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ABSTRACT

Accurately learning from user data while providing quantifiable pri-
vacy guarantees provides an opportunity to build better ML models
while maintaining user trust. This paper presents a formal approach
to carrying out privacy preserving text perturbation using the no-
tion of d -privacy designed to achieve geo-indistinguishability in
location data. Our approach applies carefully calibrated noise to
vector representation of words in a high dimension space as defined
by word embedding models. We present a privacy proof that satis-
fies d -privacy where the privacy parameter ¢ provides guarantees
with respect to a distance metric defined by the word embedding
space. We demonstrate how ¢ can be selected by analyzing plausible
deniability statistics backed up by large scale analysis on GLOVE
and FASTTEXT embeddings. We conduct privacy audit experiments
against 2 baseline models and utility experiments on 3 datasets to
demonstrate the tradeoff between privacy and utility for varying
values of ¢ on different task types. Our results demonstrate prac-
tical utility (< 2% utility loss for training binary classifiers) while
providing better privacy guarantees than baseline models.
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