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ABSTRACT
The democratization of data access and the adoption of OLAP in
scenarios requiring hand-free interfaces push towards the cre-
ation of smart OLAP interfaces. In this paper, we envisage a con-
versational framework specifically devised for OLAP applications.
The system converts natural language text in GPSJ (Generalized
Projection, Selection and Join) queries. The approach relies on an
ad-hoc grammar and a knowledge base storing multidimensional
metadata and cubes values. In case of ambiguous or incomplete
query description, the system is able to obtain the correct query
either through automatic inference or through interactions with
the user to disambiguate the text. Our tests show very promising
results both in terms of effectiveness and efficiency.

1 INTRODUCTION
Nowadays, one of the most popular research trends in computer
science is the democratization of data access, analysis and visu-
alization, which means opening them to end users lacking the
required vertical skills on the services themselves. Smart per-
sonal assistants [10] (Alexa, Siri, etc.) and auto machine learning
services [20] are examples of such research efforts that are now
on corporate agendas [1].

In particular, interfacing natural language processing (either
written or spoken) to database systems opens to new opportuni-
ties for data exploration and querying [13]. Actually, in the area
of data warehouse, OLAP (On-Line Analytical Processing) itself
is an "ante litteram" smart interface, since it supports the users
with a "point-and-click" metaphor to avoid writing well-formed
SQL queries. Nonetheless, the possibility of having a conversa-
tion with a smart assistant to run an OLAP session (i.e., a set of
related OLAP queries) opens to new scenarios and applications. It
is not just a matter of further reducing the complexity of posing a
query: a conversational OLAP system must also provide feedback
to refine and correct wrong queries, and it must have memory
to relate subsequent requests. A reference application scenario
for this kind of framework is augmented business intelligence [9],
where hand-free interfaces are mandatory.

In this paper, we envisage a conversational OLAP framework
able to convert a natural language text into a GPSJ query. GPSJ
[11] is the main class of queries used in OLAP since it enables
Generalized Projection, Selection and Join operations over a set of
tables. Although, some natural language interfaces to databases
have already been proposed, to the best of our knowledge this is
the first proposal specific to OLAP systems.

In our vision, the desiderata for an OLAP smart interface are:
#1 it must be automated and portable: it must exploit cubes

metadata (e.g. hierarchy structures, role of measures, at-
tributes, and aggregation operators) to increase its un-
derstanding capabilities and to simplify the user-machine
interaction process;
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#2 it must handle OLAP sequences rather than single queries:
in an OLAP sequence the first query is fully described by
the text, while the following ones are implicitly/partially
described by an OLAP operator and require the system to
have memory of the previous ones;

#3 it must be robust with respect to user inaccuracies in using
syntax, OLAP terms, and attribute values, as well as in the
presence of implicit information;

#4 it must be easy to configure on a DW without a heavy
manual definition of the lexicon.

More technically, our text-to-SQL approach is based on a gram-
mar parsing natural language descriptions of GPSJ queries. The
recognized entities include a set of typical query lexicons (e.g.
group by, select, filter) and the domain specific terms and val-
ues automatically extracted from the DW (see desiderata #1 and
#4). Robustness (desiderata #3) is one of the main goals of our
approach and is pursued in all the translation phases: lexicon
identification is based on a string similarity function, multi-word
lexicons are handled through n-grams, and alternative query in-
terpretations are scored and ranked. The grammar proposed in
Section 4.3 recognizes full queries only, thus desiderata #2 is not
covered by the current work. To sum up, the main contributions
of this paper are:

(1) a list of features and desiderata for an effective conversa-
tional OLAP system;

(2) an architectural view of the whole framework;
(3) an original approach to translate the natural language

description of an OLAP query in a well-formed GPSJ query
(Full query module in Figure 1).

(4) a set of tests to verify the effectiveness of our approach.
The remainder of the paper is organized as follows: in Section 2

the functional architecture and the modules of a conversational
OLAP framework are sketched; Section 3 discusses related works;
Section 4 describes in detail the query generation process; in Sec-
tion 5 a large set of effectiveness and efficiency tests are reported;
finally, Section 6 draws the conclusions and discusses the system
evolution.

2 SYSTEM OVERVIEW
Figure 1 sketches a functional view of the architecture. Given a
DW, that is a set of multidimensional cubes together with their
metadata, the offline phase is aimed at extracting the DW spe-
cific terms used by user to express the queries. Such information
are stored in the system knowledge base (KB). Noticeably, this
phase runs only once for each DW unless it undergoes modifica-
tions. More in detail, the Automatic KB feeding process extracts
from the cubes categorical attribute values and metadata (e.g.
attribute and measure names, hierarchy structures, aggregation
operators). With reference to the cube represented through a
DFM schema in Figure 2, the KB will store the names of the
measures (e.g. StoreSales, StoreCost) together with their default
aggregation operators (e.g. sum, avg). Additional synonyms can
be automatically extracted from open data ontologies (Wordnet
[16] in our implementation); for example, "client" is a synonym
for Customer. The larger the number of synonyms, the wider the



language understood by the systems. Besides the domain specific
terminology, the KB includes the set of standard OLAP terms that
are domain independent and that do not require any feeding (e.g.
group by, equal to, select). Further enrichment can be optionally
carried out manually (i.e., by the KB enrichment module) when
the application domain involves a non-standard vocabulary (i.e.,
when the physical names of tables and columns do not match
the words of a standard vocabulary).

The online phase runs every time a query is issued to the
system. The spoken query is initially translated to text by the
Speech-to-text module. This task is out of scope in our research
and we exploited the Google API in our implementation. The
uninterpreted text is then analyzed by the Interpretation module
that actually consists of two sub-modules: Full query is in charge
of interpreting the texts describing full queries, which typically
happens when an OLAP session starts. Conversely, OLAP op-
erator modifies the latest query when the user states an OLAP
operator along an OLAP session. On the one hand, understanding
a single OLAP operator is simpler since it involves less elements.
On the other hand, it requires to havememory of previous queries
(stored in the Log) and to understand which part of the previous
query must be modified.

Due to natural language ambiguity, user errors and system
inaccuracies, part of the text can be misunderstood. The role
of the Disambiguation module is to solve ambiguities by ask-
ing appropriate questions to the user. The reasons behind the
misunderstandings are manyfold, including (but not limited to):
ambiguities in the aggregation operator to be used; inconsistency
between attribute and value in a selection predicate; (3) identifica-
tion of relevant elements in the text without full comprehension.

The output of the previous steps is a data structure (i.e., a
parsing tree) that models the query and that can be automatically
turned in a SQL query exploiting the DW structure stored in the
KB. Finally, the obtained query is run on the DW and the results
are reported to the user by the Execution & Visualizationmodule.
Such module could exploit a standard OLAP visualization tool
or it could implement voice-based approaches [21] to create an
end-to-end conversational solution.

3 RELATEDWORKS
Conversational business intelligence can be classified as a natural
language interface (NLI) to business intelligence systems to drive
analytic sessions. Despite the plethora of contributions in each
area, to the best of our knowledge, no approach lies at their
intersection.

NLIs to operational databases enable users to specify com-
plex queries without previous training on formal programming
languages (such as SQL) and software; a recent and comprehen-
sive survey is provided in [2]. Overall, NLIs are divided into
two categories: question answering (QA) and dialog (D). While
the former are designed to operate on single queries, only the
latter are capable of supporting sequences of related queries as
needed in OLAP analytic sessions. However, to the best of our
knowledge, no dialog-based system for OLAP sessions has been
provided so far. The only contribution in the dialog-based di-
rection is [14], where the authors provide an architecture for
querying relational databases; with respect to this contribution
we rely on the formal foundations of the multidimensional model
to drive analytic sessions (e.g., according to the multidimensional
model it is not possible to group by a measure, compute aggrega-
tions of categorical attributes, aggregate by descriptive attributes,

ensure drill-across validity). Also differently from [14], the re-
sults we provide are supported by extensive effectiveness and
efficiency performance evaluation that completely lack in [14].
Finally, existing dialog systems, such as [17], address the explo-
ration of linked data. Hence they are not suitable for analytics on
the multidimensional model. As to question answering, existing
systems are well understood and differentiate for the knowledge
required to formulate the query and for the generative approach.
Domain agnostic approaches solely rely on the database schema.
NaLIR [13] translates natural language queries into dependency
trees [15] and brute-forcefully transforms promising trees un-
til a valid query can be generated. In our approach we rely on
n-grams instead of dependency trees [15] since the latter can-
not be directly mapped to entities in the knowledge base (i.e.,
they require tree manipulation) and are sensible to the query
syntax (e.g., "sum unit sales" and "sum the unit sales" produce two
different trees with the same meaning). SQLizer [22] generates
templates over the issued query and applies a "repair" loop until
it generates queries that can be obtained using at most a given
number of changes from the initial template. Domain specific
approaches add semantics to the translation process by means of
domain-specific ontologies and ontology-to-database mappings.
SODA [5] uses a simple but limited keyword-based approach
that generates a reasonable and executable SQL query based on
the matches between the input query and the database metadata,
enriched with domain-specific ontologies. ATHENA [18] and its
recent extension [19] map natural language into an ontology
representation and exploit mappings crafted by the relational
schema designer to resolve SQL queries. Analyza [6] integrates
the domain-specific ontology into a "semantic grammar" (i.e., a
grammar with placeholders for the typed concepts such as mea-
sures, dimensions, etc.) to annotate and finally parse the user
query. Additionally, Analyza provides an intuitive interface facil-
itating user-system interaction in spreadsheets. Unfortunately,
by relying on the definition of domain specific knowledge and
mappings, the adoption of these approaches is not plug-and-play
as an ad-hoc ontology is rarely available and is burdensome to
create.

In the area of business intelligence the road to conversation-
driven OLAP is not paved yet. The recommendation of OLAP
sessions to improve data exploration has been well-understood
[3] also in domains of unconventional contexts [9] where hand-
free interfaces are mandatory. Recommendation systems focus
on integrating (previous) user experience with external knowl-
edge to suggest queries or sessions, rather than providing smart
interfaces to BI tools. To this end, personal assistants and con-
versational interfaces can help users unfamiliar with such tools
and SQL language to perform data exploration. However, end-
to-end frameworks are not provided in the domain of analytic
sessions over multidimensional data. QUASL [12] introduces a
QA approach over the multidimensional model that supports
analytical queries but lacks both the formalization of the dis-
ambiguation process (i.e., how ambiguous results are addressed)
and the support to OLAP sessions (with respect to QA, handling
OLAP sessions requires to manage previous knowledge from the
Log and to understand whether the issued sentence refines previ-
ous query or is a new one). Complementarily to our framework,
[21] recently formalized the vocalization of OLAP results.

To summarize, the main differences of our approach to the
previous works are the following.
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Figure 1: A functional architecture for a conversational OLAP framework.
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(1) The envisioning of an end-to-end general-purpose dialog-
driven framework supporting OLAP sessions.

(2) The definition of the framework’s functional architecture
and the formalization of its modules.

(3) The enforcement of multidimensional constraints by the
means of formal grammar supporting GPSJ queries.

(4) A plug-and-play implementation of the core modules on
top existing data warehouses: our framework does not
impact existing schemata and the integrationwith external
knowledge is supported but not mandatory.

4 QUERY GENERATION
In the next subsections, we describe in detail the interpretation
process for a single full query. Figure 3 shows the necessary
steps in the online phase. We remind that, with reference to
Figure 1, modules Speech-to-Text, OLAP operator and, Execution
& Visualization are out of scope here. Conversely, the offline
phase process and the related modules are implemented but not
reported.

4.1 The Knowledge Base
The system Knowledge Base (KB in Figure 1) stores all the infor-
mation extracted from the DW that is necessary to support the
translation phases. Information can be classified in DW Entities
and Structure. More in detail, the DW structure enables consis-
tency checks on parse trees and, given a parse tree, allows the
SQL generation. It includes:
• Hierarchy structure: the roll-up relationships between
attributes.
• Aggregation operators: for each measure, the applicable
operators and the default one.

• DB tables: the structure of the database implementing
the DW including tables’ and attributes’ names, primary
and foreign key relationships.

The set of DW entities includes:
• DW element names: measures, dimensional attributes
and fact names.
• DW element values: for each categorical attribute, all
the values are stored.

Several synonyms can be stored for each entity, enabling the
system to cope with slang and different shades of the text. Both
DW entities and DW structure are automatically collected by
querying the DW and its data dictionary and are stored in a
QB4OLAP [8] compatible repository. Besides DW entities, that
are domain specific, the knowledge base includes those keywords
and patterns that are typically used to express a query:
• Intention keywords: express the role of the subsequent
part of text. Examples of intention keywords are group by,
select and filter.
• Operators: include logic (e.g. and, or), comparison (e.g.
greater, equal) and aggregation operators (e.g. sum, aver-
age).
• Patterns of dates and numbers: used to automatically
recognize dates and numbers in the raw text.

Overall, the entities defined in the system are defined as E =
{E1,E2, ...,Em }; note that each entity can be a multi-word that
can be modeled as a sequence of tokens E = ⟨t1, ..., tr ⟩.

4.2 Tokenization and Mapping
A raw text T can be modeled as a sequence of tokens (i.e., single
words) T = ⟨t1, t2, ..., tz ⟩. The goal of this phase is to identify in
T the known entities that are the only elements involved in the
Parsing phase.

Turning a text into a sequence of entities means finding a
mapping between tokens in T and E. More formally:

Definition 4.1 (Mapping & Mapping function). Amapping func-
tion M(T ) is a partial function that associates sub-sequences1
from T to entities in E such that:
• sub-sequences of T have length n at most;
• the mapping function determines a partitioning of T ;

1The term n-gram is used as a synonym of sub-sequence in the area of text mining.
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• a sub-sequence T ′ = ⟨ti , ..., tl ⟩ ∈ T with (l ≤ n) is associ-
ated to an entity E if and only if E ∈ TopNE∈ESim(T

′,E)
and Sim(T ′,E) > α .

The output of a mapping function is a sequenceM = ⟨E1, ...,El ⟩
on E that we call amapping. Given themappingM the similarities
between each entity Ei and the corresponding tokens Sim(T ′,Ei )
are also retained and denoted with SimM (Ei ). A mapping is said
to be valid if the fraction of mapped tokens in T is higher than a
given threshold β . We callM the set of valid mappings.

Several mapping functions (and thus several mappings) may
exists betweenT and E since Definition 4.1 admits sub-sequences
of variable lengths and retains, for each sub-sequence, the top
similar entities. This increases interpretation robustness, but it
can lead to an increase in computation time. Generating several
different mappings increases robustness since it allows to choose,
in the next steps, the best text interpretation out of a higher num-
ber of candidates. Generated mappings differ both in the number
of entities involved and, in the specific entities mapped to a token.
In the simple case where multi-token mappings are not possible
(i.e., n = 1 in Definition 4.1) the number of generated mappings
for a raw text T , such that |T | = z, is:

z∑
i= ⌈z ·β ⌉

(
z

i

)
· N i

The formula counts the possible configurations of sufficient
length (i.e., higher or equal to ⌈z · β⌉) and, for each length, count
the number of mappings determined by the top similar enti-
ties. Since the number of candidate mappings is exponential, we
consider only the most significant ones through α , β , and N : α
imposes sub-sequence of tokens to be very similar to an entity; N
further imposes to consider only the N entities with the highest
similarity; finally, β imposes a sufficient portion of the text to be
mapped.

The similarity function Sim() is based on the Levenshtein dis-
tance and keeps token permutation into account to make similar-
ity robust to token permutations (i.e., sub-sequences ⟨P .,Edдar ⟩
and ⟨Edдar ,Allan, Poe⟩ must result similar). Given two token
sequences T andW with |T | = l , |W | =m such that l ≤ m it is:

Sim(⟨t1, ..., tl ⟩, ⟨w1, ...,wm⟩) =

max
D∈Disp(l,m)

∑l
i=1 sim(ti ,wD(i)) ·max(|ti |, |wD(i) |)∑l
i=1max(|ti |, |wD(i) |) +

∑
i ∈D̂ |wi |

where D ∈ Disp(l ,m) is an l-disposition of {1, ...,m} and D̂ is
the subset of values in {1, ...,m} that are not present in D. Func-
tion Sim() weights token similarity based on their lengths (i.e.,
max(|ti |, |wD(i) |) and penalizes similarities between sequences of
different lengths that implies unmatched tokens (i.e.,

∑
i ∈D̂ |wi |).

Example 4.2 (Token similarity). Figure 4 shows some of the
possible token dispositions for the two token sequences T =

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Edgar Allan Poe

P. Edgar

Figure 4: Token dispositions: arcs denote the correspon-
dence of tokens for a specific disposition (the bolder the
line, the higher the similarity). The disposition determin-
ing the maximum similarity is shown in a dashed rectan-
gle.

⟨P .,Edдar ⟩ andW = ⟨Edдar ,Allan, Poe⟩. The disposition deter-
mining the highest similarity is surrounded by a dashed rectangle;
the similarity is 0.46 and it is calculated as

Sim(T ,W ) =
sim(P ., Poe)|Poe | + sim(Edдar ,Edдar )|Edдar |

|Poe | + |Edдar | + |Allan |

□

We assume the best interpretation of the input text to be the
one where (1) all the entities discovered in the text are included
in the query (i.e., all the entities are parsed through the grammar)
and, (2) each entity discovered in the text is perfectly mapped
to one sub-sequence of tokens (i.e., SimM (Ei ) = 1). The two
previous statements are modeled through the following score
function. Given a mappingM = ⟨E1, ...,Em⟩, we define its score
as

Score(M) =
m∑
i=1

SimM (Ei ) (1)

The score is higher whenM includes several entities with high
values of SimM . Although at this stage it is not possible to predict
if a mapping will be fully parsed, it is apparent that the higher
the mapping score, the higher its probability to determine an
optimal interpretation. As it will be explained in the Section 4.4,
ordering the mapping by descending score also enables pruning
strategies to be applied.

Example 4.3 (Tokenization and mapping). Given the set of enti-
ties E and a tokenized text T = ⟨medium, sales, in, 2019,by, the,
reдion⟩, examples of mappingsM1 andM2 are:

M1 =⟨avg,UnitSales,where, 2019, group by, region⟩

M2 =⟨avg,UnitSales,where, 2019, group by,Reдin⟩

where the token the is not mapped and the token reдion is
mapped to the attribute Region in M1 and to the value Reдin
inM2 (where Reдin is a value of attribute Customer that holds a
sufficient similarity). □



Table 1: Generic and domain specific syntactic categories.

Category Entity Synonym samples
Int select return, show, get
Whr where in, such that
Gby group by by, for each, per
Cop =, <>, >, <, ≥, ≤ equal to, greater than
Agg sum, avg total, medium
Cnt count, count distinct number, amount
Fct Facts Domain specific
Mea Measures Domain specific
Att Attributes Domain specific
Val Categorical values Domain specific

Dates and numbers -

4.3 Query Parsing
Parsing a valid mapping means searching in the text the complex
syntax structures (i.e., clauses) that build-up the query. Given a
mapping M , the output of a parser is a parse tree PTM , i.e. an
ordered, rooted tree that represents the syntactic structure of
a string according to a given grammar. To the aim of parsing,
entities (i.e., terminal elements in the grammar) are grouped
in syntactic categories (see Table 1). The whole grammar is de-
scribed in Figure 5. As a GPSJ query consists of 3 clauses (measure,
group by and selection), in our grammar we identify four types
of derivations2:
• Measure clause ⟨MC⟩: this derivation consists of a list
of measure/aggregation operator pairs. If the operator is
omitted (i.e., ⟨MC⟩ ::= ⟨Mea⟩ applies) the default one
specified in the KB will be applied to the measure during
the Checking & Enhancement step.
• Group by clause ⟨GC⟩: this derivation consists of a se-
quence of attribute names preceded by an entity of type
⟨Gby⟩.
• Selection clause ⟨SC⟩: this derivation consists of a Boolean
expression of simple selection predicates ⟨SSC⟩; follows
standard SQL operator priority (see ⟨SCO⟩, ⟨SCA⟩, and
⟨SCN⟩ derivations).
• GPSJ query ⟨GPSJ⟩: this derivation assembles the final
query. Only the measure clause is mandatory since a GPSJ
could aggregate a single measure with no selections. The
order of clauses is irrelevant; this implies the proliferation
of derivations due to clause permutations.

The GPSJ grammar is LL(1)3 [4], is not ambiguous (i.e., each
mapping admits a single parsing tree PTM ) and can be parsed by
a LL(1) parser with linear complexity [4]. If the input mapping
M can be fully parsed, PTM will include all the entities as leaves.
Conversely, if only a portion of the input belongs to the grammar,
an LL(1) parser will produce a partial parsing, meaning that it will
return a parsing tree including the portion of the input mapping
that belongs to the grammar. Remaining entities can be either
singleton or complex clauses that were not possible to connect to
the main parse tree. We will call parse forest PFM the union of the
parsing tree with residual clauses. Obviously, if all the entities
are parsed, it is PFM = PTM . Considering the whole forest rather
2A derivation in the form ⟨X⟩ ::= e represent a substitution for the non-terminal
symbol ⟨X⟩ with the given expression e . Symbols that never appear on the left side
of ::= are named terminals. Non-terminal symbols are enclosed between ⟨⟩.
3The rules presented in Figure 5 do not satisfy LL(1) constraints for readability
reasons. It is easy to turn such rules in a LL(1) complaint version, but the resulting
rules are much more complex to be read and understood.

⟨GPSJ⟩ ::= ⟨MC⟩⟨GC⟩⟨SC⟩ | ⟨MC⟩⟨SC⟩⟨GC⟩ | ⟨SC⟩⟨GC⟩⟨MC⟩

| ⟨SC⟩⟨MC⟩⟨GC⟩ | ⟨GC⟩⟨SC⟩⟨MC⟩ | ⟨GC⟩⟨MC⟩⟨SC⟩

| ⟨MC⟩⟨SC⟩ | ⟨MC⟩⟨GC⟩ | ⟨SC⟩⟨MC⟩ | ⟨GC⟩⟨MC⟩

| ⟨MC⟩

⟨MC⟩ ::= (⟨Agg⟩⟨Mea⟩ | ⟨Mea⟩⟨Agg⟩ | ⟨Mea⟩ | ⟨Cnt⟩⟨Fct⟩

| ⟨Cnt⟩⟨Attr⟩)+

⟨GC⟩ ::= ⟨Gby⟩⟨Attr⟩+
⟨SC⟩ ::= ⟨Whr⟩⟨SCO⟩

⟨SCO⟩ ::= ⟨SCA⟩”or”⟨SCO⟩ | ⟨SCA⟩
⟨SCA⟩ ::= ⟨SCN⟩”and”⟨SCA⟩ | ⟨SCN⟩
⟨SCN⟩ ::= ”not”⟨SSC⟩ | ⟨SSC⟩
⟨SSC⟩ ::= ⟨Attr⟩⟨Cop⟩⟨Val⟩ | ⟨Attr⟩⟨Val⟩ | ⟨Val⟩⟨Cop⟩⟨Attr⟩

| ⟨Val⟩⟨Attr⟩ | ⟨Val⟩

Figure 5: Backus-Naur representation of the grammar.

M1 = � avg, UnitSales, where, 2019, group by, Region �
� Mea �� Agg � � Whr � � Gby � � Attr �

� MC � � SC � � GC �

� GPSJ �

� SCO �

� SCA �

� SCN �

� SSC �

� Val �

(a) The entire mapping is parsed (i.e., PFM = PTM ).

M2 = � avg, UnitSales, where, 2019, group by, Regin �
� Mea �� Agg � � Whr � � Gby �

� MC � � SC �

� GPSJ �

� SCO �

� SCA �

� SCN �

� SSC �

� Val �

� SCO �

� SCA �

� SCN �

� SSC �

� Val �

� SC �

(b) ⟨Gby⟩ ⟨Val⟩ cannot be parsed.

Figure 6: Parsing forests from Example 4.3.

than the simple parse tree enables disambiguation and errors to
be recovered during the Disambiguation phase.

Example 4.4 (Parsing). Figure 6 reports the parsing outcome
for the two mappings in Example 4.3. M1 is fully parsed, thus
its parsing forest correspond to the parsing tree (i.e., PTM1 =

PFM1 ). Conversely, in M2 the last token is wrongly mapped to
the attribute value Regin rather than to the attribute name Region.
This prevents the full parsing and the parsing tree PTM does not
include all the entities inM .



Annotation type Gen. derivation sample Example
Ambiguous Attribute ⟨SSC⟩ ::= ⟨Val⟩ "sum unit sales for Salem", but Salem is member of City and StoreCity
Ambiguous Agg. Operator ⟨MC⟩ ::= ⟨Mea⟩ "unit sales by product", but sum and avg are valid aggregations
Attribute-Value Mismatch ⟨SSC⟩ ::= ⟨Attr⟩⟨Cop⟩⟨Val⟩ "sum unit sales for product New York", but New York is not a Product
MD-Meas Violation ⟨MC⟩ ::= ⟨Agg⟩⟨Mea⟩ "sum prices per store", but Price is not addictive
MD-GBY Violation ⟨GC⟩ ::= ⟨Gby⟩⟨Attr⟩+ "average prices by name", but Product is not in ⟨GC⟩
Unparsed clause – "average unit sales by Regin", but Reдin is not an attribute

Table 2: Annotation types.

4.4 Knowledge-based Parse Forest Checking
and Enhancement

The Parsing phase verifies adherence of the mapping to the GPSJ
grammar, but this does not guarantee the executability of the
corresponding SQL query due to implicit elements, ambiguities
and errors. The following list enumerates the cases that require
further processing.
• Ambiguous attribute: the ⟨SSC⟩ clause has an implicit
attribute and the parsed value belongs to multiple attribute
domains.
• Ambiguous aggregation operator: the ⟨MC⟩ clause has
an implicit aggregation operator but the measure is asso-
ciated with multiple aggregation operators.
• Attribute-value mismatch: the ⟨SSC⟩ clause includes a
value that is not valid for the specified attribute, i.e. it is
either outside or incompatible with the attribute domain.
• Violation of amultidimensional constraint on amea-
sure: the ⟨MC⟩ clause contains an aggregation operator
that is not allowed for the specified measure.
• Violation of amultidimensional constraint on an at-
tribute: the ⟨GC⟩ clause contains a descriptive attribute
without the corresponding dimensional attribute4.
• Implicit aggregation operator: the ⟨MC⟩ clause has an
implicit aggregation operator and the measure is asso-
ciated with only one aggregation operator or a default
operator is defined.
• Implicit attribute: the ⟨SSC⟩ clause has an implicit at-
tribute and the parsed value belongs to only one attribute
domain.
• Unparsed clause: The parser was not able to fully under-
stand the mapping and the returned parse forest includes
one or more dandling clauses.

Each bullet above determines a possible annotation of the
nodes in the parsed forest. In case of implicit information, the
entities in the KB represented by the implicit nodes are automat-
ically added to the parse tree; thus no user action is required. All
the other cases cannot be automatically solved and the nodes
are annotated with a specific error type that will trigger a user-
system interaction during the Disambiguation phase. Table 2
reports annotation examples.

A textual query generates several parsing forests, one for
each mapping. In our approach, only the most promising one is
proposed to the user in the Disambiguation phase. This choice
comes from two main motivations:
• Proposing more than one alternative queries to the user
can be confusing and makes very difficult to contextualize
the disambiguation questions.

4According to DFM a descriptive attribute is an attribute that further describes a
dimensional level (i.e., it is related one-to-one with the level), but that can be used
for aggregation only in combination with the corresponding level.
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Figure 7: Portion of the parsing forest contributing to its
score depending on the adopted scoring criterion.

• Proposing only the most promising choice may incur in
missing the optimal derivation but it makes easier to create
a baseline query. This one can be improved by adding or
removing clauses through further interactions enabled by
the OLAP operator module.

Definition 4.5 (Parsing Forest Score). Given a mappingM and
the corresponding parsing forest PFM , we define its score as
Score(PFM ) = Score(M ′) where M ′ is the sub-sequence of M
belonging to the parsing tree PTM .

The parsing forest holding the highest score is the one pro-
posed to the user. This ranking criterion is based on an optimistic-
pessimistic forecast of the outcome of the Disambiguation phase.
On the one hand, we optimistically assume that the annotations
belonging to PTM will be positively solved in theDisambiguation
phase and the corresponding clauses and entities will be kept.
On the other hand, we pessimistically assume that non-parsed
clauses belonging to PFM will be dropped. The rationale of our
choice is that an annotated clause included in the parsing tree is
more likely to be a proper interpretation of the text. As shown
in Figure 7, a totally pessimistic criterion (i.e., exclude from the
score all the annotated clauses and entities) would carry forward
a too simple, but non-ambiguous, forest; conversely, a totally
optimistic criterion (i.e., consider the score of all the entities in
PFM ) wouldmake preferable a large but largely non-parsed forest.
Please note that the bare score of the mapping (i.e., the one avail-
able before parsing) corresponds to a totally optimistic choice
since it sums up the scores of all the entities in the mapping.

The ranking criterion defined above enables the pruning of the
mappings to be parsed as shown by Algorithm 1 that reports the
pseudo-code for the Full querymodule. Reminding that mappings
are parsed in descending score order, let us assume that, at some
step, the best parse forest is PFM ′ with score Score(PFM ′). If
the next mapping to be parsed, M ′′, has score Score(M ′′) <



Algorithm 1 Parsing forest selection

Require: M: set of valid mappings
Ensure: PF ∗: best parsing forest
1: M ← sort(M) ▷ sort mappings by score
2: PF ∗ ← ∅
3: whileM , ∅ do ▷ while mapping space is not exhausted
4: M ← head(M) ▷ get the mapping with highest score
5: M ←M \ {M} ▷ remove it fromM
6: PFM ← parse(M) ▷ parse the mapping
7: if score(PFM ) > score(PF ∗) then

▷ if current score is higher than previous score
8: PF ∗ ← PFM ▷ store the new parsing forest
9: M ←M \ {M ′ ∈ M, score(M ′) ≤ score(PF ∗)}

▷ remove mappings with lower scores fromM
return PF ∗

Score(PFM ′), we can stop the algorithm and return PFM ′ since
the optimistic score ofM ′′ is an upper bound to the score of the
corresponding parse forest.

Algorithm 1 works as follows. At first, mappings are sorted
by their score (Line 1), the best parse forest is initialized, and
the iteration begins. While the set of existing mappings is not
exhausted (Line 3), the best mapping is picked, removed from the
set of candidates, and its parsing forest is generated (Lines 4–6).
If the score of the current forest is higher than the score of the
stored one (Line 7), then the current forest is stored (Line 8) and
all the mappings with a lower score are removed from the search
space (Line 9) as the pruned mappings cannot produce parsing
forests with a score greater than what has been already parsed.

4.5 Parse Tree Disambiguation
Each annotation in the parse forest requires a user choice to
restore query correctness. User-system interaction takes place
through a set of questions, one for each annotation. Obviously,
each answer must be parsed following the same step sequence
discussed so far. Table 3 reports the question templates for each
annotation type. Each question allows to either provide the miss-
ing information or to drop the clause. Templates are standardized
and user choices are limited to keep interaction easy. This al-
lows also unskilled users to obtain a baseline query. Additional
clauses can be added through the OLAP operator module that
implements OLAP navigation.

At the end of this step, the parse forest is reduced to a parse
tree since ambiguous clauses are either dropped or added to the
parsing tree.

4.6 SQL Generation
Given a parsed tree PTM , the generation of its corresponding
SQL requires to fill in the SELECT, WHERE, GROUP BY and FROM
statements. The SQL generation is applicable to both star and
snowflake schemata and is done as follows:

• SELECT: measures and aggregation operators from ⟨MC⟩
are added to the query selection clause together with the
attributes in the group by clause ⟨GC⟩;
• WHERE: predicate from the selection clause ⟨SC⟩ (i.e., val-
ues and their respective attributes) is added to the query
predicate;
• GROUP BY: attributes from the group by clause ⟨GC⟩ are
added to the query group by set;

• FROM: measures and attributes/values identify, respectively,
the fact and the dimension tables involved in the query.
Given these tables, the join path is identified by follow-
ing the referential integrity constraints (i.e., by following
foreign keys from dimension tables imported in the fact
table).

Example 4.6 (SQL generation). Given the GPSJ query "sum the
unit sales by type in the month of July", its corresponding SQL is:
SELECT Type, sum(UnitSales)
FROM Sales s JOIN Product p ON (s.pid = p.id)

JOIN Date d ON (s.did = d.id)
WHERE Month = "July"
GROUP BY Type

□

5 EXPERIMENTAL TESTS
In this section, we evaluate our framework in terms of effective-
ness and efficiency. Tests are carried out on a real-word bench-
mark of analytics queries [7]. Since queries from [7] refers to
private datasets, we mapped the natural language queries to the
Foodmart schema5. The Automatic KB feeding populated the
KB with 1 fact, 39 attributes, 12337 values and 12449 synonyms.
Additionally, only 50 synonyms where manually added in the KB
enrichment step (e.g., "for each", "for every", "per" are synonyms
of the group by statement). While mapping of natural language
queries to the Foodmart domain, we preserved the structure of
the original queries (e.g., word order, typos, etc.). Overall, 75%
of the queries in the dataset are valid GPSJ queries, confirming
how general and standard GPSJ queries are. The filtered bench-
mark includes 110 queries. We consider token sub-sequences of
maximum length n = 4 (i.e., the [1..4]-grams) as no entity in the
KB is longer than 4 words. Each sub-sequence is associated to
the top N similar entities with similarity at least higher than α
such that at least a percentage β of the tokens in T is covered.
The value of β is fixed to 70% based on an empirical evaluation
of the benchmark queries. Table 4 summarizes the parameters
considered in our approach.

5.1 Effectiveness
The effectiveness of our framework quantifies how well the
translation of natural language queries meets user desiderata.
Effectiveness is primarily evaluated as the parse tree similarity
TSim(PT , PT ∗) between the parse tree PT produced by our sys-
tem and the correct one PT ∗, which is manually written by us for
each query in the benchmark. Parse tree similarity is based on
the tree distance [23] that keeps into account both the number of
correctly parsed entities (i.e., the parse tree leaves) and the tree
structure that codes the query structure (e.g., selection clauses
"(A and B) or C" and "A and (B or C)" refers to the same parsed
entities but underlie different structures). In this subsection, we
evaluate how our framework behaves with(out) disambiguation.

Let’s consider first the system behavior without disambigua-
tion. Figure 8 depicts the performance of our approach with
respect to variations in the number of retrieved top similar enti-
ties (i.e., N ∈ {2, 4, 6}). Values are reported for the top-k trees (i.e.,
the k trees with the highest score). We remind that only one parse
forest is involved in the disambiguation phase; nonetheless, for
testing purposes, it is interesting to see if best parse tree belongs

5A public dataset about food sales between 1997 and 1998 (https://github.com/
julianhyde/foodmart-data-mysql).

https://github.com/julianhyde/foodmart-data-mysql
https://github.com/julianhyde/foodmart-data-mysql


Annotation type Description Action
Ambiguous Attribute ⟨Val⟩ is member of these attributes [...] Pick attribute / drop clause
Ambiguous Agg. Operator ⟨Mea⟩ allows these operators [...] Pick operator / drop clause
Attribute-Value Mismatch ⟨Attr⟩ and ⟨Val⟩ domains mismatch, possible value are [...] Pick value / drop clause
MD-Meas Violation ⟨Mea⟩ does not allow ⟨Agg⟩, possible operators are [...] Pick operator / drop clause
MD-GBY Violation It is not allowed to group by on ⟨Attr⟩ without ⟨Attr⟩ Add attribute / drop clause
Unparsed ⟨GC⟩ clause There is a dangling grouping clause ⟨GC⟩ Add clause to ⟨GPSJ⟩ / drop clause
Unparsed ⟨MC⟩ clause There is a dangling measure clause ⟨MC⟩ Add clause to ⟨GPSJ⟩ / drop clause
Unparsed ⟨SC⟩ clause There is a dangling predicate clause ⟨SC⟩ Add clause to ⟨GPSJ⟩ / drop clause

Table 3: Templates and actions required to solve misunderstandings in textual queries.

Symbol Range Meaning
N {2, 4, 6} Num. of top similar entities
α {0.4, 0.5, 0.6} Token/entity minimum similarity
β 70% Sentence coverage threshold
n 4 Maximum sub-sequence length

Table 4: Parameter values for testing.

to the top-k ranked ones. Effectiveness slightly change varying
N and it ranges in [0.88, 0.91]. Effectiveness is more affected by
the entity/token similarity threshold α and ranges in [0.83, 0.91].
In both cases, the best results are obtained when more similar
entities are admitted and more candidate mappings are gener-
ated. Independently of the chosen thresholds the system results
very stable (i.e., the effectiveness variations are limited) and even
considering only one query to be returned its effectiveness is at
the state of the art [13, 18, 22]. This confirms that (1) the choice
of proposing only one query to the user does not negatively im-
pact on performances (while it positively impacts on interaction
complexity and efficiency) and (2) our scoring function properly
ranks parse tree similarity to the correct interpretation for the
query since the best ranked is in most cases the most similar
to the correct solution. As the previous tests do not include dis-
ambiguation, only 58 queries out of 110 are not ambiguous and
produce parse trees that can be fed as-is to the generation and
execution phases. This means that 52 queries — despite being
very similar to the correct tree, as shown by the aforementioned
results — are not directly executable without disambiguation (we
recall the ambiguity/error types from Table 2). Indeed, of these 52
queries, 38 contains 1 ambiguity annotation, 12 contains two am-
biguities annotations, and 2 contains three or more ambiguities
annotations. Figure 10 depicts the performance when the best
parse tree undergoes iterative disambiguation (i.e., an increasing
number of correcting action is applied). Starting from the best
configuration from the previous tests (for N = 6 and α = 0.4),
by applying an increasing number of correcting actions the ef-
fectiveness increases from 0.89 up to 0.94. Unsolved differences
between PT and PT ∗ are mainly due to missed entities in the
mappings.

Although our approach shows effectiveness comparable to
state-of-art proposals [13, 18, 22], it was not possible to run a de-
tailed comparison against them because the implementations are
not available and the provided descriptions are far from making
them reproducible. Furthermore, despite the availability of some
natural language datasets, the latter are hardly compatible with
GPSJ queries and are not based on real analytic workloads.
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Figure 8: Effectiveness varying the number of retrieved
top similar entities N and the number of Top-k queries re-
turned (with α = 0.4).
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Figure 9: Effectiveness varying the similarity threshold α
and the number of Top-k queries returned (with N = 6).
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Figure 10: Effectiveness as a function of the number of dis-
ambiguation steps (i.e., application of correcting actions;
with k = 1, N = 6 and α = 0.4).
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Figure 11: Number of "Generated" and "Parsed" mappings
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Figure 12: Execution time varying the number |M | of en-
tities in the optimal tree and the number of top similar
entities N (with α = 0.4).

5.2 Efficiency
We ran the tests on a machine equipped with Intel(R) Core(TM)
i7-6700 CPU@ 3.40GHz CPU and 8GB RAM, with the framework
implemented in Java.

In Section 4.2 we have shown that the mapping search space
increases exponentially in the text length. Figure 11 confirms this
result showing the number of generated mappings as a function
of the number of entities |M | included in the optimal parse tree
PT ∗, |M | is strictly related to |T |. Note that, with reference to the
parameter values reported in Table 4, the configuration analyzed
in Figure 11 is the worst case since it determines the largest
search space due to the high number of admitted similar entities.
Noticeably, pruning rules strongly limit the number of mappings
to be actually parsed.

Figure 12 shows the average execution time by varying |M |
and the number of allowed top similar entities N . The execution
time increase with the number of entities included in the optimal
parse tree, as such also the number of top similar entities impacts
the overall execution time. We recall that effectiveness remains
high also for N = 2 corresponding to an execution time of 1
second, raising to 101 seconds in the worst case. We emphasize
that the execution time corresponds to the time necessary for
the translation, and not to the time to actually execute them.
Queries are executed against the enterprise data mart and their
performance clearly depends on the underlyingmultidimensional
engine.

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we proposed a conversational OLAP framework and
an original approach to translate a text describing an OLAP query
in a well-formed GPSJ query. Tests on a real case dataset have
shown state-of-the-art performances. More in detail, we have
shown that coupling a grammar-based text recognition approach
with a disambiguation phase determines a 94% accuracy. We are
now working in many different directions to complete the frame-
work by: (a) supporting an OLAP navigation session rather than
a single query, as this requires to extend the grammar and to have
memories of previous queries in order to properly modify them;
(b) designing a proper visual representation of the interpreted
text to improve the system effectiveness, which can be obtained
by defining a proper graphical metaphor of the query on top of a
conceptual visual formalism such as DFM; (c) testing the whole
framework on real users to verify its effectiveness from points of
view that go beyond accuracy, e.g. usability, immediacy, mem-
orability; (d) exploiting the Log to improve the disambiguation
effectiveness and to learn synonyms not available a-priori.

REFERENCES
[1] [n. d.]. Hype Cycle for Artificial Intelligence, 2018. http://www.gartner.com/

en/documents/3883863/hype-cycle-for-artificial-intelligence-2018. ([n. d.]).
Accessed: 2019-06-21.

[2] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative
survey of recent natural language interfaces for databases. The VLDB Journal
28, 5 (2019), 793–819.

[3] Julien Aligon, Enrico Gallinucci, Matteo Golfarelli, Patrick Marcel, and Stefano
Rizzi. 2015. A collaborative filtering approach for recommending OLAP
sessions. Decision Support Syst. 69 (2015), 20–30.

[4] John C. Beatty. 1982. On the relationship between LL(1) and LR(1) grammars.
J. ACM 29, 4 (1982), 1007–1022.

[5] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. SODA: Generating SQL for Business Users. PVLDB 5, 10
(2012), 932–943.

[6] Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan,
and Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. In IUI. ACM,
493–504.

[7] Krista Drushku, Julien Aligon, Nicolas Labroche, Patrick Marcel, and Verónika
Peralta. 2019. Interest-based recommendations for business intelligence users.
Inf. Syst. 86 (2019), 79–93.

[8] Lorena Etcheverry and Alejandro A. Vaisman. 2012. QB4OLAP: A Vocabulary
for OLAP Cubes on the Semantic Web. In COLD (CEUR Workshop Proceedings),
Vol. 905. CEUR-WS.org.

[9] Matteo Francia, Matteo Golfarelli, and Stefano Rizzi. 2019. Augmented Busi-
ness Intelligence. In DOLAP (CEUR Workshop Proceedings), Vol. 2324. CEUR-
WS.org.

[10] Ramanathan V. Guha, Vineet Gupta, Vivek Raghunathan, and Ramakrishnan
Srikant. 2015. User Modeling for a Personal Assistant. In WSDM. ACM, 275–
284.

[11] Ashish Gupta, Venky Harinarayan, and Dallan Quass. 1995. Aggregate-Query
Processing in Data Warehousing Environments. In VLDB. Morgan Kaufmann,
358–369.

[12] Nicolas Kuchmann-Beauger, Falk Brauer, and Marie-Aude Aufaure. 2013.
QUASL: A framework for question answering and its Application to busi-
ness intelligence. In RCIS. IEEE, 1–12.

[13] Fei Li and H. V. Jagadish. 2016. Understanding Natural Language Queries over
Relational Databases. SIGMOD Record 45, 1 (2016), 6–13.

[14] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Çetintemel, and Tim Kraska.
2016. Making the Case for Query-by-Voice with EchoQuery. In SIGMOD
Conference. ACM, 2129–2132.

[15] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural
Language Processing Toolkit. InACL (SystemDemonstrations). TheAssociation
for Computer Linguistics, 55–60.

[16] George A. Miller. 1995. WordNet: A Lexical Database for English. Commun.
ACM 38, 11 (1995), 39–41.

[17] Amrita Saha, Mitesh M. Khapra, and Karthik Sankaranarayanan. 2018. To-
wards Building Large Scale Multimodal Domain-Aware Conversation Systems.
In AAAI. AAAI Press, 696–704.

[18] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Özcan. 2016. ATHENA: An Ontology-
Driven System for Natural Language Querying over Relational Data Stores.
PVLDB 9, 12 (2016), 1209–1220.

[19] Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish R. Mittal,
Manasa Jammi, Chuan Lei, Diptikalyan Saha, and Karthik Sankaranarayanan.

http://www.gartner.com/en/documents/3883863/hype-cycle-for-artificial-intelligence-2018
http://www.gartner.com/en/documents/3883863/hype-cycle-for-artificial-intelligence-2018


2019. Natural Language Querying of Complex Business Intelligence Queries.
In SIGMOD Conference. ACM, 1997–2000.

[20] Radwa El Shawi, Mohamed Maher, and Sherif Sakr. 2019. Automated Machine
Learning: State-of-The-Art and Open Challenges. CoRR abs/1906.02287 (2019).

[21] Immanuel Trummer, Yicheng Wang, and Saketh Mahankali. 2019. A Holis-
tic Approach for Query Evaluation and Result Vocalization in Voice-Based
OLAP. In Proc. of the 2019 Int. Conf. on Manage. of Data, SIGMOD Conf. 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. 936–953.

[22] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017.
SQLizer: query synthesis from natural language. PACMPL 1, OOPSLA (2017),
63:1–63:26.

[23] Kaizhong Zhang and Dennis E. Shasha. 1989. Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems. SIAM J. Comput. 18, 6
(1989), 1245–1262.


	Abstract
	1 Introduction
	2 System Overview
	3 Related works
	4 Query generation
	4.1 The Knowledge Base
	4.2 Tokenization and Mapping
	4.3 Query Parsing
	4.4 Knowledge-based Parse Forest Checking and Enhancement
	4.5 Parse Tree Disambiguation
	4.6 SQL Generation

	5 Experimental tests
	5.1 Effectiveness
	5.2 Efficiency

	6 Conclusions and Future Works
	References

