Bitcoin

Fig. 2. Historical Bitcoin Graphs

3 Methods

3.1 Matrix Profiles

What underpins the Keogh algorithms [11], [2] and [14] is the concept of a
Matrix Profile. In essence, this reduces a time series T into a matrix where each
cell represents the distance between a subsequence and all other subsequences
of equal length in the time series. This produces a matrix of size N by N (N
is the length of the time series T less the length on the subsequence). For a
time series T with 100 data points the Matrix Profile for all subsequences of
length 10, would consist of a 90 by 90 matrix. A common metric used is the
z-normalized Euclidean distance due to its ability to account for variance and
mean. Consider Figure 3, where the blue and red lines represent 2 different time

Fig. 3. Euclidean Distance between subsequences

series T and S. Here the 2 series are mapped on top of each other over a period
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of time with arbitrary values on the y-Axis. The vertical lines show the distance
between corresponding points on each series (i.e at the same point in time). The
modified sum of these distances represents the Euclidean distance at a simplified
level. For Motifs, we are only interested in the lowest distance value i.e. the most
similar subsequence.

3.2 Data Used

Three separate time granularities were chosen for both the Mature and Immature
data within Bitcoin. Since the Poloniex2 data source was accurate to 5-minutes,
this was the lowest granularity picked. From here, 15-minute and 30-minute
intervals were also chosen.This data counts are shown in Table 1. Graphs of the
Mature and Immature Bitcoin data are shown in Figure 2.

Table 1. Dataset Size

Dataset Granularity Size

Immature

5 Minutes 221,829

15 Minutes 73,937

30 Minutes 36,965

Mature

5 Minutes 236,421

15 Minutes 78,789

30 Minutes 39,381

4 Results

4.1 Matrix Profile Outputs

A sample of the standard STUMPY algorithm outputs are seen in Table 2.
This table shows the Starting position of a subsequence (Index ), the Euclidean
Distance (Similarity) to its closest copy, the starting index of where that copy
is (Start) and how often the pattern occurs (Occurrence).

Table 2. 3 Matrix Profile - Immature 5 Minutes

Index Similarity Start Occurrence

0 0.33437 14292 27

1 0.07794 3319 472

2 0.07794 4329 398

3 0.07794 9592 221

2 https://poloniex.com/



6 B. Barry and M. Crane

4.2 Matrix Profile Graphs

The data in Table 2 can be used to create an overall result for all granularities
within the data set graphically. Figure 4 shows the Similarity (Euclidean Dis-
tance) of each subsequence of length 3, 6, 12, 24 and 48. With Figure 4(e) as
one of the clearest examples, we can see peaks within the graph or “Discords”.
These can be considered the opposite of Motifs i.e. they represent seldom re-
peating occurrences or anomalies. The lower the value on the y-Axis the closer
the Motifs are to each other, i.e. over larger windows we can see the Similarity
Score increasing so the Motifs are becoming less similar.

4.3 Long Short Term Memory (LSTM)

Due to the large number of points in the input data (Immature 15-minutes and
Mature 15-minutes) and limited hardware resources3 the LSTM NN takes a lot
of time to run. The computation times were noted as 23.1 hours, 7.5 hours and
26.6 hours, 8.4 hours on the Mature and Immature dataset running the Motif
and the standard algorithm respectively. A comparison can be made between
our version (with Motifs) and a standard 1 point LSTM NN in Figures 7 (a) & 8
(a) for the Mature and Immature cases respectively. Table 3 show Mean Square
Error for the Trained and Tested case for Mature and Immature for Motifs with
LSTM NN and the 1 point LSTM NN.

Table 3. LSTM Mean Square Error

Dataset Type Train/Test MSE

Immature

Motif
Train 92.35

Test 247.78

Standard
Train 136.22

Test 501.27

Mature

Motif
Train 2,095.82

Test 1,689.28

Standard
Train 2,761.33

Test 1,832.49

4.4 Discussion

Optimum Motif Length The goal from analysis of the outputs is to attempt
to find an “Optimized” Motif that we can then pass into the LSTM to try to
improve its accuracy. To do this, it was best to compare the Motif lengths across

3 The code was run on an Intel i7-5600 CPU @ 2.60GHz with 8GB of RAM
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(a) Matrix Profile Immature 5 Minutes (b) Matrix Profile Mature 5 Minutes

(c) Matrix Profile Immature 15 Minutes (d) Matrix Profile Mature 15 Minutes

(e) Matrix Profile Immature 30 Minutes (f) Matrix Profile Mature 30 Minutes

Fig. 4. Matrix Profile for Different Granularities
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two metrics: Similarity Scores and Motif Occurrence. Hence, to establish which
Motif length to input, each will have to be taken into account and an overall best
value will need to be selected. The answer from this section mixes the qualitative
and quantitative. We need to visually interpret graphical outputs, in conjunction
with the underlying numeric scores. As such, the optimum Motif length is open
to interpretation.

Similarity Score For both the Mature and Immature dataset for the five sub-
sequence lengths tested, an output as seen in Table 2 was created. The longer
Motifs tend to get less similar (this makes sense intuitively with more points
to calculate the Euclidean distance between). The pitfall at this point would
be to just consider the length 3 Motif as the best option due to it having the
smallest mean Euclidean distance. However, we must consider the reason behind
this. Figure 5 contains the graphed Similarity Score (in intervals of 0.5 where
the final value on the x-Axis contains all values above it). All these graphs show
the dominance of the zero score Motifs. These occur often at low granularity
due to minute differences in Bitcoin’s value. These effectively are straight lines
in the graph. This behaviour is dominant in the 5-minute 3 and 6 length Motifs
(it is also dominant in most of the Immature data due to the lack of trading at
the beginning of Bitcoins life). We need to find the best compromise between
high Similarity Scores and the dominance of the straight-line “0” score. In all
six graphs in Figure 5, the blue (3 Motif) and the orange (6 Motif) plots are
dominated by the 0 score Motifs, while the purple (48 Motif) plot occurs more
often at the higher values. The green (12 Motif) plot and the red (24 Motif)
plot are our best compromise. Of note in these graphs is the apparent Gaussian
distribution sitting on the spread of some scores (this is most obvious for the red
(24 Motif) plots). This may be explained using the Law of Large Numbers [5].
Due to the lack of dominance of the 0 score and as the there are fewer larger
scores, the values are tending towards their Expected Value. This effect is more
pronounced in the Mature dataset due to the movement of Bitcoin towards a
traditional commodity [4]. To split our choice between a 12 Motif and 24 Motif
we consider the Occurrence counts of our Motifs.

Motif Occurrence When we speak of the “Occurrence” of a Motif we are
referring to how often it appears in a dataset. If we look back to Table 2 we
can explain the field as how many times the Start, i.e. the starting index of the
repeating subsequence relative to the Index, occurs. This is to say that the sub-
sequence at Index 0, along with 26 other subsequences are most similar to the
subsequence at Index 14292. This means the Motif repeats throughout the time
series multiple times. Although all 27 subsequences may not have the same Sim-
ilarity Score as 0, they will form a Motif. Highly repeating structures are again
usually akin to straight lines and often, after a further look, are uninformative.
Due to the high number of possible values for the Occurrence in the graphs, the
values need to be bucketed: Anything with an Occurrence value of 1 or 2 is kept
as is, whilst 3-5, 5-10 and 10-50 are grouped and finally anything above 50 are
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(a) Similarity Scores Immature 5 Minutes (b) Similarity Scores Mature 5 Minutes

(c) Similarity Scores Immature 15 Minutes (d) Similarity Scores Mature 15 Minutes

(e) Similarity Scores Immature 30 Minutes (f) Similarity Scores Mature 30 Minutes

Fig. 5. Similarity Scores for Different Granularities

included in the 50+ bucket. Subsequences with an Occurrence value in these
categories are counted and used as the y-Axis value. In Figure 6, we are inter-
ested in the green (12 Motif) and red (24 Motif) plots from analysis in Section
4.4. From the graphs there is little to choose between the two Motif lengths. In
general, the green plot seems to have more of the undesired Occurrence values
of 1 and Occurrence values in the 50+ range. Hence, we can select the 24 Motif
as the best option between the two and proceed to using it in the LSTM NN.

4.5 LSTM Accuracy

The LSTM NN was not optimized as that was not the goal of this paper, as such,
some of the hyperparameters chosen are not useful in a real world scenario. This
is especially true of the batch size of 1. An increase here would have reduced
the computation time. In this sense there is little to no value in using the com-
putation times as a metric to measure if the Motif using LSTM outperforms a
traditional LSTM.
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The simple goal of the LSTM NN is to see does using Motifs as an intermedi-
ary step between raw data and model help our outcome. Thus Figures 7 (a) and
(b) let us compare our Motif version to the standard version of the algorithm for
the Mature dataset. It is clear that the former tracks its training data much more
effectively. What is very obvious is that after only 25 epochs the test outputs

(a) Motif Repetition Immature 5 Min-
utes

(b) Motif Repetition Mature 5 Minutes

(c) Motif Repetition Immature 15 Min-
utes

(d) Motif Repetition Mature 15 Min-
utes

(e) Motif Repetition Immature 30 Min-
utes

(f) Motif Repetition Mature 30 Min-
utes

Fig. 6. Motif Occurrence for Different Granularities
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trend very closely to the true values, just shifted down in value by roughly 750.
Table 3 shows a reduction in the test RMSE by 8% and training of 24%. There
are significant computation time increases (66%), but with script optimization
and better hardware this could be reduced. Figures 8 (a) and (b) show the effect
introducing Motifs has to the Immature dataset. Table 3 shows us that there is
a reduction in the test RSME by 33% and training of 50%.

(a) LSTM NN for Mature Bitcoin using Motifs (b) LSTM NN for Mature Bitcoin not using Motifs

Fig. 7. LSTM NN for Mature Bitcoin With and Without Motifs

(a) LSTM NN for Immature Bitcoin using Motifs (b) LSTM NN for Immature Bitcoin not using Motifs

Fig. 8. LSTM NN for Immature Bitcoin With and Without Motifs

5 Conclusion

The goal of this work was to study the application of Motifs in pattern detection
in volatile data. The computation speed and exactness of the Matrix Profile
make it a powerful tool and results back this. Future work could be to further
integrate Motifs into LSTMs by putting Motifs in the individual NN nodes. If,
training a LSTM, a recognised Motif occurred, forcing the node to abandon its
standard approach of randomizing the weights matrix and simply complete the
Motif could help our learning rate. This would require a more proficient NN to
be built to better handle the computations and reduce run-times.
There is the potential that capturing enough Motifs in a sequence could replace
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a series with a Motif piecewise reduction, reducing the total information stored
by potentially multiples of bits. All these are possible future directions.
The work presented here is a simple use of Motifs in a practical way. The results
indicate that there is strong potential to embed Motifs in different areas of
Computer Science.
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