
169

An Approach to Transaction Delegation in Self-protected
Decentralized Data Platforms

© Mykyta Savchenko[0000-0003-1107-0461], © Vitaliy Tsyganok[0000-0002-0821-4877], and
 © Oleh Andriichuk[0000-0003-2569-2026]

Institute for Information Recording of National Academy of Sciences of Ukraine, Kyiv,
Ukraine

zitros.lab@gmail.com, tsyganok@ipri.kiev.ua,
andriichuk@ipri.kiev.ua

Abstract. This article presents an overview of existing approaches to transaction
delegation in self-protected decentralized data platforms (distributed ledger tech-
nology-based decentralized networks), using the example of the most known pro-
jects of the Ethereum decentralized data platforms. The four most commonly
used approaches are considered, with their advantages and disadvantages high-
lighted, and the limitations of solutions based on them being outlined. A universal
approach to transaction delegation in self-protected decentralized data platforms
is developed, which does not require decentralized programs to be standardized,
as well as the dedicated server-side processing logic. In addition, auxiliary client
and server-side programs are provided, which can be applied to any decentralized
programs. Outlined the possible vector of application of the developed approach
to decision support systems.

Keywords: Distributed ledger technology, decentralized data platforms, dele-
gated transactions, Ethereum, decision support systems.

Introduction

Followed by the modern trends in information technology, the development of self-
protected decentralized data platforms and DLT (Distributed Ledger Technology) is
gaining more and more attention, which is predicted to play an enormous role in almost
every area in the future: financial, government, healthcare, trading, etc. Such decentral-
ized platforms in 2019 are mainly represented by blockchain technology, as well as
other technologies that provide similar characteristics for systems built on top of them.

A self-protected decentralized data platform is standardized storage, security, sup-
port, processing and data management system which is maintained by many automated
computing nodes, forming a single dedicated network resistant to any unauthorized
changes or attacks. Distributed Ledger Technology (DLT) is typically provided as a
basis for such data platforms. The main feature of such data platforms is the resistance
to any attack on the data and unwanted impact on the decentralized network itself. This
makes it virtually impossible to tamper with, to delete or make data unavailable. The

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

170

main characteristics of self-protected decentralized data platforms are their bandwidth
(usually the number of transactions per unit of time), scalability (ability to scale accord-
ing to the bandwidth growth), degree of decentralization (full or partial), cost of mainte-
nance (computational and monetary), and others.

Examples of such decentralized data platforms are Bitcoin, Ethereum, EOS, IOTA,
Hedera Hashgraph, Holochain, Radix, Telegram Open Network (TON) projects and
more. Each platform supports its own dedicated network using tens of hundreds of
thousands of computational nodes located all around the globe. Self-protected decen-
tralized data platforms are already used today for a huge number of tasks: creating pro-
grammable cryptocurrencies, to secure data registers, such as, for example, a cadastral
registry or a register of public documents, voting, registering cargo or goods, tokeniza-
tion of real-world objects, etc.

The relatively new but increasingly relevant technologies which underpin self-pro-
tected decentralized data platforms are evolving as the data platforms themselves. The
very first self-protected decentralized Bitcoin data platform, which allows for only 7
transactions per second, has existed for over 10 years and has not yet been successfully
attacked, excluding some external cases of big thefts that were out of the technology
scope. This level of protection and trust pushes an upgrade of all classic software sys-
tems to self-protected decentralized data platforms. But there are a number of disad-
vantages that make it impossible to do so at this time. At first, none of the decentralized
platforms currently available are scalable and therefore cannot handle a large number
of transactions and requests. Secondly, these platforms require a specific approach to
interact with them, which is often too complex or too costly for end users. Often, appli-
cations that are developed on top of the particular decentralized platform simplify their
solutions, thus losing the data protection property that the platform could provide.

Therefore, one of the most important problems of using such data platforms is the
complexity, as well as the lack of a conventional or universal approach to building de-
centralized applications in order to solve the complexity problem for the end user. This
paper describes a universal approach to building such applications, regardless of the
platform used. In addition, the advantages and disadvantages of using this approach in
real-world applications are compared and recommendations for its use in decision sup-
port systems are given.

1 The Problem of Paying Multi-Currency Fees in a Secure
Decentralized Data Platform

None of the existing and theoretically possible decentralized networks and self-pro-
tected data platforms that form such networks can exist without their continued support
by all network members. In addition, each participant must be sufficiently motivated to
remain on the network and perform the functions of ensuring its integrity and secu-
rity [1]. There are several types of incentives for the network members to apply in to-
day's decentralized data platforms:
─ Financial Reward. It is currently the major incentive and it is used in almost any

171

decentralized data platform: Bitcoin, Ethereum, EOS. Network members who sup-
port a particular decentralized data platform receive a reward in the form of a specific
asset used in the network, in which network users pay fees. Also, the decentralized
platform algorithm may provide for predictable inflation, which deterministically
generates a certain amount of that asset (for example, an additional 1% per year),
distributing it among participants who support the network.

─ Networking privileges. For example, an ability to perform more transactions in it in
exchange for supporting the network. This incentive is used in platforms such as
IOTA. By design of their decentralized data platform, users of the network them-
selves or the companies that need to use the network are obliged to perform the sup-
port functions of the network to use it.

─ Volunteering or agreement. The volunteerism principle is used (or was used tempo-
rarily, for example, when starting a new network) in decentralized networks such as
EOS, IOTA. That is, the network is supported by volunteers who mostly interested
in proving themselves to the community and gaining a certain rating in the network.
While volunteerism or agreements are largely used in private networks, there are
more and more examples now of using this approach in the public networks, where
several institutions agree to support a shared network and build a self-protected de-
centralized data platform on top of it. A prime example of such a platform is the
Libra project, started by Facebook, which includes a large number of organizations
such as Visa, Mastercard, PayPal, Uber and others.

─ Combinations of the above incentives.

However, almost every modern decentralized data platform use financial rewards as an
incentive for those who support the network. Also, network users pay fees to execute
their transactions in the network This commission is needed not only to reward those
who support a decentralized data platform but also as a precautionary step against spam
attacks on the decentralized network. That is, in order to use the data platform or appli-
cations based on it, the user must first purchase a certain amount of cryptocurrency that
is used to pay commissions in a particular decentralized network, and only then start
using the data platform or the application on top of it.

Acquiring cryptocurrency for each decentralized data platform is not an easy pro-
cess: in addition to users having to create their own wallet within a decentralized plat-
form, users are also forced to use the so-called exchanges to receive cryptocurrency
through which they can interact with the decentralized application. Today, currency
exchange services are quite sophisticated, however, there are some limitations to im-
plementing such an exchange, from the user's point of view:
─ At first, the online currency exchange is very dependent on the country in which the

user is located, as well as its laws. As of today, many people still do not have the
ability to buy cryptocurrencies.

─ Secondly, because of exchange restrictions, users cannot buy the small amount of
cryptocurrency needed for only a few targeted transactions on the network. There-
fore, they have to buy a large amount of cryptocurrency (usually not less than $50)
at once.

172

Unfortunately, most Internet users refuse to use web services that have a complicated
registration or their usage process. And in the case when internet service is based on
decentralized data platforms, the use is largely limited to the userbase which is able to
buy a cryptocurrency and effectively go through an app onboarding process. Figure 1.1
shows the initial steps required to prepare you to work with decentralized data plat-
forms.

Fig. 1.1. — The diagram of the steps that the user goes through before using decentralized ap-

plications

Thus, the use of decentralized applications based on self-protected decentralized data
platforms either becomes very narrow or is simplified to systems where the use of the
decentralized data platform loses most of its important functions, becoming more cen-
tralized and vulnerable to attacks.

2 Approaches to Simplifying Solutions Based on Self-
Protected Decentralized Data Platforms

The use of decentralized applications known as DApps or Decentralized Applications
requires special software known as crypto wallets. An account (wallet) in a decentral-
ized data platform is the user's unique address used to perform certain actions with the
data platform [3]. An account can be generated by the user for free (such as it is in
decentralized Ethereum or Bitcoin data platforms) or pre-registered (such as in EOS
decentralized data platform). In any case, to create an account, the user generates a
secret (private key) that allows them and only them to perform certain actions in a de-
centralized platform. Special software (crypto wallets) keep the secret (private key) of
the user offline and acts as an auxiliary program for interacting with the decentralized
platform. Quite often, using just a single secret, you can generate virtually an infinite
number of accounts by utilizing the Hierarchical Deterministic (HD) key creation algo-
rithm, such as BIP32 [4], if doing so is supported by a crypto wallet.

Crypto wallets usually exist in the form of mobile applications, physical devices with
additional software, plug-ins for Internet browsers, or individual browsers with build-
in support of a particular decentralized data platform. Examples of existing crypto wal-
lets are Trezor, Ledger (physical devices) [5], Trust, Metamask (mobile applications),
Metamask (extensions for Internet browsers), Mist, Brave, Opera (Internet browsers
with built-in crypto wallets) [6].

Creating a wallet is usually an easy task, but it requires additional time and user
attention. If the secret is lost, the user will no longer be able to restore access to his
account [7]. But the biggest difficulty, as noted above, is to refill the account with a
certain amount of cryptocurrency, allowing the user to work with the decentralized ap-

173

plication. Decentralized application simplifications are typically applied at the crypto-
currency purchase step. Thus, from the initial steps shown in Figure 1.1, there is only
one step — creating a crypto wallet and an account for a decentralized data platform.
A simplified diagram of the steps required for the user to prepare before using the de-
centralized application is shown in Figure 2.1.

Fig. 2.1. — The diagram of the steps that the user goes through before using decentralized ap-

plications without a need to purchase cryptocurrency

This simplification is usually done by utilizing transaction delegation principles — that
is, delegating the right to conduct a particular transaction in the network from one ac-
count (the user) to another (the delegate) [8, 9]. Thus, the commission for this transac-
tion will be paid by the delegate (the account conducting the transaction), but not by
the account that intends to complete the transaction. There is a number of existing ap-
proaches to transaction delegation, each having pros and cons. An overview of these
approaches and a comparison of their advantages and disadvantages is provided below.

2.1 Trusted Transaction Delegation

The prime example of a trusted transaction delegation is granting a delegate the right
to perform any transactions on behalf of some account. Decentralized data platforms
such as Ethereum have even developed standards for writing decentralized token pro-
grams (eg, ERC777 [10]), which regulate transaction delegation through a trusted trans-
action delegation approach.

The ERC777 standard, which describes trusted transaction delegation, allows ac-
counts to transfer the right to control their own tokens (programmable cryptocurrencies)
to other accounts, as well as to deauthorize particular delegates which were previously
granted a right to control tokens. In this way, the use of a decentralized application can
be simplified since the transactions to be performed by the user will be carried out by
the delegate and not by the user himself. Only one transaction will be left to the user
which actually allows the trusted delegate to use tokens on behalf of their account, and
any subsequent transactions will be carried out by the delegate. The scheme of a trusted
delegated transaction approach is shown in Figure 2.2.

Fig. 2.2. — Trusted Transaction Delegation approach scheme

174

This approach makes decentralized application easier to use because all user actions
can now be performed by a trusted delegate, who also pays transaction fees instead of
the user. However, this is only possible after the user completes a transaction that grants
delegate permission to some delegate account, and this initial transaction still requires
paying fees in a platform-specific cryptocurrency. However, ERC777 standard also
provides a way to set the default delegate, such as the account of the tokens issuing
entity.

Based on the ERC777 concept described above, the following benefits of trusted
transaction delegation can be identified:
─ Easy to apply.
─ Standardized.

Disadvantages of this approach:
─ Requires paying fees in a platform-specific cryptocurrency for the first permission

granting transaction, unless the default delegate is set up in the decentralized pro-
gram.

─ Requires paying fees in a platform-specific cryptocurrency to delegate/terminate the
delegated authorization.

─ This approach does not restrict the delegate in what transactions they can perform
and is therefore not secure (due to possible vectors of attack on the delegate).

─ It can only be applied to new decentralized programs, or to those where this approach
has been foreseen.

2.2 Delegating Transactions with Decentralized Auxiliary Identity
Programs

Usually, unlike trusted transaction delegation, systems require a more secure approach
which can also be applied to existing decentralized programs (smart contracts). In this
case, one can create an intermediate decentralized program, which is called the identity
contract. This decentralized program acts as a typical decentralized account but is pro-
grammed in a specific way, allowing to perform secure delegated transactions without
the need for the owner assigned to this decentralized program to pay for transactions.
Using this approach, an account holder is only required to authorize transactions on
behalf of his or her personal contract through digital signatures. The approach of trans-
action delegation with the help of decentralized programs is shown in Figure 2.3.

Fig. 2.3. — Transaction Delegation Scheme Using Auxiliary Decentralized Programs

175

The advantages of this approach include the following:
─ It can be applied to any decentralized program.
─ This approach is secure because the account holder of the identity contract may have

full control over the actions performed by the delegate through digital signatures.

Disadvantages of delegating transaction with decentralized auxiliary identity programs:
─ It changes the logic of how decentralized programs should work and introduces the

concept of an "identity contract", thus making some existing applications incompat-
ible with it. For example, in this approach, the tokens will own the contract of the
account, but not the account itself which is why the balance of tokens in the account's
crypto wallet will always be displayed as zero (since the crypto wallet that tokens
are stored on the identity contract instead of the user's account).

─ Identity contract initialization is required, which potentially opens a new vector for
spam attacks on decentralized applications implementing delegated transactions
with the use of identity contracts.

─ It is hard to standardize.

An example of standards that describe the identity contract with the use of electronic
signatures are ERC1056 and ERC780 [11].

2.3 Delegating Transactions without Decentralized Auxiliary Identity
Programs

The approach to delegating transactions without the use of intermediate decentralized
programs can be classified as a combination of the advantages of the two approaches
described above. In this approach, unlike the one which uses decentralized identity pro-
grams, all the properties of decentralized identity programs are provided directly in the
decentralized program which describes the cryptocurrency. This cryptocurrency (usu-
ally token) is used in decentralized application, and its users pay commission in it. And,
unlike trusted transaction delegation, the actions that a delegate can perform can be
limited and fully controlled by the account itself using digital signatures. The scheme
for delegating transactions without the use of auxiliary decentralized programs is shown
in Figure 2.4.

Fig. 2.4. — Transaction delegation scheme without the use of decentralized ancillary programs

The advantage of this approach include:
─ No need for initialization transactions, unlike in the previous two approaches.

176

─ This approach is secure because the account holder has full control over the actions
that the delegate can perform through digital signatures.

─ It does not change the logic of decentralized applications.

The disadvantages of this approach include:
─ It is hard to standardize.
─ It can be applied either to the new decentralized programs or those which already

have some delegated functions in the token decentralized program.

Examples of attempts to standardize this approach include the next proposals:
ERC1776, ERC865, ERC1003 and ERC1228 [11, 12], which still remain open as for
2020. The main disadvantage of this approach is that it is difficult to standardize, and
this has led to the emergence of many different token standards, which have already
been deployed to decentralized networks.

2.4 Delegating Transactions on Decentralized Data Platform Level

Speaking of self-protected decentralized data platforms as a whole, there is a possibility
of implementing transaction delegation at the data platform level. However, so far this
approach has not become widely adopted and has not been implemented in any of the
leading decentralized platforms such as Ethereum, TRON, EOS and others (as of 2020).
It is only known that this approach can be implemented in the decentralized platform
Ethereum 2.0, which release is planned no earlier than 2022 [13].

An approach to delegating transactions on the level of the data platform itself may
appear as the ability to pay a commission for any transaction by any delegate, on some
agreed particular terms. For example, a delegate will only conduct the group of account-
signed transactions in which at least one transaction will pay the appropriate commis-
sion in a particular token, cryptocurrency, or perform any rewarding action for delegate.

This approach requires the support of signed transaction groups at the data platform
level. Thus, it is necessary that several signed transactions, where one of the transaction
pays a transaction delegation fee, are guaranteed to be executed or rejected in full in
case of at least one unsuccessful transaction in the group. The potential implementation
scheme of this approach is shown in Figure 2.5.

Fig. 2.5. — Transaction delegation scheme at the decentralized data platform level

The advantages of this approach include all the advantages of the approaches described
above, excluding these disadvantages:

177

─ As for 2020, this approach is supported by neither of the existing advanced decen-
tralized data platforms.

─ It is difficult to standardize at the data platform level. However, the standardization
at the level of decentralized applications is possible, as delegates are usually the
companies themselves that support the decentralized application and have complete
tools to work with their decentralized token programs, including trading and crypto-
currency exchange tools. As for the data platform itself, the problem of paying fees
in any arbitrary cryptocurrency or token has a complex nature of the exchange, which
does not allow you to accurately estimate the fee to be charged nor to exchange any
possible token without centralizing the data platform. As an example, the payment
of a commission in token X may be refused by delegate A because it simply does
not trust the token or cannot exchange it for another cryptocurrency (no exchangers,
prohibited by law, etc).

3 Universal Approach to Transaction Delegation

All of the above methods of transaction delegation have their advantages and disad-
vantages, and there is no such method that stands out. However, to understand which
method is the most applicable and can be enhanced, a review of the most common
decentralized applications of 2020 was conducted. The review is based on different
transaction delegation approaches used in the Ethereum platform (mostly projects that
have successfully completed ICO (Initial Coin Offering): Binance, DreamTeam, Loom
Network, Stratis, Maker DAO, OmiseGo, Basic Attention Token, 0x, Golem). Among
them are the following trends of decentralized applications that are currently relevant:
─ Almost every decentralized application uses its own cryptocurrency token to pay for

the use of decentralized or partially decentralized services [14].
─ Decentralized applications are intended for a narrow, knowledgeable audience and

mostly don't use delegated transactions to facilitate the use of services (to pay for
services in a token and additionally require fees in the currency of a decentralized
data platform) [15]. Non-common, usually private decentralized applications, which
use transaction delegation, have very specialized systems to support only certain de-
centralized programs.

─ As a consequence of the previous point, there is no need for an open ecosystem
(market) for delegated transactions. Delegated accounts used in decentralized appli-
cations are generally supported by developers of the decentralized application and
are of no financial interest to other delegate organizations.

─ Transaction delegation is highly centralized, which also follows from the previous
point.

─ There is a lack of a common standard or approach to building decentralized applica-
tions that use transaction delegation.

Thus, it can be concluded that transaction delegation approaches in which delegated
functions are embedded in the decentralized token program are most appropriate among
existing decentralized programs as each organization tries to develop and support its
own transaction delegation ecosystems. But the lack of a single standard or approach

178

to building decentralized programs or applications that use transaction delegation still
remains unresolved.

The universal approach to the transaction delegation described in this article offers
a solution to the problem of standardization by writing decentralized programs and their
service parts in such a way that there is no need for a single standard at the level of
decentralized data platforms. In other words, this approach allows the use of a single
service system for any decentralized programs with support for transaction delegation,
including already existing decentralized programs, regardless of their implementation.
In the case of all of the approaches described above, the transaction delegation was
impossible or it is required to build special service systems separately for each imple-
mentation.

The universal approach to writing decentralized applications described in this article
consists of the following parts:
─ An approach to writing a decentralized program, in which the functions of such a

program are not limited and can implement any standard of transaction delegation at
the choice of the developer.

─ The developed back-end server for transaction delegation which is suitable for any
decentralized application that uses any approach to transaction delegation.

─ A custom client-side user interface in the form of a built-in web widget, which is
configurable and can be used as a graphical user interface for delegated transactions.

3.1 The Approach to Creating a Decentralized Program

The universal approach to transaction delegation is based on an approach that does not
use intermediate (identity) decentralized programs. That is, this approach extends the
one in which delegated functions are embedded directly to a decentralized token pro-
gram, which is also used to pay commissions. Figure 3.1 below shows a diagram of a
user's interaction with the decentralized program without using intermediate decentral-
ized programs.

Fig. 3.1. — User interaction with the decentralized program using a transaction delegation ap-

proach without intermediate (identity) decentralized programs

The diagram shows the following steps for executing a delegated transaction:
─ The user receives prepared data or inputs new data in the graphical user interface.

179

─ The user signs the data entered and the additional parameters exclusively for execut-
ing the delegated transaction (such as commission, deadline, transaction ID, etc.) by
a digital signature.

─ The user transmits the signature and data to the delegate.
─ A delegate sends the actual transaction to a decentralized data platform, paying a

commission in a platform-specific cryptocurrency.
─ The decentralized token program checks the signature and transmitted data to ensure

that it is genuine and conducts the transaction.

A decentralized token program can be written using any existing standard: for example,
ERC20 or ERC721 [16]. But it should be noted that in order to be able to apply the
universal approach described below, it must satisfy the following:
─ For each public function of a decentralized program, a similar additional "delegated

function" should be provided that will perform the same action but will not depend
on the calling account (delegate) and use the digital signature instead to recognize
the calling account. In other words, for example, if the decentralized token program
has a transfer function that allows you to transfer cryptocurrency from one account
to another, the transferViaSignature function must be additionally provided, which
will allow the account to transfer cryptocurrency with the help of a delegate. Alter-
natively, the contract may provide a single entry point function to call all other func-
tions with the use of electronic signatures (delegate function).

─ If possible, the delegated function should support several existing signature stand-
ards. Using multiple standards instead of one will increase the chances of an unin-
terrupted workflow for a decentralized application in the future because over time
some signature standards may be declared as deprecated.

─ The delegated function must provide a number of additional parameters required to
limit its arbitrary use and provide additional security guarantees for the signing ac-
count. The recommended parameters are transaction ID, transaction deadline, fee
receiving account. All additional parameters must be included in the digital signature
and verified by the decentralized program.

─ In addition to the points above, the proxy-call function to other decentralized pro-
grams may be provided and the corresponding delegated function for it, usually
named approveAndCall. This will create a complete framework for other decentral-
ized programs to access tokens in a single transaction.

Below is the description of a recommended approach to writing delegated functions on
the example of a decentralized Ethereum data platform, namely on the example of a
decentralized token program using the ERC20 standard and the transfer function pro-
vided by this standard. This approach simplifies the use of a decentralized application
by eliminating the additional cryptocurrency that must be paid as a fee in almost any
decentralized data platform. It should be noted that this approach can be applied to any
self-protected decentralized data platform unless the platform itself provides for another
option for delegated transactions.

The ERC20 transfer function is intended for transferring a certain number of tokens
(programmable cryptocurrency) from the user's account to another account. We sup-
pose that the transferViaSignature function is implemented, which will do the same

180

task as the transfer function does, but allows it to be delegated to any other account.
That is, unlike the transfer function, any account can make a delegated call to the trans-
ferViaSignature function, and its result will be similar to what the transfer function
does, but with respect to the account which made a signature instead of the calling
account. Figure 3.2 shows how the function call is performed by the user and the trans-
fer of tokens is made in the case of transfer and transferViaSignature functions. It
should be noted that the transferViaSignature function implements the optional com-
mission pay to cover the delegate's account expenses.

Fig. 3.2. — The scheme of calls to transfer and transferViaSignature functions and function

results

As can be seen from the diagram shown in Figure 3.2, in a delegated call the account
pays the transaction fee in the token (cryptocurrency) itself, while the commission re-
quired by the self-protected decentralized data platform is paid by the delegate. The
delegate then exchanges the token to another asset in background, which covers their
expenses. Mainly, this eliminates the need for the account to hold multiple cryptocur-
rencies (in the case of the Ethereum decentralized data platform, Ether cryptocurrency).
It is worth noting that the commission may not be paid at all, but it is shown in the
diagram as an example of a balanced economic model where the delegate receives at
least something to cover their expenses of conducting the delegated transaction.

The transferViaSignature function not only accepts the same parameters as the trans-
fer function but also has a number of additional parameters that guarantee security in
any edge case scenarios. Figure 3.3 shows the recommended function parameters to be
implemented in a decentralized token program.

Fig. 3.3. — Recommended parameters of the functions of a decentralized token program

While the transfer function accepts only two parameters, to (recipient) and value (trans-
fer amount), transferViaSignature additionally accepts the following parameters:
─ from — sender account (optional). Unlike the transfer function, the sender account

is not the account that sent the transaction, so it may be additionally provided or

181

retrieved from an electronic-digital signature in-place in the most decentralized data
platforms.

─ fee — the amount of commission paid by the sender account to the feeRecipient.
─ feeRecipient — the address of the account which receives the commission paid by

the sender account. It is not recommended to remove this parameter or use the calling
address as the delegate's account because typically, a transaction can be cloned and
executed faster than the original one (race condition), making the original transaction
obsolete.

─ deadline — the execution deadline for a delegated transaction, validated in the de-
centralized program. With this parameter, in case of the loss of signed data or signa-
ture for whatever reason, the user can be sure that no one will be able to execute his
transaction after some moment and re-sign data once the previous signature expires.
Alternatively, they can sign the data under the same sigId.

─ sigId is an additional unique transaction identifier, which is validated for its unique-
ness in the decentralized program (an optional parameter). In case the signature was
lost and the transaction didn't happen, the user can repeat the transaction by using
the same sigId to be sure that either the previous transaction happens or the current
one but not both.

─ sig — a digital signature made by the sender's account, which has all parameters of
this function signed, thereby certifying its specific action that the sender account
intends to perform.

─ sigStd — the signature standard identifier for the decentralized program in case of it
using multiple signature standards (recommended).

Therefore, these additional parameters, their signature and their verification on a de-
centralized program's level limit the delegate's ability to manipulate the delegated trans-
action in any way. Thus, the user can be sure that the transaction will or won't be exe-
cuted and its action is clearly defined.

It is worth noting that the introduction of transaction delegation to the system is al-
most always a partial centralization of a decentralized application since only certain
institutions provide services for transaction delegation. Users have to rely on these in-
stitutions in order to use transaction delegation. But this centralization should be threat-
ened for the sole purpose of simplifying a decentralized application for the user. In
order for decentralized applications to remain decentralized, this approach encourages
to write delegated functions only as auxiliary ones, and always keep the original func-
tion which allows performing the same action. Alternatively, by having delegated func-
tion, in case the delegate doesn't accept the user's transaction, the user should become
a delegate for themselves, even though they would need some decentralized platform-
related cryptocurrency.

3.2 The Approach to Creating a Transaction Delegation Support Service

In addition to writing the decentralized program that will support the execution of del-
egated transactions, it is important to create an automated workflow for delegates to
conduct transactions in a decentralized data platform. Thus, the task can be described

182

as creating an automated server-side part that would perform the following functions:
─ Supporting the execution of delegated transactions in real-time, including ensuring

that the transaction is sent to the network and end up being stored on the network
(being mined).

─ Collecting all the required data for delegated transactions.
─ Calculating the reasonable transaction fee, according to the network load (decentral-

ized network fee) and assets current exchange rates.
─ Validating and verifying the user's data.
─ Availability of delegated transaction tracking from the user's side.

The task was set to develop such an auxiliary server part, which would perform all the
above functions, and would be suitable for any system from decentralized data plat-
forms and decentralized programs, including existing ones which support transaction
delegation by any standard. This technical problem is non-trivial as it is necessary to
anticipate the following:
─ Protection of the centralized system against any attacks: spam attacks, duplication

of delegated transactions, direct hacking and delegate secrets steal, race conditions,
etc.

─ Sequential execution of delegated transactions while delegation requests can be par-
allel (for some decentralized data platforms).

─ Definition and management of transaction parameters (you must always take a prof-
itable transaction fee, count it relatively to the price of the token on the exchange,
etc).

─ Serving many user requests at the same time.
─ The versatility of the back-end server system and the ability to use it for any decen-

tralized programs that support transaction delegation.

Let's take a look at the automatic work that an auxiliary server system should perform
on the example of a decentralized data platform Ethereum. The interaction of system
components of the back end support system is shown in Figure 3.4.

The auxiliary system for transaction delegation includes the operation of the five
components indicated by the Latin letters in Figure 3.4. There are the following com-
ponents:
A. The client (graphical user interface) — the graphical interface with which the user

interacts.
B. The automated server which delegates transactions. There can be several delegation

servers, and the client will pick the one which suggests the best rate for transaction
delegation.

C. Delegate account or crypto wallet/system that stores the private key and signs the
transactions.

D. A decentralized network supported by a self-protected decentralized data platform
(Ethereum).

E. The possible exchange module for automatic cryptocurrency exchange transactions
by the transaction delegation server to purchase the cryptocurrency needed to pay
commissions in a decentralized data platform in the platform-specific cryptocur-
rency.

183

Fig. 3.4. — The interaction between the delegation system components with the auxiliary

server part. The numbers indicate the order in which the system components interact.

It should be noted that the auxiliary delegated transactions support application may
provide different configurations, for example, with no exchange module, unless re-
quired by a specific system (for example, for private delegation of transactions, where
no fee is charged to users hence the exchange is not needed). Public transaction dele-
gation is different from private or limited by the fact that the transaction delegation
service is in unrestricted public access, and for each transaction the delegate (auxiliary
server part) needs to charge at least something from the user in order to cover the costs
of submitting transactions to a decentralized network. The delegate can also take a
higher fee to get a profit from transaction delegation. The commission (or its part) will
be used by the delegate to exchange it for the platform-specific cryptocurrency, which
will be paid for the transaction in the decentralized network.

3.3 User's Interaction with the System

Considering the order of the user's interaction with the system and the order of interac-
tion between the system's components, let's review why exactly this order should be
used in the public transaction delegation systems. Also, it can be adjusted and simpli-
fied in order to be used in private or restricted systems but the framework remains the
same, which makes this delegation approach universal. The order of interaction be-
tween the system components is also shown in Figure 3.4, and the sequence diagram of
the user's interaction with the delegate as well as the delegate's interaction with the
decentralized network is shown in Figure 3.5.

184

Fig. 3.5. — The diagram demonstrating the sequence of the user's interaction with the delegate

and the decentralized network

User interaction with the delegate involves the following automated steps:
1. Delegated transaction request. After the user determines what specific action is in-

tended to be performed, the client prepares the transaction parameters. First of all,
it must obtain approval from the Transaction Delegation Support Service that this
transaction can be conducted.

2. Delegate's response. Using the developed protocol over the REST API, the client
makes such a request, and the delegate in response informs the client about:

a. The possibility or inability to execute a particular transaction.
b. The exact fee to be paid by the user in particular token (instead of platform-spe-

cific cryptocurrency). In this case, the delegate calculates it automatically, using
a prepared algorithm for calculating the cost of commission.

c. The data to be signed by the user is provided according to the decentralized pro-
gram. It should be noted that if several signature standards are implemented in the
decentralized program, the delegate returns multiple signature options and the cli-
ent can choose the one that suits him best.

d. Additional information (delegated transaction ID, estimated transaction time, etc).
3. Data signature and transaction confirmation. After receiving the data for the signa-

ture and the meta-information, the client decides which signature method to use and
signs the data prepared by the delegate (parameters of the delegated function). Ad-
ditionally, the client can validate that the data they sign performs the specific action.

185

However, for example, a delegate may ask for a fee that is too high for a delegated
transaction, and therefore the client's decision to conduct the transaction may
change. In case of mutual consent of the delegate and the client the signed data is
sent to the delegate as confirmation of the execution of the delegated transaction.

4. Transaction signature. In turn, the delegate signs the transaction which is sent to a
decentralized network. This transaction includes:

a. The parameters provided by the user for the transaction (from Figure 3.3: for ex-
ample, for the transfer function it is "to" and "value").

b. Additional options for the decentralized program, which were specified by the
delegate (from Figure 3.3: fee, feeRecipient, sigId, deadline).

c. Signature of all the parameters by the user (from Figure 3.3: sigStd, sig).
d. Determination of the next transaction sequential number (in some decentralized

networks) and the current commission in the network by the given signature of
the transaction.

5. Sending a Transaction to a Decentralized Network. Only after all the above steps
the transaction is considered valid and will be accepted by the network. After some
short period of time, the transaction will be finalized and the delegate will be able
to inform the client of its success or error (the client continuously polls the status of
the delegated transaction). When sending a confirmation request to the delegate, the
client receives either an error or a transaction ID in the decentralized network along
with a delegate-specific delegated transaction ID.

6. Getting the result. While waiting for a delegated transaction, the client constantly
polls the server for changes in the delegated transaction status, and when the server
responds positively (transaction complete) — the delegated transaction is consid-
ered to be completed. The client may also avoid depending on the delegate in this
situation and check the status of the transaction in the decentralized network using
the transaction ID provided by the delegate in response to the confirmation of the
delegated transaction.

Thus, when using the suggested transaction delegation approach, almost all user inter-
actions with the system can be automated, except for the required user signature. By
making a digital signature the user agrees to the specific terms of the delegation of the
transaction that the delegate has issued to him and, at the same time, make the transac-
tion unchangeable, since the delegate cannot forge a digital signature. The user-pro-
vided signature is validated in a decentralized program, which allows the further im-
plementation of any actions by the decentralized program.

3.4 The Application of the Universal Approach to Transaction
Delegation in DSS

Decision Support Systems (DSS) are systems that take facts and make recommenda-
tions to decision-makers based on many factors. Usually, these guidelines are for infor-
mational purposes only, but the result which the system provides can be considered as

186

the main conclusion for many complex tasks that people usually cannot handle on their
own (examples: social group behavior research, complex network of facts and relation-
ships, strategic planning, etc) [17, 18].

One of the key features of decision support systems is that it works with experts.
They provide all the necessary data for the system [19], on the basis of which the system
then draws conclusions and recommendations. The subsystem of the DSS, which is
designed to work with experts who are mostly ordinary users is often stores data in
unsecured or centralized registers, which increases the risk of their compromise, for-
gery, unauthorized removal, etc.

Therefore, first of all, it is important to make sure that the system gets reliable data
for the input. The credibility of the input data makes the entire decision support system's
authority, as well as the authority of the organization that supports it. Therefore, one of
the typical and applicable vectors for using the transaction delegation support system
developed and described in the article, as well as for the self-protected decentralized
platforms as a whole, is the subsystem of working with the expert input data of the
decision support system.

Thus, decision support system experts will be offered to create an account in terms
of a self-protected decentralized data platform instead of logging in with a pair of
logins/passwords, which differs in complexity only by installing additional software for
any modern Internet browser. The further workflow with the experts in a decentralized
system will not be fundamentally different compared to a centralized one, but the data
that experts input will now be protected by the decentralized data platform. This pro-
vides the guarantee of data invariance or data modification under strictly defined rules
according to the decentralized program. In the future, the data input by experts without
any exception will be considered reliable (except for the bribery or compromise cases
of the experts themselves). The input data will then be loaded from the decentralized
data platform to the decision support system for further processing.

Conclusions

There are many approaches to delegating transactions in self-protected decentralized
data platforms, but only some of them meet the security and ease of use requirements.
Developed universal transaction delegation approach combines all the benefits of the
existing approaches, has a standardized back-end server and a client. At the same time,
it does not require decentralized application standardization, which means it can be
used for any existing or new systems that aim to ease the use of decentralized applica-
tions by implementing a transaction delegation.

The developed approach and the auxiliary software to support transaction delegation
in decentralized data platforms will facilitate the further adaptation of decentralized
applications in all spheres of life and technology since this approach simplifies both the
user experience within any decentralized system and the necessary efforts of developers
to implement the transaction delegation system.

The universal approach to transaction delegation was tested publicly on the
DreamTeam.gg project, which has around 2000 decentralized application users (the

187

number of users is approximated based on the number of project's token owners) and
deployed on the internet address send-token.dreamteam.gg. This online service is an
open-source solution that can be adapted by any other project based on the self-pro-
tected decentralized Ethereum data platform, as well as slightly modified to support any
other decentralized network, which supports deploying decentralized programs.

References

1. Savchenko M., Tsyganok V., Andriichuk O. Decision Support Systems' Security Model
Based on Decentralized Data Platforms / Selected Papers of the XVIII International Scien-
tific and Practical Conference "Information Technologies and Security" (ITS 2018), pp.
199–208 (2018).

2. Mookherjee D. Decentralization, hierarchies, and incentives: A mechanism design perspec-
tive. Journal of Economic Literature, 44(2), pp.367-390 (2006).

3. Raval S. Decentralized Applications: Harnessing Bitcoin's Blockchain Technology. O'Reilly
Media, Inc. pp.6-7 (2016).

4. Khovratovich D. and Law J. April. BIP32-Ed25519: Hierarchical Deterministic Keys over
a Non-linear Keyspace. In 2017 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW) pp. 27-31 (2017).

5. Arapinis M., Gkaniatsou A., Karakostas D. and Kiayias A. A Formal Treatment of Hardware
Wallets. IACR Cryptology ePrint Archive, p.34 (2019).

6. Pustišek M. and Kos A. Approaches to front-end iot application development for the
ethereum blockchain. Procedia Computer Science, 129, pp.410-419 (2018).

7. Rezaeighaleh H. and Zou C.C. New Secure Approach to Backup Cryptocurrency Wallets.
In submission to IEEE Global Communications Conference-Communication & Information
Systems Security Symposium (2019).

8. Cho S., Park S.Y. and Lee S.R. Blockchain consensus rule based dynamic blind voting for
non-dependency transaction. International Journal of Grid and Distributed Computing,
10(12), pp.93-106 (2017).

9. Ouaddah A., Elkalam A.A., Ouahman A.A. Towards a novel privacy-preserving access con-
trol model based on blockchain technology in IoT. In Europe and MENA Cooperation Ad-
vances in Information and Communication Technologies. Springer, Cham. pp.523-533
(2017).

10. Mulders M. A comparison between ERC20, ERC223, and ERC777 token standard [Elec-
tronic resource]/Michiel Mulders. Mode of access: https://www. cointelligence. com/con-
tent/comparison-erc20-erc223-new-ethereum-erc777-token-standard.–Title from the
screen.

11. Chavan AB and Rajeswari K. July. Design and Development of Self-sovereign Identity Us-
ing Ethereum Blockchain. In International Conference on Sustainable Communication Net-
works and Application. Springer, Cham. pp. 523-531 (2019).

12. Ludovic Galabro. ERC865: Pay Transfers in Tokens Instead of Gas, in One Transaction
#865. https://github.com/ethereum/EIPs/issues/865, [Last accessed Dec 21, 2019].

13. Wels S.J. Guaranteed-TX: The exploration of a guaranteed cross-shard transaction execution
protocol for Ethereum 2.0. Master's thesis, University of Twente. (2019).

14. Lee J.Y. A decentralized token economy: How blockchain and cryptocurrency can revolu-
tionize business. Business Horizons, 62(6), pp.773-784 (2019).

15. Iansiti M. and Lakhani K.R. The truth about blockchain. Harvard Business Review, 95(1),
pp.118-127 (2017).

188

16. Kim M., Hilton B., Burks Z. and Reyes J. November. Integrating Blockchain, Smart Con-
tract-Tokens, and IoT to Design a Food Traceability Solution. In 2018 IEEE 9th Annual
Information Technology, Electronics and Mobile Communication Conference (IEMCON),
pp. 335-340 (2018).

17. Saaty T.L. Principia Mathematica Decernendi - Mathematical principles of decision-making
- Generalization of the Analytic Network Process to neural firing and synthesis. Pittsburg:
RWS Publications. (2010).

18. Tsyganok V., Kadenko S., Andriychuk O., Roik P. Usage of multicriteria decision-making
support arsenal for strategic planning in environmental protection sphere / Journal of Multi-
Criteria Decision Analysis. 24, pp.227-238 (2017).

19. Totsenko V.G., Tsyganok V.V. Method of paired comparisons using feedback with expert /
Journal of Automation and Information Sciences. Volume 31, Issue 7-9, pp.86-96 (1999).

