
Hybrid analysis of BPEL models with grammars

Erwin de Jager1 and Stijn de Gouw2

1 Belastingdienst, The Netherlands
2 Open University, The Netherlands

Abstract. BPEL (Business Process Execution Language) is a language
to formally describe business processes, and synthesize suitable exe-
cutable orchestration code for web-services accordingly. In particular, the
subset of BPEL of so-called straight-through processes (STP), tailored
for short-living processes, is used in banks and tax administrations to
process large numbers of transactions per hour without human interac-
tion. This paper contributes two novel tool-supported approaches for the
analysis of STP event traces. Both are based on (attribute) grammars:
a static verification approach based on parsing and a Prolog-based ap-
proach for automatic test-case generation. Our tool suite supports both
protocol and data-oriented properties of STP event traces. We validate
and compare our tool suite to existing approaches with an industrial case
study of the Dutch Tax and Customs Administration (Belastingdienst).

1 Introduction

BPEL is a widely used standard in organisations such as banks or tax admin-
istrations to formalize business processes, and synthesize executable code ac-
cordingly. BPEL processes run in a service-oriented environment, interacting
with the environment exclusively through web service interfaces. This paper
contributes two novel tool-supported analysis approaches to verify both proto-
col and data-oriented properties of short-running BPEL processes (also called
STP or Straight-Through Processes). Protocols specify valid BPEL event order-
ings (but they may depend on data!), and data-oriented properties can be used
to specify for example parameter and return values of invoked web-services.
Both analyses are based on the declarative formalism provided by (attribute)
grammars: a static verification approach based on parsing, and a Prolog-based
program for automatic test-case generation.

Related work BPEL verification has been the subject of numerous investigations.
In Section 4 we carry out an extensive comparison with existing tool-supported
approaches. Here, we briefly describe other research. Morimoto [9] states that

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

73

due to the high level of abstraction of BPEL models, accuracy cannot be guaran-
teed and formal models are required for verification. The use of languages such as
BPEL provides a complete specification for service orchestration, but does not
enforce correctness. This article compares verification of BPEL through three
formal models: PETRI, ALGEBRA and AUTOMATA. Formal models can re-
duce complexity of the composition and provide a mathematical basis that could
be used to prove certain properties. Other research focuses on simulation of the
BPEL run-time environment [3]. This allows test cases to be verified in a con-
trolled manner. This approach provides for the testing of run-time aspects such
as system performance and behaviour in the case of web services that do not
respond correctly . Another approach is to verify BPEL from the logic or an
axiomatic system [8, 1].
Kokash et al. [7] present a data aware verification approach for Reo, a coordina-
tion language for which converters from BPEL are available. They do not discuss
to what extent the conversion from BPEL to Reo supports data, in particular
how to handle protocols whose communication behavior depends on data. In
our paper this is supported through so called semantic predicates. Based on 177
articles, Bozkurt [2] describes the pros and cons of test strategies for SOA and
associated tools. Bokurt states that Service-centric system testing is more chal-
lenging compared with traditional systems for two primary reasons: the complex
nature of Web services and the limitations that occur because of the nature of
SOA. In particular, the following issues are identified that limit the testability
of service-centric systems: limitations in observability of service code, lack of
control due to independent infrastructure on which services run, dynamics and
adaptiveness that limit the ability of the tester to determine the web services
that are invoked during the execution of a workflow, and cost of testing. Our
research aims to alleviate all but the second of these issues.

2 BPEL models and grammars

Organisations such as Banks and Tax administrations process large numbers of
transactions per hour without human interaction. One of the main languages
used to optimize and formalize such processes in an executable model is BPEL
(Business Process Execution Language), as described in the WS-BPEL 2.0 stan-
dard [12]. BPEL is an XML based language with the goal to implement a business
process by orchestrating Web Services. A second objective is the efficient pro-
duction of automated business processes through the use of formal models at
the abstract level of end-users and the reuse of Web Services. The application
of BPEL is one of the possibilities for achieving a service oriented architecture
(SOA). A business process defined in the BPEL language can be executed by a
BPEL engine. In most cases, a stimulus in the form of a message initiates the
start of the business process. A number of process steps will then be carried
out until the process reaches an end state. Two kinds of of processes are distin-
guished: long-running and short-running processes. A long-running process can
be active for many days and often includes process steps with asynchronous links

74 Erwin de Jager and Stijn de Gouw

to users or other systems. The long-running service life requires the persistence
of the status and other attributes of the process. Short-running processes have
a very short life span and only have active and inactive states. This type of
process is intended for high-volume transaction processing, referred to as STP.
Short-term processes therefore use synchronous links. Only in the initial and
final state of a process asynchronous connections can be used. STP processes
are lightweight and capable to process large numbers of messages in parallel,
achieving the required throughput. Those cases that are not provided for, or
fail, terminate as an exception. These cases end up in an office process where
data enrichment takes place. The case is then offered again to the STP process.
From a functional point of view, an STP process is simple: all implementation
details are delegated to the called web services.

As an example, Figure 1 shows (in a graphical notation) a BPEL process used
in the dutch tax administration for handling requests, for example in the form of
an e-mail or a letter. The process starts after an request is received. The arrows
depict the direction of the execution flow and diamonds represent choices. This
request is processed step-by-step until one of the end states (“Request handled” or
“Request rejected”) is reached. The shown process includes exception handling
and re-injection of failed cases: after the (cause of the) failure is resolved, a
previously failed case can be re-injected in the process. Invocation actions refer
to services and data definitions defined in external WSDL files (an XML-based
languages to describe the signatures of the operations a web service provides).
The example clearly shows the scope of BPEL, that is, orchestration of web
services.

Fig. 1. BPEL Request Handling STP process

75Hybrid Analysis of BPEL Models with Grammars

2.1 Grammar-based Verification

To analyze BPEL STP processes, we transform a given BPEL to a (attribute)
grammar. In the simplest form, the workflow within a BPEL model is trans-
formed to a context-free grammar in which the BPEL events are represented by
grammar terminals, and the non-terminals of the grammar capture the allowed
orders of events. From the grammar, a parser is generated that checks whether a
trace of BPEL events matches the grammar. Figure 2 summarizes this approach.

Fig. 2. Grammar based BPEL verification Fig. 3. Minimal case

Henceforth, we call BPEL event traces requirement sentences. As a minimal
example of the transformation, the BPEL process in Figure 3 is transformed into
the grammar with a single production: S ::= receiveInput assign replyOutput.

Table 1 shows the main BPEL constructs and their corresponding translation
to an attribute grammar in the syntax of the popular ANTLR parser generator.
Attribute grammars are an extension of context-free grammars by Knuth [6]
with data. The translation proceeds recursively, transforming the different BPEL
XML elements into grammar constructs. The full translation can be found in an
extended version of this paper on Github [4].

Verifying protocol properties by parsing requirement sentences is useful but
incomplete without the data that control the process. By enriching the grammar
with attributes, the correctness of the STP process can be assessed while also
taking data and data transformations into account. In particular, in the gram-
mar, productions that depend on a condition on the data (as captured in the
grammar attributes) are represented by semantic predicates [10] in the grammar
productions. They have the form {b?}, where b is a boolean expression on the
attributes, and the production in which the semantic predicate appears is only
applicable if b evaluates to true.

76 Erwin de Jager and Stijn de Gouw

BPEL Element Grammar Additional processing
<bpel:process
name="X" ...

grammar X;

x : v0 < children > v; x = X.toLowerCase(),
transform children

<bpel:pick name="X" ’X’
(< onMessage1 >
| ...
| < onMessagen >)

transform onMessage
children

<bpel:onMessage
operation="X"

< children > transform children

<bpel:if name="X" ’X’ ({ < condition >? }
< children >)

use this rule if followed by else or
elseif and transform children

’X’ (< children >
| { not < condition >? })

use this rule if not followed by else
or elseif, transform children, get
< condition > from context and
add semantic predicate

<bpel:else | ({ not < condition >? }
< children >)

get < condition > from
context, add semantic predicate,
transform children

<bpel:elseif | ({ < condition >? }
< children >)

transform children

<bpel:condition> { < condition >? } transform XPATH condition to
Java, add condition to context

<bpel:copy> < to > = < from >; transform to and from children
<bpel:to> < Java expr > transform to element to Java expr
<bpel:from> < Java expr > transform from element to Java

expr
Table 1. Transform BPEL protocol to a grammar

77Hybrid Analysis of BPEL Models with Grammars

The data transformations can be derived from the BPEL model. The results
of the called web services can not be derived as they depend on parameters
and the internal functionality of the web service. The results could be serialized
from production logs, or simulated by mocking the service, or specified using
assertions. The Web Service Definition Language (WSDL) file of a web service
contains a formal description of the interface. The transformation step uses this
interface to capture the data involved in the BPEL process as attributes in the
grammar, and the requirement sentences are enriched with input and data to
emulate web service calls.

WSDL Element ANTLR Element Side condition
<element name="X">
<complexType name="X">

class X {<children>}

<element name="X" type="T"/>
<complexType name="X">

T X; T is Java primitive type

T X = new T(); T is Java complex type
T getX(){}, setX(T x){} create getter and setter

<extension base="X"> extends X {<children>} extends with baseclass X
<part element="X" name="Y"> X y = new X(); ’y’ is used in BPEL model

X getY(){}
<message name="X"> class X_ {<children>} X_ unique name

X_ x = new X_(); ’x’ is used in BPEL model
<sequence>..</sequence> <children>
<complexType>..</complexType>
<types>..</types>
<schema>..</schema>
<complexContent>..</complexContent>

Table 2. Transform BPEL data elements to a grammar

The final step in the grammar-based analysis consists of verifying properties
of the data in the BPEL process. Suppose that V = {v0, v1, v2, ..., vn} is the set
of all variables within an STP process and that PSi represents a process step
i. Then PSi(V,V

′) defines the data transformation within process step i (those
are translated in e.g. the copy/to/from elements and yield updated values of
the attributes). V and V’ contain respectively the initial values and the final
values of the variables after execution of step i. By adding Vinitial and Vexpected

as attributes to the grammar, these variables can be used as preconditions and
postconditions. After parsing completes and all variables have been updated
during parsing (possibly repeatedly), the parser checks in the last step whether
the condition (Vactual == Vexpected) holds.

2.2 Test-case generation

We have developed a method to generate test cases using the logical program-
ming language Prolog in combination with so-called Definite clause grammars

WSDL: https://www.w3.org/TR/2001/NOTE-wsdl-20010315

78 Erwin de Jager and Stijn de Gouw

(DCG) [11]. In a DCG, each production rule has the form: nt → body., where nt
is a non-terminal symbol and body is a sequence of one or more terminals/non-
terminals separated by commas. A non-terminal symbol is written as a Prolog
atom, while a sequence of terminals is written as a Prolog list, where a terminal
may be any Prolog term. By defining the generated grammar as a DCG within
Prolog, test cases can be derived that meet syntactic requirements of the ANTLR
grammar. The ANTLR grammar also uses data transformations and semantic
predicates to enforce valid paths. DCGs do not have these features, they gen-
erate syntactically correct paths without taking conditions and error situations
into account. Therefore, some of the paths generated will not be accepted by
the parser. DCGs are supporting in this way a test approach called Fuzzing as
described by Holler [5]. This approach uses variations on correct input to detect
errors in software.

Initially all variables in both the pre and post conditions are under-specified
and set to the default value ’?’. These variables will be added to the paths
generated by BPEL2DCG. All test cases will be rejected by the parser. Rejection
may be for three reasons. In the first place because paths are not valid. If the
expert endorses the parser’s verdict then these non-valid paths can be removed.
Secondly, when post conditions variables do not contain the expected values. If
the expert judges the value determined by the parser to be correct, then the
value must be applied as a post condition. A test case can also fail because it
does not meet a semantic predicate of the parser. In that case, the expert may
decide to adjust the corresponding pre-conditions. Adjusted test cases must be
re-verified by the parser. These steps must be repeated until all test cases are
accepted by the parser.
If the expert observes that the parser approves a test case incorrectly, then
the BPEL model is under-specified. It can also be observed that the parser
incorrectly rejects a test case. In that case the BPEL model deviates from the
requirements. After performing this procedure, these created test cases should
fully cover all requirements and can be used for regression testing.

3 Implementation

We implemented the grammar-based verification and test-case generation de-
scribed in Section 2 in our own tool suite. The architecture of the grammar and
test-base verification tooling is shown in Figure 4.

All steps in Figure 4 can be performed automatically except for activity
’Modify and remove testcases’. In that step, a domain expert interprets the
results of running a set of test cases, for example as a regression test (which test
pass/fail, and is this expected?) and can potentially modify the test suite based
on their interpretation of the results. Clearly, this requires domain knowledge
from the expert. See the paragraph on BPEL2DCG for more information. We
next discuss the main components of our tool suite.

BPEL2CFG This component takes a BPEL model as input and generates an
ANTLR grammar as output, following the transformation scheme given earlier

79Hybrid Analysis of BPEL Models with Grammars

Fig. 4. Test case construction

in table 1 and table 2. It also provides a list of variables and values used in
BPEL conditions. These conditions are applied within the ANTLR grammar as
semantic predicates. It is implemented as a 900 line program in Eclipse Epsilon, a
Model-to-model transformation tool that offers capabilities to transform an XML
file that meets an XSD (i.e. the BPEL standard) to a target model (in our case:
an ANTLR grammar). Because BPEL is specified in structured XML and can be
interpreted directly by Epsilon. The flow of a BPEL model can be transformed
in a fairly straightforward manner to productions of a CFG grammar.

Although the number of elements involved in data transformations is limited,
the complexity is significantly higher. First, the variables defined in the BPEL
model must be converted into Java implementations. Next, the BPEL operations
on these variables have to be translated into a Java representation. Thus, the
translation includes XPATH expressions, XML conventions and nested XML
structures. Approximately 70% of all Epsilon lines or code of BPEL2CFG relate
to data transformations.

BPEL2DCG This component transforms a given BPEL model into a Definite
clause grammar G for use with Prolog.
The Prolog query findall(X, phrase(G,X,[]),AS) then generates all (finitely
many, for STP processes) testcases that comply with the grammar. BPEL2DCG
is implemented in Eclipse Epsilon and consists of 669 lines of code.

Eclipse Epsilon, https://www.eclipse.org/epsilon/

80 Erwin de Jager and Stijn de Gouw

Parser generator The parser generator transforms a given grammar into a parser.
We use the parser generator to check whether a trace of BPEL events conform to
the specification as given in a grammar. We use ANTLR [10] as the parser gen-
erator. It is a popular and powerful parser generator which supports attributes
(i.e. the data in BPEL processes) and semantic predicates for productions that
are conditional on data values.

4 Case study

To assess our approach, we performed an industrial case study of the Tax and
Customs Administration of the Netherlands (In Dutch: Belastingdienst) and
compared with existing approaches. At the Belastingdienst, BPEL is used in
several domains, including:

– Digitization of notary information: processing 1.6 million notarial acts yearly
– Motor vehicle tax: process 440.000 new license plate registrations, and 1.8

million mutations yearly
– Value added tax (VAT): worth e 50 billion yearly
– Payroll tax allowances: pay out e 850 million yearly to 120.000 employers

We verified formalized and analyzed several BPEL processes from the Be-
lastingdienst (in multiple tools), but for space reasons we focus here on the most
extensive case, named ’Handle Case Request’ based on Payroll tax allowances
and shown in Figure 5.

The vast amount of research done in verification of web services has resulted
in many different approaches, some of which are supported by tooling [2, 9,
13]. Most common used formal models are Petri nets, Process Algebras and
Automata. These three formalisms will be used to make a comparison with
the grammar-based approach. The other tools first translate the BPEL model
into their own formalism (i.e. Petri nets) and next verify the result with an
appropriate model checker. Our grammar based approach does not use model
checking, but generates a parser to verify the BPEL model.

Tool Purpose Input Output Year
BPEL2PNML Translate BPEL to Petri nets BPEL 2.0 Petri Net Markup

Language (PNML)
2005

LTSA A Tool for Model-Based Veri-
fication of Web Service Com-
positions and Choreography

BPEL 2.0 Finite State Process
(FSP) process alge-
bra

2006

BPEL2OWFN Translate BPEL to Petri nets BPEL 2.0 open Workflow Net
(oWFN) (Petri Net)

2007

BPEL2STS Symbolic Web Service Compo-
sition Testing

BPEL 2.0 Symbolic Transition
System (Automata)

2011

BPELVT A Tool for Formal Validation
of Web Service Orchestrations

BPEL 2.0 Promela (Automata) 2012

Table 3. BPEL transformation tooling

81Hybrid Analysis of BPEL Models with Grammars

Fig. 5. BPEL process Case handling

Table 3 lists the existing tools we evaluated. These tools transform a BPEL
model as input into a formal model, and verify this model with a model checker.
We investigated whether (and to what extent) the tools supported the following
categories of properties:

– Correctness: the path followed within a process is consistent with the input
and the data returned by the called web services

– Complete BPEL semantics: does the tool cover the entire WS-BPEL
specification?

– Reachability: Are all states of the STP process reachable?
– Deadlock: verify absence of deadlock
– Liveness: STP process eventually always reach an end state
– Timing failures: are timeouts of STP process or invoked services handled?
– Traceable Model: Each structural element in the formal verification model

corresponds to an element in the original STP process

Results We found that applying the tooling developed in related work (table
3) on our case study was not possible without adjustments. The cases were
developed with Eclipse BPEL Designer 1.1.1 (2017), which is more recent than
the transformation tooling used. Certain XPATH features are not recognized by
the tooling. This means that in most cases the generated BPEL code cannot be
interpreted by the transformation tooling. However, after minor adjustments to
the BPEL code, interpretation was possible.

82 Erwin de Jager and Stijn de Gouw

Property Grammar Petri Net Process
Algebra

Automata

Correctness bpel2cfg - - -
Complete BPEL
semantics

- bpel2owfn LoLA - -

Reachability (bpel2cfg bpel2dcg) bpel2pnml wofbpel
bpel2owfn LoLA

LTSA -

Deadlock - bpel2owfn LoLA LTSA -
Liveness (bpel2cfg bpel2dcg) bpel2owfn LoLA LTSA -
Timing failures - bpel2owfn LoLA - -
Traceable Model bpel2cfg bpel2dcg - LTSA BPELVT

BPEL2STS
Table 4. Property coverage of BPEL transformation tooling

All examined other verification tools consider a BPEL process to be a con-
current system, and focus on verifying reachability, liveness and deadlock using
a model checker. However, STP processes are sequential. The BPEL2CFG tool
we developed was the only tool capable to verify the operation of a BPEL STP
process taking data transformations into account. A comprehensive report of the
results and more use cases can be found in the extended version of our paper [4]

5 Conclusion

In this paper, we developed a tool-supported hybrid analysis for sequential BPEL
processes to 1) checking correctness of protocol and data properties based on
parsing, 2) automatically generate testcases in the form of a traces of BPEL
events that syntactically obey a given protocol. To the best of our knowledge,
our approach is the first to fully support the verification the data (as well as the
protocol) of BPEL processes. It is therefore complementary to existing tools,
which focus mostly on performance and concurrency properties such as dead-
lock, liveness and timing failures. The developed tools, the full source code to
reproduce the industrial case in our own tool suite and the other described tools,
and an extended version of this paper with many more details can be found on
our Github repository [4].

As future work we plan to develop support for higher coverage of the BPEL
standard, in particular concurrency features. Furthermore, since data transfor-
mations are fairly complex to handle with the Eclipse Epsilon plug-in, we aim
to investigate if reusing components of the Apache ODE engine (which is also
used in run-time monitoring) can simplify the translation. Finally, it would be
interesting to develop a grammar-based verification approach for BPMN, which
is another XML-based process specification language widely used in industry.

References

1. F. Abouzaid and J. Mullins. A calculus for generation, verification and refinement
of bpel specifications. Electronic Notes in Theoretical Computer Science, 200(3):43–
65, 2008.

83Hybrid Analysis of BPEL Models with Grammars

2. M. Bozkurt, M. Harman, and Y. Hassoun. Testing and verification in service-
oriented architecture: a survey. Software Testing, Verification and Reliability,
23(4):261–313, 2013.

3. M. Chen, T. H. Tan, J. Sun, Y. Liu, and J. S. Dong. Veriws: a tool for verification
of combined functional and non-functional requirements of web service composi-
tion. In Companion Proceedings of the 36th International Conference on Software
Engineering, pages 564–567. ACM, 2014.

4. E. de Jager and S. de Gouw. Github repository with extended paper and all tools
and artifacts. https://github.com/erwindejager/ou/tree/master/archive.

5. C. Holler, K. Herzig, and A. Zeller. Fuzzing with code fragments. In USENIX
Security Symposium, pages 445–458, 2012.

6. D. E. Knuth. Semantics of context-free languages. Mathematical systems theory,
2(2):127–145, 1968.

7. N. Kokash, C. Krause, and E. P. de Vink. Data-aware design and verification
of service compositions with Reo and mCRL2. In Proceedings of the 2010 ACM
Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26, 2010,
pages 2406–2413, 2010.

8. C. Luo, S. Qin, and Z. Qiu. Verifying bpel-like programs with hoare logic. Frontiers
of Computer Science in China, 2(4):344–356, 2008.

9. S. Morimoto. A survey of formal verification for business process modeling. In In-
ternational Conference on Computational Science, pages 514–522. Springer, 2008.

10. T. Parr and K. Fisher. LL(*): the foundation of the ANTLR parser generator. In
Proceedings of PLDI 2011, pages 425–436, 2011.

11. F. C. Pereira and D. H. Warren. Definite clause grammars for language analy-
sisÃćÂĂÂŤa survey of the formalism and a comparison with augmented transition
networks. Artificial intelligence, 13(3):231–278, 1980.

12. O. Standard. Web services business process execution language version 2.0. URL:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

13. W. M. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and E. Verbeek. Con-
formance checking of service behavior. ACM Transactions on Internet Technology
(TOIT), 8(3):13, 2008.

84 Erwin de Jager and Stijn de Gouw

	1
	paper1
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	9
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	10
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	11
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	12
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	13
	paper2
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	14
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	15
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	16
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	17
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	18
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	19
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	20
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	21
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	22
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	23
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	24
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	25
	paper3
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	26
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	27
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	28
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	29
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	30
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	31
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	32
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	33
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	34
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	35
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	36
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	37
	paper4
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	49
	paper5
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	50
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	51
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	52
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	53
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	54
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	55
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	56
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	57
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	58
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	59
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	60
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	61
	paper6
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	62
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	63
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	64
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	65
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	66
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	67
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	68
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	69
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	70
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	71
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	72
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	73
	paper7
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	74
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	75
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	76
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	77
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	78
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	79
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	80
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	81
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	82
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	83
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	84
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	85
	paper8
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	86
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	87
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	88
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	89
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	90
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	91
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	92
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	93
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	94
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	95
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	96
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	97
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	98
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	99
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	100
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	101
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	102
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	103
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	104
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	105
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	106
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	107
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	108
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	109
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	110
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	111
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	112
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	113
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	114
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	115
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	116
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	117
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	118
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	119
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	121
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	122
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	123
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	124
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	125
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	126
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	127
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	128
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	129
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	130
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	131
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

	132
	paper9
	An Extension of Linear-size Suffix Tries for Parameterized Strings

	paper11
	 A Graph-Based Tool to Embed the -Calculus into a Computational DPO Framework

