
Formalizing Commitments Using the Event Calculus

Joost de Kruijff, Hans Weigand

Tilburg University, Tilburg, The Netherlands
{j.c.dekruijff,h.weigand}@uvt.nl

Abstract. Smart Contracts enable the automated execution of exchanges on

the blockchain. From an ontological perspective, smart contracts create and

automate the fulfillment of social commitments between actors. Whereas

traditional deontic logic is used to make a legal determination in contractual

multi-actor interactions, we focus on the consequences of these actions

resulting from that determination, thereby shifting the focus from monitoring

to execution. The interactions between actors and the consequences in terms

of commitments have not yet been formalized for smart contracts. The

perspective of smart contracts is interesting, since they are considered to be

autonomous agents, able to generate automated actions. We use the Event

Calculus to formalize logic in order to represent and reason about the effects

of these automated actions and the resulting commitments. Since the Event

Calculus deals with local events and the consideration of time, this approach

enables the uniform representation of commitments, including their

operations and reasoning rules about them.

Keywords: Blockchain, Smart Contracts, Commitments, The Event

Calculus

1 Introduction

In line with Enterprise Ontology and Business Ontologies like COFRIS [1] and

REA [2], we model smart contracts as a bundle of interrelated commitments

(together: a contract) among those parties who have signed it. The main objective

of a contract for the contract agents is to fulfill a certain goal and to safeguard

against undesirable outcomes, together referred to as contract robustness [3].

Contracts that are not robust may lead to transaction costs, expensive conflict

resolution, or even a collapse of a transaction as a whole. According to the

sociological account of [4], “commitments” are needed to explain a consistent line

of activity and come into being when an individual brings in extraneous interests

(the example used in this paper is specifically on “side bets”). These “side bets” are

often a consequence of the actors' participation in social interactions. A more

abstract way of saying the same is that commitments penalize the individual in the

case of inconsistent behavior, and that the penalty has its basis in the social

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

179

community. Importantly, the assumed effect of commitments is consistency in

behavior, and this contributes directly to contract robustness. As a result, the role of

commitments for decent business transactions is essential. It is not surprising that

commitments are basic in UFO-S, the foundational ontology of services. They are

also included in UFO-C (ontology of social entities) as a kind of social moments,

that is, “types of intentional moments that are committed by social actions (e.g., an

interaction composed of the exchange of communicative acts)” [5].

In 1969, [6] provided an elegant way to logically represent changes of the

world through actions, captured in a protocol, called the Event Calculus. The Event

Calculus enables the uniform representation of commitments, including its

operations and reasoning rules about them [7]. Event calculus originates from the

Situation Calculus, but there is a conceptual difference between the two: the

Situation Calculus deals with global states, whereas the Event Calculus deals with

local events and the consideration of time periods. The latter is similar to the

structure of a blockchain, whereby transactions that change the state of the ledger

(actions) occur sequentially, based on situations (time or condition constraints) as

defined in the smart contract. The Event Calculus, can be formalized by means of

Horn clauses augmented with negation by failure [6]. Based on the Event Calculus,

Singh et al [7] developed a declarative protocol specification by capturing the

meaning of actions including intrinsic meanings through commitments. As a result,

they defined operations to commit, manipulate and terminate (discharge, delegate,

cancel) these commitments, centered on events and fluents. Fluents are properties

that may have different values at different time points (states) and the entire

lifecycle of a commitment. We consider fulfillments to be a state of a fluent. Events

manipulate fluents. A fluent starts to hold after an event occurs that can initiate the

fluent. Similarly, it ceases to hold when an event occurs that can terminate the fluent.

This paper aims to contribute in two ways. First, we aim to formalize the

representation and reasoning of the effects of commitments and automated actions

by smart contracts that result from them, with specific regards to creation,

manipulation and fulfillment. Second, we introduce flexibility to the process of

assigning or delegating control and responsibility roles inside an immutable smart

contract, while adding to the robustness of the contract.

 2 Conceptual Framework

The conceptual model in this paper builds upon earlier work [2], where we separated

the implementation choices for blockchain using three human abilities derived from

Enterprise Ontology; performa, informa, and forma. The forma ability concerns the

form aspects of communication and information. Production acts at the forma level

are datalogical in nature: they store, transmit, copy, destroy, etc. data. The informa

ability concerns the content aspects of communication and information. Production

acts at the forma level are infological in nature, meaning that they reproduce,

deduce, reason, compute, etc. information, abstracting from the form aspect. The

180

performa ability concerns the bringing about of new, original things, directly or

indirectly by communication. Communicative acts at the performa level are about

evoking or evaluating commitment; these communicative acts are realized at the

informa level by means of messages with some propositional content. We

previously presented our conceptual model for smart contracts at the informa level,

where we emphasized the infological blockchain domain ontology to accommodate

COFRIS-related components at the performa level [1]. At the infological layer, the

notion of transaction has been refined to three aggregation levels: transaction, event

and posting. In this paper we extend our infological ontology by including

formalizations for commitments through Event Calculus. Event calculus

semantically extends our ontology by offering tools to Commit and manipulate

commitments. We first explain and present the Event Calculus extensions for

commitments, and then we will map these formalisms to our infological ontology.

2.1 Commitment Lifecycle

In line with [14], new knowledge changes a state (in terms of fluents) by fulfilling

(partial) or realizing (full) a commitment c over time through transactions on the

SL. A commitment here is a conditional business relationship directed from a debtor

to a creditor, and can be formalized as C(debtor, creditor, antecedent, consequent

[7]. The lifecycle of a commitment has been explained by Telang and Singh [8] as

follows:

Figure 1. The Commitment Lifecycle by Telang and Singh [8] in UML

A commitment transitions from one state to another through the operations: Com-

mit, detach (antecedent holds), discharge (consequent holds), cancel, assign and

delegate. A commitment can be in one of the following states: Null (before it is

Committed), Existing (when it is initially Committed), Active (when it is initial-

ized), Expired (when its antecedent becomes forever false, while the commitment

was Conditional), Discharged (or Satisfied) (when its consequent is brought about

while the commitment was Active, regardless of its antecedent), Violated (when its

181

antecedent has been true but its consequent will forever be false, or if the commit-

ment is cancelled when Detached), Terminated (when cancelled while Conditional

or released while Active), or Pending (when suspended while Active). Active has

two sub-states: Conditional (when its antecedent is still false) and Detached (when

its antecedent has become true). A debtor may Commit, Cancel, Suspend, or Reac-

tivate a commitment. A creditor may Release a debtor from a commitment [8].

Although the commitment lifecycle is the basis for our conceptual model, we do

make an important adjustment by adding the option to delay initialization (or acti-

vation) of a commitment in order to prevent the existence of active commitments

that have no chance to satisfy (falsely pending). For example, a commitment to con-

sider offers on a piece of property, will only activate once offers can be made by

buyers to satisfy that commitment. Hence the commitment is made (way) earlier

than the property was listed. In this scenario, there is a time gap between the creation

and the activation of a commitment.

Actions are realized by means of messages and are a conjunction of subactions.

Actions may either be predefined or Committed on-the-fly by participants. Gov-

ernatori [9] recommends to predefine action logic explicitly for better monitorabil-

ity of the contract. We introduce Exchange Commitments and Control Commitments

to distinguish between commitments that are defining the economic transaction (are

about the resource exchange) like creating, activating and satisfying and those that

deal with the conditioning of the contract like delegating or assigning. From a

speech act perspective, commitments are a structure to communicate meaning and

intent between actors. This structure as presented by [10] distinguishes between a

success- and a dispute or failure layer. The success layer contains the set of com-

municational moves to complete a transaction successfully. Transactions hereby

follow the transaction paradigm that state that actors commit and execute actions

that result in the creation of new facts. So we consider the action events on this layer

to address exchange commitments. Characteristics of the success layer is that the

proposition of the transaction is never changed during its lifecycle nor the con-

straints. On the other hand, the discussion layer (also mentioned as failure and dis-

pute layer) is concerned with the communicative acts for situations where this is or

may not be the case. In the event of opportunistic behavior by actors or changed

circumstances that require a change to the proposition after committing to bring

about the original proposition, the transaction should be resolved in a new request

or be closed altogether. We introduce control commitments to deal with the condi-

tioning of a contract under these circumstances, like changes to the rules of engage-

ment, delegation- and assignment of actors and violation. Once the transaction di-

verts from its path towards success, control commitments prescribe what should

happen. Key to control commitments is that they allow to change elements of the

contract by manipulating commitments through Constraints, without changing the

proposition of the transaction itself.

182

Table 1. Comparison between Communication Layers and Commitments

Communication layers Commitments

Success layer Exchange commitments

Discussion layer Control commitments

Constraints consist of Conditions that verify if an Event happened (Happens) or if

a commitment holds (HoldsAt). Whereas control commitments are more straight-

forward, Exchange Commitments between agents are easier to predict when goals

of the agents are known, since goals describe the state of the world that an individual

agent is motivated to bring about (antecedent or consequent) [11]. We distinguish

between the Control and the Responsibility role. The Control role is concerned with

the execution of an Event, without social responsibility. Responsibility means social

responsibility but not necessarily execution. Roles are not set in stone and may

change due to time- or conditional constraints. We consider two role transitions; (1)

Delegation is concerned with the change of debtor, without changing anything else.

Since the creditor and conditions are unchanged, the creditor remains socially re-

sponsible for the commitment; he delegates control of execution to the smart con-

tract as in the case of a notary or bank, for example. (2) Assigning is concerned with

the change of creditor, without changing anything else. Even though the creditor

changes, the new creditor becomes participant in bringing about the commitment.

This may be the case when a house owner Assigns the ownership transfer to a no-

tary, or in a future situation, to a smart contract.

Figure 2. Conceptual Model Commitment Formalization using The Event Calculus

Now that we understand the basic lifecycle of commitments, it is important to map

this concept to our infological ontology. Hereby, the concept of Events, and Fluents

are mapped to Transfers and Accounts in our infological ontology [12], but the two

conceptualizations have a slightly different focus. Whereas a Transfer manipulates

183

agnostic Accounts (through inflow- and outflows), Events manipulate specific Flu-

ents through Actions, namely Commitments, by specific operations from the com-

mitment lifecycle. On the other hand, in the infological model a Transfer is con-

ceived as Inflow and Outflow. So to combine the two models, we have to restrict

Transfers to specific commitment-manipulating actions and we have to specify

these actions in terms of Inflow and Outflow. The main concern with regards to

reasoning about Transfers in smart contracts, is that so far, there is a lack of stand-

ards for Rules of Engagement. The Clauses and Defaults that govern the Transfers

can be anything. By mapping the Rules of Engagement to Event Calculus axioms,

the rules become a sound axiom system. A distinction must be made between the

general Event Calculus axioms, generic Commitment axioms and contract-specific

rules. For example, it is a generic Commitment axiom that only a debtor Agent is

allowed to discharge a commitment. Further, by allowing preconditions to be asso-

ciated with the Initiation and Termination of properties, different commitments can

be associated with communicative acts to model the communications among Agents

more concretely.

Figure 3. Mapping Infology to The Event Calculus

3 Manipulating commitments using the Event Calculus

The Event Calculus uses various predicates to reason about events. Based on the

predicates and axioms presented in [7] [8]. We have modified the notation to e for

events and c for commitments. The symbol ← denotes implication, ∧ denotes con-

junction and ~ denotes negation by failure. The time points are ordered by the <

relation, which is defined to be transitive and asymmetric. We write a commitment

as C(x, y, p, q) where x is the debtor, y is the creditor and p and q are the antecedent

and consequent respectively. When c is a commitment, debtor(c) yields the x, and

184

similar to the other roles Before we explain the axioms that are required to create

and manipulate commitments, it is important to distinguish between the various

commitment types that have been identified by [7] used in this paper. Base commit-

ments (BC) written as BC(x, y, p) are commitments from debtor x to a creditor y to

satisfy condition p. Condition p does not involve other fluents or commitments,

written as BC(x, y, p). This type of commitment is also known as an unconditional

commitment. On the other hand, conditional commitments are written as CC(x, y,

p, q) whereby debtor x will bring about condition q to creditor y, once condition p

is satisfied. In contrast to a BC, the behavior of a CC is slightly more complex. In

line with the state knowledge update paradigm [14], a CC is terminated and subse-

quently reinitiated. In line with [7], we then implement Colombetti’s [15] defini-

tions of conditional commitments, where a CC resolves into a new BC upon the

realization of p. This new BC is committed to satisfy q. So when a CC holds and an

event happens that fulfils p, the CC is terminated and a new BC being created. In

this paper, we will not touch persistent commitments (PC(x, y, G(p))). Table 2 sum-

marizes the formalization rules and commitment type used in our protocol run.

Commitments denoted as c can be either a BC or a CC.

Table 2. EC Rules

Rule Explanation EC Notation Type

r1 Creation of a commitment

that is not activated during

the create event.

Commit(e, x, c) ← Happens(e, t) Exchange

r2 Activation of a commit-

ment or the activation of a

commitment that is acti-
vated in the same event

Activate (e, c, t) ← Happens(e, t) ^ Com-

mit(e, x, c)

Exchange

r3 Termination of a BC that

is fulfilled

Satisfy(e, BC(x, y p), t) ← Happens(e, t) ^

Activate(e, bc(x, y, p), t) ^ Discharge(e, x,

BC(x, y, p))

Exchange

r4 Termination of a CC that

resolves in a BC to provide

q in a later event

Activate (e, BC(x, y, q), t) ← Happens(e, t)

∧ Commit(e, x, BC(x, y, q))

Satisfy(e, CC(x, y, p, q), t) ← Happens(e, t)

∧ HoldsAt (CC(x, y, p, q)) ^ Activate(e,

CC(x, y, p, q), t))

Exchange

r5 Termination of a CC that
resolves in a BC to provide

q that is activated in the

same event of satisfying
the CC

Commit(e, x, BC(x, y, q)) ← Happens(e, t)
Satisfy(e, CC(x, y p, q), t) ← Happens(e, t)

∧ HoldsAt (CC(x, y, p, q)) ∧ Activate(e,

CC(x, y, p, q), t))

Exchange

r6 The delegate operation

that replaces the debtor of

the commitment with
agent z

Commit(e, z, CC(z, y, p, q)) ← Happens(e,

t) ∧ Delegate(e, x, z, CC(z, y, p, q))

Cancel(e, x, CC(x, y, p, q)) ← Happens(e, t)

∧ Delegate(e, x, z, CC(x, y, p, q))

Control

r7 The assign operation that

replaces the creditor of the
commitment with agent z

Commit(e, x, cc(x, z, p, q)) ← Happens(e, t)

∧ Assign(e, z, z, cc(x, y, p, q))

Release(e, y, cc(x, y, p, q)) ← Happens(e, t)

∧ Assign(e, y, z, cc(x, y, p, q))

Control

The rules presented in table 2. İmplement rule templates that are (still under

185

development) and out of scope for this paper. In that context, r1 should be considered

as a rule that compounds multiple rules in our workflow to relate commitments as

the evolve. For example, the commitment to Relocate has a direct relation with the

commitment to ConsiderOffers.

4 Application: The Real Estate Example

We now apply the CBSC framework to a basic real-estate transaction - often men-

tioned as an important application area for smart contracts [16]. BUY represents the

buyer (or debtor agent). SEL represents the seller (or creditor agent) and AG repre-

sents a real estate agent.
Since this process is standardized and regulated in most countries, there is

only one protocol run possible. We assume that only one action can occur at one

time point. Hence, we are not concerned with concurrent events. The frame problem

[6] is handled through circumscription as shown by [13]. Through circumscription,

the set of Activates, Satisfies and Release clauses is kept to minimize unexpected

effects. The minimization of Happens leads to a minimal number of unexpected

events. table 3 shows the EC events e1..e5 that correspond to interface messages of

the smart contract. Since this property event cycle is heavily regulated, the order of

events is rather standard and does not provide room for change. To name the events,

we have chosen to uppercase the second main action words, like listProperty, where

the first word is a fluent. The next step is to convert the chain of events to the EC.

Commit(e, x, c) establishes commitment c, in our interpretation BC or CC. When

event e is performed, the commitment c or a state (fluent) p is initiated. HoldsAt

explains which states (fluents) hold at a given time point, and Happens defines a

predicate relation between events possibly surrounded by conditions and times

[17].

Table 3. Protocol Run Events

Event Event Description Event Notation P/Q Detail

e1 The event where the seller decides to

relocate to another location, which

would result in the sale of his/her
property

DecideToRelocate(a) f1 Decide

e2 The event where the seller lists his/her

property and starts considering offers
from buyers

ListProperty(a, m) f2 List

e3 The event where the buyer offers to

buy the property from the seller for a

certain amount

MakeOffer(a, m) f3 Offer

e4 The event where the seller accepts the

offer made by the buyer. In this exam-

ple, the number of offers is not rele-
vant

AcceptOffer(a, m) f4 Accept

e5 The event where the seller and buyer

sign the agreement

SignContract(a, m) f5 Sign

186

Table 4 shows the protocol run for the first five events of a generic real estate trans-

action, including the agent that controls the execution and the one that is responsi-

ble. We have modified the protocol as such that we could illustrate all rules pre-

sented in table 2.

Table 4. Protocol run

Event Time P/Q Rule EC C Title Control Responsible

e1 t1.1
t1.2

f1 r2
r2

Commit
Activate

bc1
bc1

Relocate
Relocate

SEL
SEL

SEL
SEL

e2 t2.1

t2.2

f2 r3

r1

Satisfy

Commit

bc1

cc2

Relocate

Consider

SEL

SEL

SEL

SEL

e3 t3.1

t3.2

t3.3

t3.4

f3 r1

r2

r6

r2

Commit

Activate

Delegate

Activate

cc3

cc2

cc3

cc3

Buy

Consider

Buy

Buy

BUY

SEL

SC

SC

BUY

SEL

BUY

BUY

e4 t4.1

t4.2

t4.3
t4.4

t4.5

t4.6
t4.7

t4.8

t4.9
t4.10

t4.11

t4.12
t4.13

f4 r5

r5

r2
r3

r1

r7
r2

r4

r4
r4

r4

r4
r4

Satisfy

Commit

Activate
Satisfy

Commit

Assign
Activate

Satisfy

Commit
Activate

Satisfy

Commit
Activate

cc2

bc4

bc4
bc4

cc5

cc5
cc5

cc5

bc6
bc6

cc3

bc7
bc7

Consider

Consider

Consider
Consider

Sell

Sell
Sell

Sell

Sell
Sell

Buy

Buy
Buy

SEL

SEL

SEL
SEL

SEL

SC
SC

SC

SC
SC

SC

SC
SC

SEL

SEL

SEL
SEL

SEL

SEL
SEL

SEL

SEL
SEL

BUY

BUY
BUY

e5 t5.1

t5.2
t5.3

t5.4

f5 r5

r2
r2

r2

Satisfy

Satisfy
Commit

Commit

bc6

bc7
cc8

cc9

Sell

Buy
Transfer

Vacate

SC

SC
BUY

SEL

SEL

BUY
BUY

SEL

For each event and subsequent time point in table, we can apply the rules as defined

in table 4. We will illustrate some examples. The example starts with the (arbitrary)

decision by the seller to commit to relocate for any reason. Since the seller commits

to his/herself in this instance, the seller represents both x and y. It is important to

note that we do not imply R1 here, since the commitment and its activation both

happen in e1. We could write this commitment conforming to R2 in two ways:

Activate(DecideToRelocate(Mainstreet 1), Relocate(SEL, SEL, De-

cide(Mainstreet 1)), t 1.2) ← Happens(DecideToRelocate(Main-

street 1), t1.1) ∧ Commit(DecideToRelocate(Mainstreet 1), SEL, Re-

locate(SEL, SEL, Decide(Mainstreet 1)))

Or simplified via the shortcuts provided in table 3 and 4. Hereby, a represents the asset (e.g.

Mainstreet 1) and m the amount paid (e.g. 100.000 USD).

Activate(e1 (Mainstreet 1), c1 (SEL, BUY, F1), t1.2) ← Happens(e1(Main-

street 1), t1.1) ∧ Commit(e2, SEL, c1 (SEL, SEL, f 1(a, m)))

187

We prefer the second method using short codes as a matter of convenience. c1 is

satisfied by listing the property. This does not mean that the seller is relocated yet,

but all he/she could do after committing to relocate was to list the property. The list

fluent in e2 commits the seller to consider offers. The Consider commitment (c2)

imposes r1 and is not yet activated, since there are no offers yet to consider.

Satisfy(e2(a, m), c1, t2.1) ← Happens(e2, t2.1) ∧ Activate(e1, c1, t1.2) ∧

Discharge(e2, SEL, c1(SEL, BUY, f2))

Commit(e2, SEL, c2 (SEL, BUY, f2(a, m))) ← Happens(e2, t2.2)

The Buy and Sell commitments stretch from e3 (offer) to e5 (sign) and comply to

r4, whereby the conditional commitments resolves as p (accept) holds into a new

base commitment to provide q (sign). The Buy commitment is created in an event

(e3) where it could not be activated (only from e4). In contrast to the Consider con-

ditional commitment which implies r5, q is only brought about in a later event at

t5.1 and t5.2. The Buy commitment evolves as follows:

Activate (e4, bc7(BUY, SEL, f5(a, m)), t4.13) ← Happens(e4, t4.13) ∧

Commit(e4, BUY, bc7(BUY, sell, f5(a,m)))

Satisfy(e4, cc3(BUY, SEL, f4(a,m), f5(a,m)), t4.11) ← Happens(e4, t4.4)

∧ HoldsAt (cc3(BUY, SEL, f4(a,m), f5(a,m))) ∧ Activate (e3, cc3

(BUY, SEL, f4(a,m), f5(a,m)), t3.4))

Activate (e3, cc3(BUY, SEL, f4(a,m), f5(a,m)), t3.4) ← Happens(e3, t3.1)

∧ Commit(e3, BUY, cc3(BUY, SEL, f4(a,m), f5(a,m)))

The Buy commitment also delegates control to the smart contract conforming to r6

by changing x to z. Please note that x remains responsible.

Commit(e3, SC, cc3(SC, SEL, f4(a,m), f5(a,m))) ← Happens(e3, t3.3) ∧ Dele-

gate(e3, BUY, SEC, cc3(SC, SEL, f4(a,m), f5(a,m)))

Cancel(e, x, cc(x, y, f4(a,m), f5(a,m))) ← Happens(e3, t3.3) ∧ Delegate(BUY,

SC, cc3(BUY, SEL, f4(a,m), f5(a,m)))

The process for the assignment operation for the Sell commitment is similar to the

delegate operation but conforms to r7 instead of r6 to change the creditor agent

from y to z.

188

5 Conclusion

This paper introduced a commitment based formalization approach towards smart

contracts using the Event Calculus. The concept of commitment based smart con-

tracts builds on the idea of expressing multi-agent transaction through the lens of

smart contracts and commitments, while delegating and assigning action execution

responsibility to smart contracts as (semi)autonomous agents. Hereby, the scope of

agents is extended from agents as ‘human’ to be ‘human’ and ‘non-human’. We

believe that commitments can be created, activated and satisfied at different time

points across a (business) transaction. In addition, we have added formalisms to

change the role that actors play during a transaction. We think that these additions

to the commitment lifecycle are useful to apply commitment based approaches to-

wards smart contracts and could be further extended to state monitoring mecha-

nisms, partial fulfillments and approaches towards the (deontic) concept of contract

violation.

References

1. H. Weigand, I. Blums, and J. de Kruijff, “Shared Ledger Accounting - Imple-

menting the Economic Exchange pattern“ Proc. CAiSE 2018, pp. 342–356,

2018.

2. J. de Kruijff and H. Weigand, “Understanding the Blockchain Using Enterprise

Ontology“, Advanced Information Systems Engineering, 29th International Con-

ference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings,” pp. 29–

43, 2017.

3. M. P. Singh and A. K. Chopra, “Violable Contracts and Governance for Block-

chain Applications,” 2018.

4. A. K. Chopra et al., “Agent-Oriented Software Engineering XI, 11th International

Workshop, AOSE 2010, Toronto, Canada, May 10-11, 2010, Revised Selected

Papers,” pp. 17–36, 2011

5. Nardi - Guarini

6. J. McCarthy and P. J. Hayes, “Readings in Artificial Intelligence,” Chapter 5

Adv Top, pp. 431–450, 1981.

7. P. Yolum and M. P. Singh, “Reasoning about Commitments in the Event Calcu-

lus: An Approach for Specifying and Executing Protocols,” Ann Math Artif Intel,

vol. 42, no. 1–3, pp. 227–253, 2004.

8. P. R. Telang, M. P. Singh, and N. Yorke-Smith, “Programming Multi-Agent Sys-

tems, 9th International Workshop, ProMAS 2011, Taipei, Taiwan, May 3, 2011,

Revised Selected Papers,” pp. 22–37, 2012.

9. G. Governatori, “Representing Business Contracts in RuleML,” Int J Coop Inf

Syst, vol. 14, no. 02n03, pp. 181–216, 2005.

10. Reijswoud, V.E. van, (1996) The Structure of Business Communication: Theory

Model and Application. PhD Thesis, Delft University of Technology, Delft

11. P. R. Telang, M. P. Singh, and N. Yorke-Smith, “A Coupled Operational Seman-

tics for Goals and Commitments”, Journal of Artificial Intelligence Research 65

(2019) 31–85

189

https://www.researchgate.net/publication/335895864_Shared_Ledger_Accounting_-_Implementing_the_Economic_Exchange_pattern?_sg=Z8dHqHS63coEriRq71bEyjYgEAOIzY6PwyhfLdzX6-CYA1tR-_DRLOODCLKhVfNFLFfjRz3Px-UZAQ.wcd2DHS2thrOalKqZDsu5vA49Eoz83eYxUEtE3aRxwrdrA-zP2mOVnLImmb_77V5r9rpINVDNu5QT1zG0pMA4w&_sgd%5Bnc%5D=1&_sgd%5Bncwor%5D=0
https://www.researchgate.net/publication/335895864_Shared_Ledger_Accounting_-_Implementing_the_Economic_Exchange_pattern?_sg=Z8dHqHS63coEriRq71bEyjYgEAOIzY6PwyhfLdzX6-CYA1tR-_DRLOODCLKhVfNFLFfjRz3Px-UZAQ.wcd2DHS2thrOalKqZDsu5vA49Eoz83eYxUEtE3aRxwrdrA-zP2mOVnLImmb_77V5r9rpINVDNu5QT1zG0pMA4w&_sgd%5Bnc%5D=1&_sgd%5Bncwor%5D=0
https://www.researchgate.net/publication/316636055_Understanding_the_Blockchain_Using_Enterprise_Ontology?_sg=Z8dHqHS63coEriRq71bEyjYgEAOIzY6PwyhfLdzX6-CYA1tR-_DRLOODCLKhVfNFLFfjRz3Px-UZAQ.wcd2DHS2thrOalKqZDsu5vA49Eoz83eYxUEtE3aRxwrdrA-zP2mOVnLImmb_77V5r9rpINVDNu5QT1zG0pMA4w&_sgd%5Bnc%5D=1&_sgd%5Bncwor%5D=0
https://www.researchgate.net/publication/316636055_Understanding_the_Blockchain_Using_Enterprise_Ontology?_sg=Z8dHqHS63coEriRq71bEyjYgEAOIzY6PwyhfLdzX6-CYA1tR-_DRLOODCLKhVfNFLFfjRz3Px-UZAQ.wcd2DHS2thrOalKqZDsu5vA49Eoz83eYxUEtE3aRxwrdrA-zP2mOVnLImmb_77V5r9rpINVDNu5QT1zG0pMA4w&_sgd%5Bnc%5D=1&_sgd%5Bncwor%5D=0

12. J. de Kruijff and H. Weigand, “Ontologies for Commitment-Based Smart Con-

tracts” In: Proc. OTM 2017, Rhodes, Greece, October 23-27, 2017, Part II,” pp.

383–398, 2017.

13. M. Shanahan, “An abductive event calculus planner,” J Log Program, vol. 44,

no. 1–3, pp. 207–240, 2000.

14. R. Kowalski and M. Sergot, “A logic-based calculus of events,” New Generat

Comput, vol. 4, no. 1, pp. 67–95, 1986.

15. N. Foara and M. Colombetti “A Commitment Based Approach to Agent Commu-

nication” Appl Artif Intell, vol. 18, no. 9–10, pp. 853–866, 2004.

16. I. Karamitsos, M. Papadaki, N.B, Al Barghuthi “Design of the Blockchain Smart

Contract ”, Journal of Information Security 09(03):177-190, January 2018

17. A. Paschke, “ECA-RuleML: An Approach combining ECA Rules with

temporal interval-based KR Event/Action Logics and Transactional Up-

date Logics” ECA-RuleML Proposal for “RuleML Reaction Rules Tech-

nical Goup” – Nov. 2005

190

