
Seen the villains: Detecting Social Engineering Attacks
using Case-based Reasoning and Deep Learning

Merton Lansley1, Nikolaos Polatidis1, Stelios Kapetanakis1, Kareem Amin2, George
Samakovitis3, Miltos Petridis4

1School of Computing, Engineering and Mathematics, University of Brighton, BN2 4GJ,
Brighton, U.K

{M.Lansley, N.Polatidis, S.Kapetanakis}@brighton.ac.uk

2German Research Center for Artificial Intelligence, Smart Data and Knowledge Services,
Trippstadter Strasse 122, 67663 Kaiserslautern, Germany

kareem.amin@dfki.uni-kl.de

3 School of Computing & Mathematical Sciences, University of Greenwich, London, UK
g.samakovitis@gre.ac.uk

4Department of Computing, University of Middlesex, London, UK
m.petridis@mdx.ac.uk

Abstract. Social engineering attacks are frequent, well-known and easy-to-
apply attacks in the cyber domain. Historical evidence of such attacks has
shown that the vast majority of malicious attempts against both physical and
virtual IT systems were based or been initiated using social engineering meth-
ods. By identifying the importance of tackling efficiently cybersecurity threats
and using the recent developments in machine learning, case-based reasoning
and cybersecurity we propose and demonstrate a two-stage approach that de-
tects social engineering attacks and is based on natural language processing,
case-based reasoning and deep learning. Our approach can be applied in offline
texts or real time environments and can identify whether a human, chatbot or
offline conversation is a potential social engineering attack or not. Initially, the
conversation text is parsed and checked for grammatical errors using natural
language processing techniques and case-based reasoning and then deep learn-
ing is used to identify and isolate possible attacks. Our proposed method is be-
ing evaluated using both real and semi-synthetic conversation points with high
accuracy results. Comparison benchmarks are also presented for comparisons in
both datasets.

Keywords: Social Engineering, Deep Learning, Case-based Reasoning, Natural
Language Processing, Attack Detection, Cybersecurity.

1 Introduction

Social Engineering (SE) is an umbrella term for a series of methods and techniques
where attackers are luring users into revealing sensitive, confidential and personal

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

information to be used in committing fraud and other illegal activities. This challenge
is well acknowledged, however, there is no SE detection mechanism or methodology
that can dynamically detect and adapt to SE approaches and “patterns” being devel-
oped constantly. Several research projects have been proposing the need for an auto-
mated system to recognize SE attacks based most commonly on Natural Language
Processing (NLP) and Machine Learning (ML) techniques. Whilst these exist there
has been little of the rate of success [1-4]. SE is based on human psychology and the
method of persuasion relating to the 6 principles of Authority, Scarcity, Lik-
ing/Similarity, Reciprocation, Social Proof and Commitment/Consistency. Work in
the area of Computer Science and SE is usually converting these principles to the
stages of: Data-Preprocessing, Feature Extraction, Feature Scoring and Aggregation.
To determine whether a dialog is a SE attack, certain criteria should be evaluated
against a number of features. We select these features prior the three stages and we
base them on the principles of persuasion, common SE tactics like malicious links and
the history of the attacker. Further feature classification generates a ‘score’ in term of
how possible the selected dialog is to match the SE criteria.

This work is based on the concept that a dialogue is taking place in an online chat
environment where there are fair chances of SE taking place. Each implementation is
designed to detect features by using a variety of classification techniques, such as:
Case-based Reasoning, Fuzzy Logic, Topic Blacklists, Decision Trees, Random For-
est and Deep Neural Networks depending on what needs to be extracted. An automat-
ed system requires the output of a clear decision, albeit a probabilistic decision. This
can be done by aggregating the outputs from the Feature Extraction process. The re-
sults of each feature are weighted by importance, and at basic level can be averaged to
give a Fuzzy logic prediction. By using more advanced techniques such as decision
trees or neural networks, the weight of each feature can be calculated programmatical-
ly to determine which features carry the most importance regarding whether or not a
social engineering attack is taking place.
The following contributions are delivered:

1. A method for detecting social engineering attack in online chat environ-
ments is proposed using CBR and Deep Learning

2. The proposed method is evaluated using a real and a semi-synthetic da-
taset with the results validating our approach.

The rest of the paper is organized as follows: section 2 presents the related work,
section 3 delivers the proposed method, section 4 contains the experimental evalua-
tion and section 5 is the conclusions part.

2 Literature Survey

An early implementation of SE detection in real-time telephone systems is SEDA
(Social Engineering Defense Architecture) [7]. The researchers mainly focused on
identifying repeat callers using their voice signatures. Later a proof of concept model

of SEDA [8] was produced being able to correctly identify all attacks in their dataset.
A method of detection used by [1] is to identify the questions requesting private in-
formation and commands requesting that the user perform tasks they are not author-
ized to perform. This technique uses a manually derived topic blacklist of verb-noun
pairs for which they state should be built around security policies associated with a
system. This work is taken further in [2] by identifying 4 main attack; the urgency of
the dialog, negative commands and questions, whether the message is likely automat-
ed identified by a generic greeting. Finally, they use a reputable cyber security ser-
vice, Netcraft, to check the safety of a URL. Instead of manual blacklist creation, they
use a large corpus of phishing emails to generate a topic blacklist using a Naive Bayes
classier. Some approaches like SEADMv2 [3] and MPMPA [9] use complex state
machines in order to map out the pathways that can be followed as a checklist-type
system to mitigate an attack. This proposal is suited where there are multiple authori-
zation layers that might prevent a request from being carried out. These two separate
machines provide some overlap, but the explicit state definition required could be
limiting to where these can be applied. The nature of SE attacks is unpredictable
meaning that new methods of attacks are always being introduced. The SEADM ver-
sions state machines still rely on the user input for changing state, which means the
chance for user error and naivety is still present. The works of [4] covers an extensive
overview of the existing systems and provide a comprehensive recognition of subsys-
tems for their detection architecture; in influence, deception, personality, speech act
and past experiences. The work of [10] provides a semantic based approach of dia-
logues to detect social engineering attacks. In [11] the authors show that the human
factor is the weakest link in social engineering attacks and based on a human study
the prove that. In [12] and [13] the authors provide a theoretical foundation that po-
tentially could be used in real systems to detect attacks., In the works of [14] it is
explained how social engineering attacks can potentially be detected, whereas in [15]
and [16] different examples of attacks with scenarios are presented. In addition to the
works mentioned, there are numerous other articles from relevant domains that can be
useful such as the one in [17] where the authors performed an influence analysis of
the number of members on the quality of knowledge in a collective, the work in [18]
where a neural network is used along with harmony for searching, the one in [19]
where nature inspired optimization algorithms for fuzzy control servo systems are
discussed and the one found in [20] where an Island-based cuckoo search algorithm
with highly disruptive polynomial mutation is proposed

3 A CBR and Deep Learning approach for SE detection

A dialog in a social media engine, chat or web forum can reveal whether we do have a
social engineering attempt or not. To evaluate our approach, we preprocess dialogs
and convert them into a dataset for classification. A python pipeline has been created
using SymSpellpy for spelling, a custom Case-based Reasoning system for link
checking, Scikit learn for baseline classifiers and Keras for deep learning models.
The score of each feature can be given by: Link score, !", Spelling score, !#$, and

Intent score, !%. Each score is then normalized and the value range resides between 0
and 1. After the pre-processing of the dialogues (steps 1 – 11), the classification da-
taset has the following 4 labels: (1) Intent, (2) Spelling, (3) Link and (4) attack or no
attack. The final steps use these as inputs for the classification mechanisms of an
Convolutional Neural classifier.

The methodology is presented below in a concise way:
1. URLs are extracted from a dialog text using a URL regular expression pattern

finder
2. If the text contains URLs, the URLs are send to a custom Case-based Reasoning

system (CB-Ranker) to evaluate whether the web link is malicious or not
3. CB-Ranker classifies a link based in a set of features related both to its static

structural attributes and attributes that pertain to its actual web content. Its features
were inspired from Marchal et al. (2014) [21] and the concept of intra-URL related-
ness that find “connections” between an investigated URL and text related to this
URL. Table 1 shows the features that were considered:

Table 1. Intra-URL related features

Feature name Description
URL - Rank Relates to the traffic rank given from Alexa for the past three months
URL-Length Fake links are usually hidden in long URL addresses

URL-AT Checks whether anything after a @ sign is malicious
URL-DotCount Excessive usage of dots indicates a non-secure website

URL-IPExistence Usage of IP addresses can trick users, this feature investigates whether an IP
is used

URL-LinksInCount Identifies how many links a website has. This metric is obtained from Alexa
URL-Word-Number Count the number of words in a URL

The final outcome of CB-Ranker is a “reputation score” for the website that scales
between 0-10 followed by a Master Classification Tag (MCT). The MCT has 4 clas-
ses which can be Negative (the website is definitely malicious), Questionable (the
website has elements of potentially malicious content e.g. ads/ popups), Neutral (vari-
ous content but not necessarily malicious) and Positive (this pertains to reliable, non-
malicious websites)

4. If the returned category is of group Negative or Questionable, then SL=1.
5. Otherwise, divide the reputation by 100 and take it away from 1 as shown in

equation 1.

!" = 1 −	
*+,-./.012	3/4-+

100
(1)

6. Check for spelling using the SymSpellpy library.
7. Using the best suggested spelling correction, determine the number of mis-

spelled words, given by x. A score between 0 and 1 is then calculated based on Equa-
tion 2. The value of SSP represents the spelling quality, where higher values represents

poor spelling. Equation 2 applies an exponential function to be able to penalize errors
in more harsh way compared to a linear function

!67 =	 1 − +89: (2)

8. Correct dialog spelling is then compared to a set of blacklisted words, derived
from 48 security policy style words. This can be easily populated with company or
environment related words such as: credentials, passwords, database etc. The number
of blacklist matched words is given by MB.

9. The algorithm at this step checks for intent verbs and adjectives such as need,
must, urgent etc. This value is given by MI

10. To tune the results, values MB and MI are multiplied by the weights WB and WI,
weighted at values of 2 and 1 retrospectively. This step has been added as an equation
in case someone wants to change the weight of this step, if it is considered more im-
portant. The value x can hence be given by equation 3.

; = (=> ×@>) + (=% ×@%)	 (3)

 Then, the value of x is normalized in equation 4, using the same exponential
function as equation 2. Where a=0.4 to give the best output. A higher value of SI
indicates a higher concentration of blacklisted words in the text.

!% = 	 1 − +89:	 (4)

11. At this step the original dialogue dataset is being checked to identify which
dialogue was indeed an attack and assign the true (1) or false (0) value to the new
dataset used for classification.

The dataset is populated and a Convolutional Neural Network (CNN) network is
applied. If the output is high, then it is considered an attack otherwise it is not consid-
ered an attack. The CNN network has been trained over a corpus of dialog cases that
have been tagged as SE attacks or not. For its training 3 datasets were used as its base
including the targetedemailattacks from tumbler11 , ADFA2 dataset, and a custom-
cases one prepared for the purpose of this work. The network was trained using Keras
python library.

4 Evaluation

For the evaluation purposes two datasets were used. The first was based on real cyber
social engineering attacks whereas a second one was created to test the robustness of

1 https://targetedemailattacks.tumblr.com/

2 https://www.unsw.adfa.edu.au/

our proposed model classification as presented in section 3. Both datasets where
relevant to specific SE patterns out of a population of 147 real entities. CBR was used
to preprocess and classify our cases. The classification had four labels relating to
(a) intent (b) spelling (c) link (d) is attack. The real dataset cases were obtained from
[12], whereas the synthetic dataset was based on [12] plus 1200 entries from human
support-based cases from the Twitter. All the extra cases were not classified as at-
tacks from a human expert. In both datasets the corpus has been converted to embed-
ding representation and it was associated with its classification labe with four entries
each. Three labels for the respective data and one with a yes or no (1 or 0) value of a
conversation being a social engineering attack or not. To both datasets a small number
of links to websites have been added, with some being malicious.

The accuracy metric has been used for the evaluating the classification models.
The metric calculates the fraction of the prediction that each model got right. Equa-
tion 10 represents the accuracy where TP stands for true positives, TN for true nega-
tives, FP for false positives and FN for false negatives.

CDD-*/DE =
FG + FH

FG + FH + IG + IH (5)

The results of the evaluation as shown in tables 1, 2, 3, 4, 5, 6, and 7 are based on the
standard and compound datasets respectively and a 5-fold cross-validation approach
has been used. In tables 1 to 6 the MAX and MIN values represent the maximum and
minimum values of the 5-fold returned after each time the algorithm ran and the
MEAN is the median value. Each algorithm was executed 10 times and at the end of
each table the value is the mean value of 10 iterations for each of the three table la-
bels. Table 7 however, presents the average mean results for the standard and com-
pound datasets respectively.
Two algorithms from the SciKit and one from Keras libraries have been used for
comparison purposes: Decision Tree, Random Forest and Convolutional Neural Net-
work.

Table 2. Decision Tree results for the standard dataset

MEAN MAX MIN
0.736231884 0.826086957 0.583333333
0.692885375 0.782608696 0.625
0.68442029 0.833333333 0.458333333

0.650362319 0.695652174 0.583333333
0.656347826 0.76 0.608695652
0.659914361 0.826086957 0.5
0.694762846 0.826086957 0.416666667
0.647463768 0.791666667 0.5

0.65 0.695652174 0.583333333
0.741798419 0.833333333 0.652173913

0.681 0.787 0.551

Table 2. Decision Tree results for the compound dataset

MEAN MAX MIN
0.908050847 0.916666667 0.9
0.921481816 0.957983193 0.900826446
0.921386555 0.941176471 0.890756303
0.923023127 0.95 0.890756303
0.921470588 0.957983193 0.9
0.923120703 0.941176471 0.909090909
0.909774011 0.93220339 0.891666667
0.919747899 0.932773109 0.908333333
0.913009121 0.925619835 0.899159664
0.914705882 0.933333333 0.890756303

0.918 0.939 0.898

Table 3. Random Forest results for the standard dataset

MEAN MAX MIN
0.683333333 0.791666667 0.608695652
0.631521739 0.708333333 0.565217391
0.691304348 0.791666667 0.608695652
0.657608696 0.75 0.565217391
0.651811594 0.782608696 0.333333333
0.700724638 0.75 0.666666667
0.647826087 0.75 0.5
0.736067194 0.782608696 0.708333333
0.699130435 0.8 0.608695652
0.72826087 0.826086957 0.583333333

0.683 0.773 0.575

Table 4. Random Forest results for the compound dataset

MEAN MAX MIN
0.902910619 0.95 0.857142857
0.919787138 0.941176471 0.900826446
0.909703336 0.924369748 0.899159664
0.92640056 0.941666667 0.915966387

0.921414566 0.95 0.883333333
0.919803922 0.941176471 0.891666667
0.916468927 0.940677966 0.883333333
0.911358543 0.933333333 0.883333333
0.931468273 0.941666667 0.917355372
0.911372549 0.916666667 0.907563025

0.917 0.938 0.894

Table 5. CNN results for the standard dataset

MEAN MAX MIN
0.69619565 0.77083333 0.63043478
0.68768116 0.76721015 0.60869565
0.68217391 0.79583333 0.58695652
0.64891304 0.76630435 0.52173913
0.70227273 0.80797101 0.47916667
0.67579051 0.74456522 0.60416667
0.69963768 0.78804348 0.5326087
0.69794664 0.76086957 0.63416667
0.69043478 0.81170962 0.56521739
0.68913044 0.76086957 0.58333333

0.687 0.776 0.5745

Table 6. CNN results for the compound dataset

MEAN MAX MIN
0.90693073 0.93474333 0.87998143
0.92208448 0.95098983 0.90223645
0.91699495 0.93418311 0.89636798
0.92616184 0.94724333 0.90477135
0.92289258 0.9554016 0.89307667
0.92291231 0.94258647 0.90178879
0.91457147 0.93785068 0.88891
0.91700322 0.93446322 0.89724333
0.9236887 0.93505325 0.90966752

0.91448922 0.92641 0.90056966
0.91895 0.93991 0.89741

Table. 7. Comparison of algorithms for the standard and the compound datasets

ALGORITHM RESULT ALGORITHM RESULT
Decision Tree 0.681 Decision Tree 0.918
Random Forest 0.683 Random Forest 0.917
CNN 0.687 CNN 0.917

Tables 1-7 present our results from a CB-Ranker with Deep Neural networks as ap-
plied to SE dataset classifications. The results seem promising for an application that
has been conducted for the first time and confident they the proposed approach is able
to identify possible SE attacks.

5 Conclusions

This paper presents a novel approach for SE attack detection in a web environment
based on a combination of deep learning and case-based reasoning working at com-
plementary levels of understanding natural language processing. Our approach pro-
cesses dialogues, comprising our core for further classification purposes. We have
presented an evaluation using both real and a semi-synthetic human dialog conversa-
tion whilst getting very high accuracy in social engineering attack detection. We have
presented several baseline classification methods for comparison to show the effec-
tiveness of our method. This work presents results of high accuracy; however, we
believe that there is still room for improvement. In future work we will investigate
adding more features to the dataset as well as applying more sophisticated deep neural
network architectures for the classification process. We do aim to improve further the
software performance as well as investigate the opportunity to use it at real time as a
cybersecurity classification toolkit.

References

1. Sawa, Y., Bhakta, R., Harris, I. G., Hadnagy, C. (2016) "Detection of social engineering
attacks through natural language processing of conversations." In 2016 IEEE Tenth Inter-
national Conference on Semantic Computing (ICSC), pp. 262-265. IEEE, 2016.

2. Peng, T., Harris, I., Sawa, Y. (2018) "Detecting phishing attacks using natural language
processing and machine learning." 2018 IEEE 12th International Conference on Semantic
Computing (ICSC). IEEE, 2018.

3. Mouton, F., Nottingham, A., Leenen, L., Venter, H. S. (2018) "Finite state machine for the
social engineering attack detection model: SEADM." SAIEE Africa Research Journal 109,
no. 2 (2018): 133-148.

4. Tsinganos, N.,, Sakellariou, G., Fouliras, P., Mavridis, I. (2018) "Towards an Automated
Recognition System for Chat-based Social Engineering Attacks in Enterprise Environ-
ments." In Proceedings of the 13th International Conference on Availability, Reliability
and Security, p. 53. ACM, 2018.

5. Cialdini, R. B. "The science of persuasion." Scientific American 284, no. 2 (2001): 76-81.
6. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D. (2014) "The

Stanford CoreNLP natural language processing toolkit." In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demonstrations, pp. 55-60.
2014.

7. Hoeschele, M., Rogers, M. (2005) "Detecting social engineering." IFIP International Con-
ference on Digital Forensics. Springer, Boston, MA, 2005.

8. Hoeschele, M. (2006) "CERIAS Tech Report 2006-15 DETECTING SOCIAL
ENGINEERING." (2006).

9. Abid, J., Asif, K., Ghulam, Z., Nazir, M.K., Alam, S. M., Ashraf, R. (2018) "MPMPA: A
Mitigation and Prevention Model for Social Engineering Based Phishing attacks on Face-
book." In 2018 IEEE International Conference on Big Data (Big Data), pp. 5040-5048.
IEEE, 2018.

10. Bhakta, R, Harris, I.G. (2015) "Semantic analysis of dialogs to detect social engineering
attacks." Proceedings of the 2015 IEEE 9th International Conference on Semantic Compu-
ting (IEEE ICSC 2015). IEEE, 2015.

11. Heartfield, R., Loukas, G. (2018) "Detecting semantic social engineering attacks with the
weakest link: Implementation and empirical evaluation of a human-as-a-security-sensor
framework." Computers & Security 76 (2018): 101-127.

12. Bezuidenhout, M., Mouton, F., Venter, H.S. (2010) "Social engineering attack detection
model: Seadm." 2010 Information Security for South Africa. IEEE, 2010.

13. Mouton, F., Leenen, L., Venter, H. S. (2015) "Social engineering attack detection model:
Seadmv2." 2015 International Conference on Cyberworlds (CW). IEEE

14. Nicholson, J., Coventry, L., Briggs, P. (2017) "Can we fight social engineering attacks by
social means? Assessing social salience as a means to improve phish detection." Thirteenth
Symposium on Usable Privacy and Security ({SOUPS} 2017)

15. Krombholz, K., Hobel, H., Huber, M., Weippl, E. (2015). "Advanced social engineering
attacks." Journal of Information Security and applications 22 (2015): 113-122.

16. Mouton, F., Leenen, Λ., Venter, H. S. (2016) "Social engineering attack examples, tem-
plates and scenarios." Computers & Security 59 (2016): 186-209.

17. Thanh, N. N., Nguyen, V. D., Hwang, D. (2017) "An influence analysis of the number of
members on the quality of knowledge in a collective." Journal of Intelligent & Fuzzy Sys-
tems 32.2 pp. 1217-1228.

18. Javad, S., Moallem, P., Koofigar, Η. (2017) "Training echo state neural network using
harmony search algorithm." Int. J. Artif. Intell 15.1 (2017): 163-179.

19. Precup, R. E., and Radu-Codrut D. (2019) Nature-Inspired Optimization Algorithms for
Fuzzy Controlled Servo Systems. Butterworth-Heinemann

20. Bilal H., Abedalguni. (2019) “Island-based Cuckoo Search with Highly Disruptive Poly-
nomial Mutation”. Int. J. Artif. Intell 17.1 (2019): 57-82

21. Marchal, S., Franc Ãßois, J. State, R. , Engel, T. (2014), "Phishstorm: Detecting phishing
with streaming analytics," IEEE Transactions on Network and Service Management, vol.
11, no. 4, pp. 458-471

