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Abstract. In this paper, we review different approaches to hand pose estimation 
and 3D reconstruction from a single RGB camera for converting 2D sign lan-
guage dictionaries into animated 3D models. Unlike many other works aimed at 
real-time or near real-time translation, we focus on the quality of conversion 
given large video dictionary as input. Several approaches to training and valida-
tion are considered: pose reconstruction through depth estimation, training and 
validation with synthetic data, training and validation with multiple views. Be-
sides that, the work provides a review of various end-to-end algorithms for key-
point detection trained on labeled data. Based on the results of the studied models, 
the outline of a possible solution to the 3D reconstruction task is proposed. 
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1 Introduction 

Today virtual and augmented reality technologies (AR/VR) are becoming more and 
more popular. Such trend creates high demand for 3D image data processing, which 
applies to many areas. We focus our research on the conversion of available 2D sign 
language content into 3D. Our goal is to improve the quality of 3D reconstruction for 
video lessons of sign language. Sign language video dictionaries are widely available 
and reliable method for their conversion into 3D would create demanded content for 
use in AR and VR applications. Often people who want to learn sign language see only 
the front view of hands provided in 2D dictionaries. However, views from all angles 
carry value, as they reflect the nuances between similar words. 

We aim at reconstruction specifically poses from sign language videos for the task 
of creating educational content in the future. Almost all of the other methods aimed at 
solving problems in general, but we propose a solution for specific subtasks, namely - 
reconstruction of sign language videos for further usage in AR/VR applications. 

The task of pose reconstruction from a video is nontrivial and is not fully solved at 
the moment. The computational problems are related to blurred frames, which exist due 
to high speed of movement, and complex hand poses with overlapping hand parts along 
the z-axis. Often 3D reconstruction is performed with the usage of depth sensors, but 
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there is much more available 2D data, which can be potentially mapped into 3D. Be-
sides that, RGB camera is a more popular sensor, which can be used to record new 
information.  

The different datasets can be used for training and testing of hand pose reconstruc-
tion models. There are many datasets with depth-camera input and 3D key points [1-3, 
14-18], somewhat less datasets with 3D points and single RGB camera [4, 10, 11, 13, 
19, 20]. The lack of multi-view Ukrainian Sign Language data prompts us to create a 
new dataset. Existing methods of hand pose reconstruction are reviewed in section 2. 
Section 3 outlines the proposed approach. 

2 Background and Related Work 

2.1 Background Overview 

The task of determining the position of an object in space is not new. Over the past 20 
years, a large number of works have been aimed at solving this problem [5, 6]. A lot 
has changed with the advent of depth sensors and neural networks. These technologies 
introduce new approaches to comprehensive scene analysis. Depth cameras produce 
information about the distance to an object, which allows reconstructions of more ac-
curate 3D models, and neural networks calculate complex correlations in image pat-
terns. Since 2012, neural networks started to outperform most of the classical methods 
in segmentation and classification problems. A large number of methods use a combi-
nation of depth-camera output and neural network for 3D reconstruction of the body 
position [7, 8]. The abovementioned technologies also apply widely to the hands. Often, 
researchers use a combination of depth sensors and gloves, which record the 3D posi-
tion of the hand. Several sensors are used for collection of fully labeled training samples 
for 3D reconstruction, which may include depth map, joint angles, and 3D positions [1-
3]. 

2.2 Related Works 

Most methods for 3D hand pose generation from a single RGB image can be general-
ized into four stages (see Fig. 1). The first stage is detection of hands in the input image 
and cropping localized area, the second is detection of hand key points in 2D the third 
is mapping of 2D locations into 3D, and the fourth is generation of 3D hand model. 

 

 
Fig. 1. A generalized schema of 3D hand pose estimation 
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Paper [9] introduces a three-stage algorithm that localizes the hands and determines 
the key points in 2D at the first two stages, and calculates 3D reconstruction at the third 
is studied in the paper. The first step is the YOLO (you only look once) neural network, 
which identifies the position of the hands, after which it cuts off this part of the image 
and passes cropped sub-images to the OpenPose detector. These two neural networks 
localize 21 2D key points in the video, which are then used as a target in the inverse 
kinematic optimization problem. A distinct drawback of this method is the limitation 
caused by the error of the OpenPose detector. This error causes the algorithm to opti-
mize 3D locations using wrong 2D key points. Nevertheless, the addition of a hand 
position from a different view makes it possible to improve the optimization problem, 
and hence the accuracy. The runtime of the method on Nvidia GTX 1070 GPU is close 
to 53 ms.   

Publication [21] describes one of the few methods, which fully reconstructs the 3D 
shape of the hand. It introduces graph convolutional neural network (CNN) for gener-
ating 3D mesh [21]. This work uses centered images of hands as input, thus hand de-
tection was not necessary. Therefore, the first part of the approach is 2D key point de-
tection, which is based on Stacked Hourglass Networks. The second part is the encod-
ing of 2D features, and the third is 3D reconstruction using graph CNN network. The 
network outperforms the State-of-the-Art methods on RHD [12] and STB [13] datasets. 
The runtime of the method on Nvidia GTX 1080 GPU is on average 19.9ms. The pre-
trained model is available, but the training dataset is not provided. 

2.3 Datasets Review 

We examined several datasets and selected the most suitable for our task. Large portion 
of datasets for 3D reconstruction contain depth maps, key points, but not RGB image: 
NYU, ICVL, MSRA15, BigHand2.2M, SynHand5M, FHAD, MSRC (FingerPaint), 
HandNet, Hands in Action, MSRA14 [1-4, 14-18]. For the problem of reconstruction 
from single image. the most appropriate datasets are those featuring both RGB records 
and key points: FreiHAND, GANerated Hands, EgoDexter, SynthHands, STB, Dex-
ter+Object, UCI-EGO, MHP [4, 10, 11, 13, 19, 20]. The possible complication of com-
bining different datasets is that the number of key points, record types, and camera 
parameters may not match. From the available variety of datasets, we have selected 
only those with a central position of a hand and 21 labeled key points. 

FreiHAND Dataset is a hand pose dataset for hand pose estimation from a single 
image. The dataset contains shots with 4 different backgrounds annotated with 21 key 
points for 2D and 3D spaces. There are 130240 of training samples, so 32560 images 
per one background [4].  

GANerated Hands Dataset contains 330,000 examples annotated with 21 key 
points for 2D and 3D spaces. The downside of this dataset is that images are syntheti-
cally generated and have distorted edges of hands. All of these are recorded from one 
viewpoint [10]. 

SynthHands is a synthetic dataset, which provides information about 63,530 frames 
recorded from 5 views. Learning examples contain both RGB and depth records and 
represent records with and without object interaction. Data annotated for 21 points in 
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3D space. Hands were generated using Unity3D engine but animated using data cap-
tured from real motion [11]. 

 

 
Fig. 2. Example of pictures in datasets: a) FreiHAND, b) GANerated Hands, c) SynthHands 

3 Thesis Statement 

There is a problem of the lack of a method for accurate 3D reconstruction of 2D sign 
language video content. We aim to solve it by introducing the neural network to the 3D 
reconstruction pipeline trained on multi-view dataset.  

Statement: usage of neural network trained to make projections onto several planes 
improves the quality of sign language 3D reconstruction from video sequence. 

4 Tentative Outline of the Thesis  

4.1 Methods Overview 

We plan to use the schema of 3D hand pose estimation specified in Fig 2. To improve 
the performance of sign language 3D reconstruction, we are going to test various meth-
ods for calculating intermediate results such as 2D and 3D points. We also plan to cap-
ture new dataset to improve the accuracy of sign language 3D reconstruction. 

We are considering several approaches to address the problem. We propose two ways 
of how to redesign the second and third stages of the computational pipeline     (Fig. 2). 
The first solution is to introduce the pair of networks, which will estimate the key points 
in 2D and 3D. As the second method, we propose to calculate not points but transfor-
mations of points in space with a pair of CNNs. Both methods use concatenated infor-
mation about previous and current frames as input, namely the location of 2D points of 
last frame and RGB data for two frames. Therefore, the depth of the input is 27 
(21+3+3).  
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The first method. We are going to take as a basis the first method [9] described in 
section 2.2. The pre-trained neural network YOLO will be used to calculate hand local-
ization. We will introduce two networks A and B to compute locations of 2D points 
and estimate hand marks in three-dimensional space respectively. The usage of the two 
connected networks makes it possible to use skip connection and increase the complex-
ity of extracted patterns in the third stage by creating connections between hidden layers 
of the two networks.  

Let kc denote the convolutional layer with k filters and stride 1, kd - the convolutional 
layer with k filters and stride 2, kr - the residual block with k filters, ku - the transposed 
convolutional layer with k filters and stride 2, kfc - fully connected layer with k neurons. 
Relu is an activation function on all layers, except the last one with sigmoid activation. 
All layers have kernel size of 3 and padding of zeros with size 1. Then an architecture 
of the network A is: 64c, 128d, 256d, 256c, 256r, 256r, 256r, 256r, 256c, 256u, 128u, 
64c, 21c; and architecture of the network B is: 64c, 128d, 256d, 256c, 256r, 256r, 256r, 
256d, 128c, 64c, 32c, 256fc, 256fc, 21*3fc. The outputs from fourth, fifth, and sixth 
layers of network A concatenated with the correspondent outputs of network B. Skip 
connections allow the second network to use encoded information about RGB image in 
the process of 3D points estimation. The Adam optimizer will be used to minimize the 
difference between the labeled and predicted 2D key points for network A, as well as 
to minimize the difference between projection of predicted locations of 3D points and 
known locations of their projections into different views for the network B (see Fig. 3). 

The second method. The second method is a modified version of the first one. We 
are changing the architecture of networks A and B to approximate the transformation 
matrices of points between frames and not the entire 3D model. The architecture de-
scribed below calculates 21 transformation matrices. For most frames, fever matrices 
can be used to describe hand motion. We plan to train another CNN to handle these 
cases. 

Let kc denote the convolutional layer with k filters and stride 1, kd - the convolutional 
layer with k filters and stride 2, kr - the residual block with k filters, ku the transposed 
convolutional layer with k filters and stride 2. Relu is an activation function on all lay-
ers, except the last one with sigmoid activation and set of transposed convolutions be-
tween networks with leaky relu activation. All layers have kernel size of 3 and padding 
of zeros with size 1. Then an architecture of the network A is: 64c, 128d, 256d, 256c, 
256r, 256r, 256r, 256r, 256d, 256d, 128d, 64d, 21c; and architecture of the network B 
is: 64c, 128d, 256d, 256c, 256r, 256r, 256r, 256d, 128d, 64d, 32d, 21c. The outputs 
from fourth, fifth, and sixth layers of network A concatenated with the correspondent 
outputs of network B. To concatenate input and output of the network A we are going 
to use 6 transposed convolutions with stride 2, leaky relu activations and following 
number of channels: 32, 32, 16, 8, 4, 2 (see Fig. 4). 

 



3D Reconstruction of 2D Sign Language Dictionaries 7 

 
Fig. 3. First method scheme 

 
Fig. 4. Second method scheme 

4.2 Dataset Creation 

We are going to record a video with hand movements similar to sign language gestures 
from at least three cameras. We expect to improve reconstruction accuracy by training 
the networks on this dataset. 

4.3 Experiments and Evaluation 

We will train the network on FreiHAND, GANerated Hands, and SynthHands datasets, 
and then fine-tune on the introduced sign language dictionary dataset. The proposed 



8 Roman Riazantsev and Maksym Davydov 

methods will be evaluated on the STB and RHD datasets. Since the accuracy of sign 
language dictionary reconstruction could not be completely evaluated with error metric, 
we plan to engage sign language experts to evaluate the result. 

5 Timeline to Completion 

October 2019 - Create sign language dataset. Implement and evaluate method one. De-
scribe results. 

November 2019 - Implement and evaluate method two. Describe results.  
December 2019 - Compare results to the State-of-the-Art methods for 3D recon-

struction, formulate conclusions.  
January 2020 - Make final edits. Defend the thesis. 

6 Conclusion 

We propose the methods aimed at solving the task of 3D reconstruction from video 
sequences. We plan to compare the performance of multiple architectures and describe 
the data pre-processing pipeline. The work is not only aimed at investigation of sign 
language reconstruction problems but also at the preparation of the baseline algorithm 
for future VR and AR products. 
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