
When to use FaaS? - Influencing technical factors

for and against using serverless functions

Robin Lichtenthäler, Stefan Winzinger, Johannes Manner, and Guido Wirtz

Distributed Systems Group, University of Bamberg
robin.lichtenthaeler@uni-bamberg.de

stefan.winzinger@uni-bamberg.de
johannes.manner@uni-bamberg.de

guido.wirtz@uni-bamberg.de

Abstract. Cloud computing offerings evolve continuously. A recent trend
is the Function as a Service paradigm which confronts developers with the
decision whether adopting this new paradigm can be beneficial for parts
of their application. However, many factors influence this decision or even
prevent the usage of FaaS. Therefore, this paper provides a structured
overview of relevant technical factors to guide the decision process.

Keywords: FaaS, serverless, serverless function, cloud computing, decision

1 Introduction

Building applications which run in a cloud environment is the norm for many

enterprises today [9]. However, the possibilities how applications are designed and

run in the cloud are manifold and evolve with new offerings of cloud providers.

A recent trend is serverless computing with the Function as a Service (FaaS)

offering at its core [4]. Developers implement a serverless function by writing

code, potentially combined with further code artifacts (e.g., libraries), which

processes an input and produces an output according to a predefined interface.

The serverless function can then be deployed to a FaaS platform which enables

its execution. The FaaS platform stores the function code and registers it to be

executable via one or more triggers. The available triggers depend on the specific

platform [17]. Typical triggers are messages from a messaging system, database

events or an HTTP request to a URL associated with the function by the FaaS

platform. When a serverless function is invoked via such a trigger, the platform

manages the actual execution transparently. That means, the platform starts up

the execution environment with the required resources, typically a container, and

executes the function with the given input [4]. For multiple invocations, running

containers can be reused or the platform can scale accordingly by starting or

stopping additional containers. Whether a platform can reuse a container (warm

start) or has to start up a new container (cold start) can have a significant impact

on the execution time [19].

J. Manner, S. Haarmann, S. Kolb, O. Kopp (Eds.): 12th ZEUS Workshop, ZEUS 2020, Potsdam,
Germany, 20-21 February 2020, published at http://ceur-ws.org/Vol-2575

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

http://ceur-ws.org/Vol-2575


FaaS platforms are typically administered by cloud providers as in the case

of AWS Lambda1 or Azure Functions2. These cloud providers also offer direct

integration with their respective cloud services, like database services or messaging

services to serve as triggers or dependencies for functions. But also open-source

platforms like OpenFaaS3 or Knative4 are available.

FaaS enables a fine-granular billing in a commercial setting where customers

only pay when a serverless function is actually invoked and executed [2, 10]. Since

the FaaS platform starts and stops function containers transparently in order to

scale the system dynamically and to enable this billing model, serverless functions

should be stateless. This statelessness is one technical aspect in the decision for or

against using serverless functions. Although such aspects are already known, they

were not summarized yet and are often discussed in a different context [4, 10, 15].

Therefore, the aim of this paper is to provide a structured and comprehensive

overview of criteria relevant for the decision process. The focus is on criteria

which result from the technical characteristics of FaaS platforms. Since it can

make sense to use serverless functions only for parts of an application, the starting

point for the criteria we consider is a so-called functionality.

A functionality represents a specific part of business logic which can be

implemented and potentially deployed as a serverless function. An application is

a composition of multiple functionalities. An application primarily consisting of

serverless functions is called a serverless application.

In the following, section 2 provides a short overview of our approach for

the identification of the criteria which are presented in a catalog as the main

contribution of this paper in section 3. We discuss characteristics of the criteria

and how they can be practically applied in section 4. Section 5 gives an overview

of related work whereas we conclude the paper in section 6.

2 Approach

The initial identification of relevant technical criteria was not based on a formal

approach but our prior experience with studying FaaS as a recent trend in

cloud computing. In order to refine and validate the identified criteria, we

then decided to build upon the work of Spillner et al. [23] who maintain a

comprehensive list of research on serverless computing. By relying on their

collection of relevant literature, we looked for insights that either substantiated

or rebutted our identified criteria. The result is the criteria catalog in section 3.

The basic assumption is that each criterion can be evaluated on the basis of a

functionality which is considered to be implemented as a serverless function.

1 https://aws.amazon.com/lambda
2 https://azure.microsoft.com/en-gb/services/functions/
3 https://www.openfaas.com/
4 https://knative.dev/

40 Robin Lichtenthäler et al.



3 Criteria catalog

Statelessness: A functionality should be stateless since the FaaS platform

cannot guarantee a reexecution on the same instance [15, 21]. This means that a

functionality should not hold state (e.g., data stored in memory or on the disk

of the function instance) of previous invocations which is required for further

invocations. Thus, a serverless function is an example of the stateless component
pattern [12] and all state required should be externalized.

Idempotency: A functionality should be idempotent in the sense of the

idempotent processor pattern [12] meaning that it can be reexecuted multiple

times with the same input and produce the same output. This mostly applies

to how a serverless function handles externalized state. Since FaaS platforms

typically reexecute a function in case of an error, a functionality should be idem-

potent or at least provide the possibility to be made idempotent [15]. Otherwise,

a reexecution can lead to unexpected behavior, for example data inconsistencies

because of repeated database transactions.

Synchronous dependencies: Synchronous dependencies express the fre-

quency a functionality requires synchronous communication with other services

during its execution. This means that a request is sent to an external system, e.g.,

a data storage or an external API, and the process is blocked until a response

arrives. Because a serverless function is also charged for the time in which it

is blocked, each synchronous dependency potentially creates unnecessary cost

[3, 5]. This effect can even be increased when multiple function instances are

executed on the same host and therefore also have to share the available network

bandwidth for their synchronous dependencies [13]. A functionality having many

synchronous dependencies should therefore not be implemented as a serverless

function. Asynchronous interactions with other services where no response is

expected are not problematic.

Event-driven architecture: An event-driven architecture aligns well with

the FaaS paradigm because serverless functions are well-suited as event processors

[5, 10, 20]. Therefore, if an event-driven architecture is used for the application

the functionality belongs to, a serverless function is a suitable implementation.

Additionally, several FaaS platforms provide a built-in support (in the form of

specific triggers) for the consumption of events from various sources.

Algorithmic computing resource efficiency: The computing resources

required for the execution of a functionality depend on its algorithmic character-

istics and the input. Since the computing resources have to be defined upfront for

serverless functions, a computing resource configuration has to be chosen which

is able to handle the input requiring the most computing resources. Consequently,

potential inputs need to be known or a worst-case assumption for the input has to

be made. Memory and CPU power are typically not assigned independently but

change in conjunction [18] for most FaaS platforms. Therefore, the configuration

has to be chosen so that enough CPU power and memory are assigned meaning

that usually one of the two is oversupplied for most inputs.

Oversupplied CPU power does not inevitably result in higher cost because less

complex inputs are often processed faster [16]. If additional cores are assigned

When to use FaaS? 41



with more CPU power, it depends on the ability of the functionalities to be pro-

cessed by several cores in parallel. However, oversupplied memory does not result

in a faster execution. It leads to unnecessary cost if memory is provisioned and

has to be paid for, although not needed for all inputs [7, 8]. Thus, an inefficient

usage of the memory resources contradicts the implementation as a serverless

function from an economical point of view.

Maximum execution time: The execution time for a serverless function

has an upper limit enforced by the FaaS platform [4, 17] because serverless

functions should be short-lived [10, 13]. The maximum execution time for a

functionality, even with the highest computing resource configuration, has to be

lower than this limit. Otherwise, the execution will abort with a timeout.

Maximum memory consumption: FaaS platforms limit the memory

which can be assigned to the execution of a function [4, 17]. The maximum

memory consumption of a function for all inputs has to be smaller than the

maximum possible memory configuration. Otherwise, the execution will abort

with an out of memory error.

Availability of execution environments: Available execution environ-

ments are managed by the FaaS platform [15]. Implementing a functionality as a

serverless function is therefore only possible if the desired execution environment

is supported by the chosen FaaS platform. While the available execution environ-

ments of AWS Lambda are limited to common execution environments like Java,

Python or NodeJS [17], OpenFaaS accepts custom Docker images enabling the

usage of arbitrary environments [22].

Deployment artifact size: FaaS platforms limit the maximum size of the

deployment artifact (code archive, container image) for a serverless function [17]

to prevent too large functions and excessive storage usage. If the size of a server-

less function implementation in the form of its deployment artifact exceeds this

limit, it is not possible to implement the functionality as a serverless function.

Latency: If a functionality strictly requires a very low latency, a FaaS

platform might not be able to provide such a latency because of the start-up

overhead for starting a function instance. This start-up overhead is the time

needed by the FaaS platform to provide the required computing resources and to

start the infrastructure (e.g., the container). Since the FaaS platform manages

transparently when function instances are started and stopped, the start-up

overhead occurs frequently [21]. In general, this leads to a longer response time

for functionalities implemented as serverless functions [1–3]. Although the over-

head is also influenced by the runtime environment, it is inherent to the FaaS

paradigm. Therefore, the suitability of serverless functions depends on the latency

requirements for a functionality, as discussed in detail by Aditya et al. [1].

Update frequency: Running systems have to be updated frequently, e.g.,

to implement new features or to fix bugs. Using FaaS offers benefits regarding

the speed with which functionalities can be updated. These benefits are based

on two specific aspects of FaaS: externalization of operational tasks and the

small size of independent deployment units. Because tasks like hardware installa-

tion, operating system maintenance and container orchestration are externalized

42 Robin Lichtenthäler et al.



[10, 11], no additional efforts are required and developers can focus solely on

the actual functionality [15]. All serverless functions of an application can be

deployed independently. If a functionality has to be changed, only the serverless

function implementing this functionality has to be redeployed which saves time

in contrast to other approaches.

Vendor independence: In order to be vendor-independent, the possibility

to implement and deploy a functionality in different environments is needed.

FaaS platforms expect that serverless functions are implemented according to an

interface predefined by the corresponding platform provider. Once a functionality

is implemented as a serverless function for a specific FaaS platform, its code has to

be adapted if it has to be transferred to another FaaS platform [2]. Furthermore,

FaaS platforms provide platform-specific services which are often used by the

functions. If these services are used, additional efforts have to be made to transfer

and provide these services on another platform [15, 24]

Workload type: In general, different workload types can be distinguished

which can be used to classify specific usage profiles of functionalities. According

to Fehling [12], there are static, periodic, once-in-a-lifetime, unpredictable and

continuously changing workloads. If the workload is unpredictable, i.e., bursty, or

continuously changing, FaaS is well-suited since its provision of resources can be

adapted dynamically [4]. Under- or over-provisioning does not occur compared

to other deployment options like VMs. For a once-in-a-lifetime workload (e.g.,

for a migration) FaaS makes sense if the resources required cannot be provided

otherwise, but it is not the typical use case for FaaS. Handling a static workload

can usually be implemented more cost-efficiently in a more traditional cloud

model since the resources needed are known upfront and are used most of the

time which is cost-efficient [15]. If workload is produced periodically, FaaS can

make sense but offers no specific advantage compared to other deployment models.

Apart from this broad assessment, a thorough cost calculation for a specific usage

profile is required to definitively evaluate the suitability of FaaS [7].

4 Discussion

The criteria presented in section 3 cover important aspects of FaaS in a compact

way without being too detailed. Therefore, other criteria were excluded from our

collection which are not exclusive to FaaS. E.g., for a cloud service like AWS

Lambda, it might not be possible to determine where the serverless function

is actually executed. Howevere, there can be regulations for sensitive date that

they can only be processed in certain countries. Thus, the usage of FaaS for

sensitive data might be prohibited. Despite being an important concern, it is

not exclusive to FaaS because it also applies to other cloud deployment models

like Platform as a Service (PaaS). Another often mentioned advantage of FaaS

is the automated horizontal scalability of serverless functions. While it can be

a convincing argument for FaaS, it is not an exclusive characteristic of FaaS.

Other deployment models like a Kubernetes5 deployment with a horizontal pod

5 https://kubernetes.io/

When to use FaaS? 43



autoscaler or a PaaS deployment can offer the same horizontal scalability, although

lacking the possibility to scale to zero instances. Additional criteria in this regard

are availability of SLAs and resilience. It has to be noted that the decision for or

against using FaaS therefore also depends on the alternatives to which FaaS is

compared to. Alternative deployment models could for example be an on-premises

deployment on dedicated hardware, a virtual machine (VM) deployment within

an Infrastructure as a Service (IaaS) offering, a PaaS deployment, or a deployment

in a Kubernetes cluster. For some of those alternatives the mentioned excluded

criteria can make a significant difference. But, as already stated, to keep the

catalog comprehensible we decided to focus on criteria exclusive to FaaS and a

more comprehensive comparison of criteria with selected deployment alternatives

could be done in future work.

Furthermore, our catalog is focused on criteria resulting from the technical

characteristics of FaaS. Other non-technical criteria can be relevant in a decision

process as well, for example the effort to train developers to work with the new

paradigm and the specific FaaS platforms. But criteria which cannot be regarded

on the basis of a single functionality are out of the scope for this work because

they are less helpful for the decision whether FaaS is applicable to parts of an

application.

An additional aspect regarding the criteria included in our catalog is that

their relevance differs depending on whether an administered FaaS platform of

a cloud provider or a self-hosted open source platform is used. This should be

kept in mind when applying the criteria in a decision process since operational

concerns are not completely externalized when a self-hosted platform is used.

Table 1. Decision guidance for incorporating serverless functions

Category Criterion Dimension

M
an

da
to

ry

Statelessness Yes/No
Executable in maximum execution
time

Yes/No

Executable with desired memory set-
ting

Yes/No

Availability of desired execution en-
vironment

Yes/No

Deployment artifact size not ex-
ceeded

Yes/No

C
os

t-
Effi

ci
en

cy

Synchronous dependencies Number of dependencies
Algorithmic computing resource ef-
ficiency

% of Utilization

Expected usage profile static/periodic/once-in-a-
lifetime/unpredictable

In
di

vi
du

al Effort to achieve idempotency high/medium/low
Event driven architecture Yes/No
Update frequency Number of deployments per month
Vendor independence important Yes/No

44 Robin Lichtenthäler et al.



We have summarized the criteria as a structured questionnaire presented in

Table 1 to enable a practical application. The criteria are adjusted to be used

as questions. Possible answers are provided in column Dimension. The table

is structured into three categories. Mandatory criteria are knock-out questions

where a single No indicates that FaaS is not an option.

Cost-Efficiency criteria impact the billing and are therefore relevant from

a business perspective. Since FaaS is the first real pay-as-you-go billing model,

evaluating the potential cost is a significant factor.

The impacts of individual criteria depend on the specific situation. Regardless

of the answers given to these questions, an implementation with FaaS is not

immediately prevented. Each developer or organization has to decide individually

how important these aspects are. If, for example, vendor independence is impor-

tant, it generally makes FaaS less suitable. But if the disadvantages can be dealt

with, it might nevertheless be possible to implement a functionality using FaaS.

This questionnaire helps assess the potential of implementing functionalities

as serverless functions by substantiating the decision process. The criteria are

intended to be assessed on the basis of a predefined functionality. However, finding

the right scope for a functionality or decide whether several functionalities could

be fused into one serverless function is another important topic which has to be

addressed in research.

5 Related Work

Criteria to consider in the decision process for or against using FaaS have so far

not been discussed in combination but individually as suitable for the respective

purpose. To our knowledge, this is the first work collecting these criteria in a

catalog. The only comparable approach is a flow chart created by Bolscher as

part of his Master’s thesis [6], but it considers all criteria to be yes or no criteria.

Research on decision making in the broader topic of cloud computing, however,

is already a mature field of research. The main focus is often on multiple-criteria

decision making to select a specific cloud service or cloud provider [14]. In

comparison to this, our work has a considerably smaller scope and is focused only

on a single outcome, namely whether or not to use FaaS. It could however be

combined with multiple-criteria decision making to select a suitable deployment

model for an application.

6 Conclusion and Outlook

This paper presents a catalog of criteria which can be practically used with the

presented questionnaire for the decision of whether to implement a functionality

as a serverless function or not. To evaluate their comprehensiveness and usefulness,

in future work the criteria should be applied to an actual use case or be empirically

validated with the help of practitioners. Furthermore, specific criteria are worth

to be considered in more detail such as the computing resource efficiency or the

impact of different workload types.

When to use FaaS? 45



References

1. Aditya, P., Akkus, I.E., Beck, A., Chen, R., Hilt, V., Rimac, I., Satzke, K., Stein, M.:
Will Serverless Computing Revolutionize NFV. Proceedings of the IEEE 107(4),
667–678 (2019)

2. Adzic, G., Chatley, R.: Serverless Computing: Economic and Architectural Impact. In:
Proceedings of 11th Joint Meeting on Foundations of Software Engineering. ACM,
Paderborn, Germany (2017)

3. Albuquerque Jr, L.F., Ferraz, F.S., Oliveira, R.F.A.P., Galdino, S.M.L.: Function-as-a-
Service X Platform-as-a-Service: Towards a Comparative Study on FaaS and PaaS. In:
The Twelfth International Conference on Software Engineering Advances (ICSEA). p.
217. IARIA (2017)

4. Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., Mitchell, N.,
Muthusamy, V., Rabbah, R., Slominski, A., Suter, P.: Serverless Computing: Current
Trends and Open Problems. In: Research Advances in Cloud Computing, pp. 1–20.
Springer Singapore (2017)

5. Baldini, I., Cheng, P., Fink, S.J., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P.,
Tardieu, O.: The serverless trilemma: function composition for serverless computing.
In: Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software - Onward! 2017.
ACM Press (2017)

6. Bolscher, R.: Leveraging Serverless Cloud Architectures. Master’s thesis, University of
Twente (2019)

7. Eivy, A.: Be Wary of the Economics of “Serverless” Cloud Computing. IEEE Cloud
Computing 4(2), 6–12 (2017)

8. Elgamal, T., Sandur, A., Nahrstedt, K., Agha, G.: Costless: Optimizing Cost of
Serverless Computing through Function Fusion and Placement. In: 2018 IEEE/ACM
Symposium on Edge Computing (SEC). pp. 300–312. IEEE (2018)

9. Eurostat: Cloud computing services used by more than one out of four enterprises in
the eu. Online (2018), https://ec.europa.eu/eurostat/documents/2995521/
9447642/9-13122018-BP-EN.pdf

10. van Eyk, E., Iosup, A., Seif, S., Thömmes, M.: The SPEC Cloud Group’s Research
Vision on FaaS and Serverless Architectures. In: Proceedings of the 2nd International
Workshop on Serverless Computing. pp. 1–4. WoSC ’17, ACM, New York, NY, USA
(2017)

11. van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uta, A., Iosup, A.: Serverless is More:
From PaaS to Present Cloud Computing. IEEE Internet Computing 22(5), 8–17
(2018)

12. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns. Springer Vienna (2014)

13. Hellerstein, J.M., Faleiro, J., Gonzalez, J.E., Schleier-Smith, J., Sreekanti, V.,
Tumanov, A., Wu, C.: Serverless Computing: One Step Forward, Two Steps Back. In:
9th Conference on Innovative Data Systems Research (CIDR) (2019)

14. Lee, S., Seo, K.K.: A hybrid multi-criteria decision-making model for a cloud service
selection problem using BSC, fuzzy delphi method and fuzzy AHP. Wireless Personal
Communications 86(1), 57–75 (2015)

15. Leitner, P., Wittern, E., Spillner, J., Hummer, W.: A mixed-method empirical study
of Function-as-a-Service software development in industrial practice. Journal of
Systems and Software 149, 340–359 (2019)

46 Robin Lichtenthäler et al.



16. Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., Pallickara, S.: Serverless Computing:
An Investigation of Factors Influencing Microservice Performance. In: 2018 IEEE
International Conference on Cloud Engineering (IC2E). pp. 159–169. IEEE (2018)

17. Lynn, T., Rosati, P., Lejeune, A., Emeakaroha, V.: A Preliminary Review of Enterprise
Serverless Cloud Computing (Function-as-a-Service) Platforms. In: 2017 IEEE
International Conference on Cloud Computing Technology and Science (CloudCom).
pp. 162–169. IEEE (2017)

18. Malawski, M., Figiela, K., Gajek, A., Zima, A.: Benchmarking Heterogeneous Cloud
Functions. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017: Parallel Processing
Workshops. pp. 415–426. Springer International Publishing (2018)

19. Manner, J., Endreß, M., Heckel, T., Wirtz, G.: Cold Start Influencing Factors in
Function as a Service. In: 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion, 4th Workshop on Serverless Computing (WoSC).
IEEE (2018)

20. McGrath, G., Brenner, P.R.: Serverless Computing: Design, Implementation, and
Performance. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW). pp. 405–410. IEEE (2017)

21. McGrath, G., Short, J., Ennis, S., Judson, B., Brenner, P.: Cloud Event Programming
Paradigms: Applications and Analysis. In: 2016 IEEE 9th International Conference
on Cloud Computing. pp. 400–406. CLOUD, IEEE (2016)

22. Mohanty, S.K., Premsankar, G., di Francesco, M.: An evaluation of open source
serverless computing frameworks. In: 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). pp. 115–120. IEEE (2018)

23. Spillner, J., Al-Ameen, M., Boruta, D.: Serverless literature dataset. Online (2019),
https://zenodo.org/record/3517819

24. Yussupov, V., Breitenbücher, U., Leymann, F., Müller, C.: Facing the unplanned
migration of serverless applications. In: Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing - UCC'19. pp. 273–283.
ACM Press, New York, NY, USA (2019)

All links were last followed on January 10, 2020.

When to use FaaS? 47


