CEUR-WS.org/Vol-2571/CSP2019_paper_13.pdf

Rough Mereology based CFill algorithm for
robotic path planning

Lukasz Zmudzinskil0000—0002—9127—0895]
University of Warmia and Mazury in Olsztyn, Faculty of Mathematics and Computer
Science, Sloneczna 54, 10-710 Olsztyn, Poland, lukasz@zmudzinski.me

Abstract. This paper focuses on describing the CFill algorithm for
rough mereology based intelligent agent path planning. The algorithm
updates the methodology of the Square Fill Algorithm by increasing its
adaptiveness, adding dynamic neighbour building and proposing a way
to deal with dynamic changes to the robot environment, by implement-
ing tree based path planning. The author describes the changes to the
original algorithm with example values and their outcomes.

Keywords: Path planning - Rough Mereology - Potential Fields - Robot
Navigation - Mereogeometry - Robotics.

1 Introduction

Path planning for mobile robotics is one of the currently most researched scien-
tific topics. One of the algorithms currently present for path planning using rough
mereology techniques is the Square Fill Algorithm [3]. While generating a valid
path to the goal for an autonomous agent, the algorithm is memory-efficient,
making it hard to use for memory-low devices. Moreover, every appearance of
an obstacle after calculating the path means recalculating the whole algorithm.

The author tries to challenge the problems and proposes a CFill algorithm,
based on the previously mentioned. The changes that were made include replac-
ing the method for creating potential field neighbours to a dynamic one, adding
the narrowing mode described further in the paper and a new way of calculating
paths, that tackles the problem of dynamic entities entering the map area.

The idea to implement tree based path planning for intelligent agents was
lately used in works including the Rapidly exploring Random Tree*[8], achieving
tasks for swarm robotics[1] or task allocations for multi-robot systems[9].

Copyright (© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Lukasz Zmudzinski

2 Rough mereology

One of the biggest challenges in robotics is to determine the position of the
world elements such as robots, obstacles or navigation points like beacons. While
using various sensor mounted on the mobile agent, an estimate value is always
gathered, due to the probability of inaccurate readings. Those readings are prone
to error, because of many environmental and mechanical factors for example: the
type of surface, range sensors not picking material fluctuations or poor camera
resolution qualities. This is where Mereology as a theory can help.

The main scheme of Mereology is the notion of part. Any notion of a part that
is given, relates to the idea of containment or partial containment . This means
that the robot entering a beforehand specified area can ascertain its connection
to the area, by a degree. Given the information whether it is connected to the
area, overlaps it or is its part, the robot is able to establish its position value
more precisely. Given the notion carried out by Rough Mereology - part to a
degree, a real number can be retrieved in the range of 0...1 (value of 1 meaning
full inclusion, while 0 - no inclusion) to give a precise description of the element
location, compared to the target area.

Rough mereology based reasoning as described in [6] employs the notion of
a rough inclusion p(x,y,r), which relation needs x is a part of y to a degree
of at least r. As our reasoning is concerned with spatial objects, the rough
inclusion involved in our reasoning is the one defined as u(X,Y,r) if and only if
@ >=r, where X,Y are n-dimensional solids and | X]| is the n-volume of X.

Considering a planar case of an autonomous mobile robot moving in a 3-
dimensional environment, hence, spatial objects X,Y are figures assumed con-
cept regions and | X| is the area of X. The rough inclusion u(X,Y,r) is applied
in the construction of the mereological potential field. Elements of this field are
square and the distance between them is defined as

K(X,Y) = min{mazx,nu(X,Y,r)}, maxsu(Y, X, s)}.

Classical methodology of potential fields works with integrable force field
given by formulas of Coulomb or Newton which prescribe force at a given point
as inversely proportional to the squared distance from the target. In consequence
the potential is inversely proportional to the distance from the target. The basic
property of the potential is that its density (force) increases in the direction
toward the target. We observe this property in our construction. We start in
our construction with a rough inclusion — a similarity measure formalized in
the theory of rough mereology. Its basic construct is a rough inclusion. Rough
inclusion is a ternary relation p : U x U x [0, 1] and its primitive formulas of the
form p(z,y,r) read ‘the object x is a part to object y to a degree of at least r’.
A rough inclusion can be used to induce a distance function as well as primitive
relations of elementary geometry: betweenness and nearness.

Geometry induced by means of a rough inclusion can be used to define a
generalized potential field: the force field in this construction can be interpreted
as the density of squares that fill the workspace and the potential is the integral
of the density. We present now the details of this construction, see also [3,4].

Rough Mereology based CFill algorithm for robotic path planning 3

The potential field generation methods called Square Fill Algorithm intro-
duced by Osmialowski and Polkowski [3] was presented with some alternative
modifications to the algorithm and/or team based path planning in [7, 11,2, 10,
5]. The main differences between the algorithm and CFill algorithm will be pre-
sented in the following section. You can see a graphical comparison of both field
creation methods in Fig. 1.

200 300 400 500 600 700 800 900 1000

(a) (b)

Fig. 1: The figure on the left (a) shows the potential field generated by the Square
Fill Algorithm. The potential field generated by the CFill algorithm is shown in
the right figure (b).

3 Creating potential fields using CFill algorithm

The CFill algorithm takes the core element of the Square Fill Algorithm - poten-
tial fields neighbour generation - and modifies it for better memory optimization
and environment adaptation. This comes with two vast changes to the way the
field is generated.

First of all, the potential field neighbours are now created dynamically. In-
stead of eight neighbours at set positions as in the Square Fill Algorithm, the
algorithm specifies a neighbours variable, that holds the number of neighbours
that should be created around the potential field (at equal intervals). This is
achieved by calculating the angle « in radians as following:

__30 T
~ neighbours 180

(1)
where n is the selected number of neighbours to be created. The angle is multi-
plied each time a new neighbour is created in an iteration ¢, until the total angle
remains smaller than 27 radians. To calculate each neighbour position (2/,y")

with a distance d from the potential field (z,y) the following equation is used:

' = sin(o;) *d+x
/ (2)

Yy = —cos(a) xd+y

4 Lukasz Zmudzinski

Secondly, the generated potential field is sparse in open spaces and gets more
dense between obstacles. Variable named narrowing_distance was proposed to
achieve that. Whenever it is set, the algorithm checks the distance between
the current potential field and all obstacles and goes into the narrowing mode
whenever the distance is smaller than narrowing_distance. The narrowing mode
has two tools that can be used for creating a more dense potential field: creating
more neighbours around a potential field or decreasing the step size for smaller
distances. Ideally both tools should be used to fit through narrow passages. An
example of this method can be seen on Fig. 2.

100 L]

0 200 400 600 800 1000

Fig.2: Additional potential fields (represented by dotted circles) that were cre-
ated by running the algorithm with the narrow_distance parameter set to 60
units.

3.1 CFill Algorithm

The CFill algorithm is composed of the following steps (pseudocode can be seen
in Algorithm listing 1):

1. Set the following variables:

S oo N

10.
11.

Rough Mereology based CFill algorithm for robotic path planning 5

— neighbours - contains how many neighbours should be created,

— step - the incrementation step distance between potential fields,

— radius - the radius of the created potential fields,

— goal - position of the goal for the algorithm,

— potential_fields - list to store created potential fields,

— narrow_distance - distance to activate the narrowing mode (optional),
— narrow_step - increment step distance for narrowing mode (optional),

— narrow_neighbours - neighbours in narrowing mode (optional).

Create an empty queue @,

Set the is_clockwise variable to True,

Add the first potential field at the goal location with a distance of 0,
Enumerate through all potential fields in @,

Check the conditions, if any is True, remove the potential field from @ and
go to next potential field:

— Check, if the potential field is out of bounds of the map,
— Check, if a potential field at that location is already created,
— Check, if the potential field isn’t overlapping an obstacle.

If the narrowing mode is set and the potential field is in the distance of
narrow_distance to obstacle:

— Create neighbours with number narrow_neighbours and narrow_step
for distance incrementor from the potential field as described above,

— Add the neighbours to queue Q,

If the narrowing mod is not set or the potential field isn’t in the distance of
narrow_distance to obstacle:

— Create neighbours of the potential field with the number neighbours and
step for distance incrementor as described above,

— Add the neighbours to queue @

Change the is_clockwise value to opposite,
Remove the potential field from queue Q,

Add the potential field to the potential_fields list.

6 Lukasz Zmudzinski

Algorithm 1 CFill Algorithm

1: procedure CFILL

2: set neighbours, step, radius, goal, direction
3 set n_distance, n_step, n_neighbours

4: potential_fields <— new empty array

5: @ < new empty array
6.
7
8

potential_field < goal_x, goal_y, current_distance
: Q.append(potential_field)
: For field in Q:
9: if @ is empty then end
10: if field.out_bounds or field.created or field.collision then

11: Q.remove(field)

12: continue

13: if narrowing-mode is True then

14: new_neighbours <— define_neighbours(direction, n_neighbours, n_step)
15: else

16: new_neighbours < define_neighbours(direction, neighbours, step)

17: Q.append(new_neighbours)
18: direction <— not direction
19: Q.remove(field)

4 Path planning using tree graphs

Making the potential field sparse in CFill algorithm compared to the Square Fill
Algorithm required implementing a new way of calculating paths. The previously
used method of picking neighbours by selecting new path points by finding the
nearest mereological distance between connected potential fields can’t be used
in CFill algorithm at most times. The proposed algorithm for path planning is
devised of two steps: creating possible paths tree and selecting a path, based on
navigation to the tree root.

4.1 Creating possible paths tree

Below are the steps taken to build a tree graph on the generated mereological
potential fields. An example of a proposed tree can be seen in Fig. 3.

1. Append the goal position to the working_fields list,
2. Set the tree_radius parameter responsible for determining how far should
the algorith look for neighbouring potential fields,
3. Enumerate through the created potential field list until all potential fields
have their parent parameter set,
4. Check the following condition for enumerated field:
— Potential field distance is smaller or equal to tree_radius,
— Potential field is not in the working_fields list,
— Potential field does not have the parent parameter set.

Rough Mereology based CFill algorithm for robotic path planning 7

5. If the conditions are met:
— Assign the parent parameter of current potential field to the closest
mereological field from the working_fields list,
— Add the potential field to the working_fields list.

I e

0 200 400 600 800 1000

Fig.3: Path tree graph generated from the modified mereology potential field,
with the root at the goal position by visiting all created fields.

4.2 Picking a path

After the tree is generated, a path for the autonomous agent can be chosen. This
means following the steps:

1. If the robot is at the goal position - end algorithm,
2. Add the robot position to path_points list,
3. Find the mereological potential fields closest to the agent start position and
set it to
4. Do the following, until the full path is constructed:
— Add the current potential field position to path_points list,
— Get the parent parameter of the potential field and assign it to current.

8 Lukasz Zmudzinski

4.3 Path smoothing

After the path points are acquired the author uses a smoothing method modified
for rough mereology path planning algorithms presented in [10]. An example of
the smoothed path based on the path generated from the path tree can be found
in Fig. 4. The smoothing method has the following steps:

1. Smoothing weights o and g are selected,
2. The following steps are iterated over n times until they produce a result:

— Data weight « is applied and moves the position of the point x; depend-
ing on the position of the previous xj_1 and next xyy; point on the
given path:

Tk =Tk + a(Tp—1 + Tpy1 — 2k (3)

— Counter balacing the updated position x+k with a chosen smooth weight
B, so that a straight line isn’t created.

Yk = Yr + B(wr — yr) (4)

— The value of the path point is updated, if the distance from the point
to any obstacle is greater than the computed collision distance. In other
cases, the value remains the same.

4.4 Dynamic changing environment

Due to the nature of the proposed path planning method, contraty to the Square
Fill Algorithm, it is possible to use the generated path system for dynamic en-
vironments, without recalculating the potential field and/or the proposed path.
When a new obstacle is added after the initial calculations, the potential fields
in the vacinity get blacked out by setting their active parameter to False. The
effect of this is that all branches of the path tree starting or going through that
point are turned off. From this point, finding a new path is similar to initial
finding of the path as described above - an active point closest to the current
robot position is searched for and a new path is selected.

5 Conclusion

The CFill algorithm is the successor to the Square Fill Algorithm proposed by
Osmialowski and Polkowski in [4]. The algorithm focuses on delivering an up-
dated method of creating the mereological potential field, by doing so dynami-
cally, allowing parametrization, instead of static content. This allows the creation
of a set number of neighbours based on the neighbours parameter passed as an
input along with the step like in the predecessor.

This manipulation allowed the implementation of the narrowing mode, which
gives the possibility of creating more dense potential fields around obstacles,

Rough Mereology based CFill algorithm for robotic path planning 9

400

100

0 200 400 600 800 1000

Fig. 4: The figure shows the initial path selected from the path tree graph (shown
by the dotted line) as well as the smoothed out path (represented by the solid
line) with parameters: n = 100, @ = 0.1 and 8 = 0.1.

while making them sparse in open terrain - greately reducing the memory needed
to calculate the mereologic potential field.

Moreover, due to how the algorithm created potential fields, the old way of
implementing path finding was deprecated. A new solution was presented using
tree graphs that were based on the earlier created potential fields. The greatest
advantage of this, is that the algorithm is now valid in a changing environment,
since adding new obstacles after the path tree was created, does not induce the
need of recalculating the whole potential field or generated paths.

Future work will include further dive into the subject of using CFill in chang-
ing environments and bigger comparison of the algorithm with other rough mere-
ology based ideas. More work can be done in the field of the path tree creation
as only one method was tested on how to pick branch roots for the mereological
potential field.

10 Lukasz Zmudzinski

References

1. Divband, S.M., Zahadat, P., Ghofrani, J., Hamann, H.: Adaptive Path Formation in
Self-Assembling Robot Swarms by Tree-Like Vascular Morphogenesis, Distributed
Autonomous Robotic Systems, Springer International Publishing, pp. 299-311, 2019

2. Gnys P.: Mereogeometry Based Approach for Behavioral Robotics. In: Polkowski L.
et al. (eds) Rough Sets. IJCRS 2017. Lecture Notes in Computer Science, vol 10314.
Springer, Cham, 2017

3. Osmialowski, P.: On path planning for mobile robots: Introducing the mereological
potential field method in the framework of mereological spatial Reasoning. Journal
of Automation, Mobile Robotics and Intelligent Systems (JAMRIS) 3(2), pp. 24-33,
2009

4. Osmialowski P., Polkowski L.: Spatial Reasoning Based on Rough Mereology: A
Notion of a Robot Formation and Path Planning Problem for Formations of Mobile
Autonomous Robots, In: Transactions on Rough Sets XII, pp.143-169 (2010)

5. Szmigielski A., Polkowski L.: Computing from words via rough mereology in mobile
robot navigation, In: Intelligent Robots and Systems, 2003. (IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on

6. Polkowski L.: Rough mereology: A new paradigm for approximate reasoning, In:
International Journal of Approximate Reasoning, Volume 15, Issue 4, pp. 333-365,
November 1996

7. Polkowski, L., Zmudzinski, L., Artiemjew, P.: Robot navigation and path planning
by means of rough mereology, In: Proceedings of IEEE International Conference on
Robotic Computing, 2018.

8. Véras, L. G., Medeiros, F. L., Guimaraes, L. N. (2019). Rapidly exploring Random
Tree* with a sampling method based on Sukharev grids and convex vertices of safety
hulls of obstacles. International Journal of Advanced Robotic Systems.

9. Zhou, X., Wang, H., Ding, B., Hu, T., Shang, S.: Balanced connected task allocations
for multi-robot systems: An exact flow-based integer program and an approximate
tree-based genetic algorithm, Expert Systems with Applications, v. 116, pp. 10-20,
2019

10. Zmudzinski, L., Artiemjew, P.: Path planning based on potential fields from
rough mereology, In: Proceedings of International Joint Conference on Rough Sets,
IJCRS’17, Olsztyn, Poland, Lecture Notes in Computer Science (LNCS), vol. 10303,
pp. 158-168. Springer, Heidelberg (2017)

11. Zmudzinski, L., Polkowski, L., Artiemjew, P.: Controlling robot formations by
means of spatial reasoning based on rough mereology, In: Advances in Robotics
Research, vol. 2(3), pp. 219-236, Techno-Press (2018)

