
270

Analysis of testing approaches to Android mobile
application vulnerabilities

© Mykhailo Antonishyn[0000-0002-2665-0066], © Oleksii Misnik[0000-0002-4654-9125]

Pukhov Institute for Modelling in Energy Engineering National Academy of Sciences
of Ukraine, Kyiv, Ukraine

antonishin.mihail@gmail.com, alexmisnik91@gmail.com

Abstract. In the first part of the article we discuss international, industrial and
national standards and methodologies that describe the process of testing for ap-
plication vulnerabilities, including mobile applications for Android OS. The fol-
lowing standards and methodologies were taken for the study: ISO/IEC 27034.
Information technology. Security techniques. Application Security, NIST 800-
163 Vetting the Security of Mobile application, National In-formation Assurance
Partnership and Mobile application security verification standard. Also, we have
compared methods it selves and methods of testing for vulnerabilities of mobile
software applications for operating system Android. The analysis of the stages
by which testing for vulnerabilities is carried out. The second part of the article
presents statistics on vulnerabilities that were published by vendors – Google se-
curity statistics and Quick Heal, as well as statistics, which were formed by the
authors of the publication. For statistics, the test results were taken from an online
store, two crypto exchanges and two crypto wallets. The conclusions to the article
summarize the results of a study of standards and statistics for conducting subse-
quent research on the subject of scientific work.

Keywords: mobile application, security assessment, security testing, Open Web
Application Security Project, ISO/IEC 27034, National Information Assurance
Partnership.

1 Introduction

According to Beta News, among the 30 best applications with more than 500,000 down-
loads, 94% contain at least 3 average risk vulnerabilities, while 77% contain at mini-
mum two high-level vulnerabilities. Among the 30 applications 17% were vulnerable
to Man-In-The-Middle (MITM) attacks exposing all data to interception by malicious
users. Furthermore, 44% of applications contain confidential data with strict encryption
requirements, including passwords or Application Programming Interface (API) keys,
while 66% utilize functional abilities which can compromise users’ confidentiality.
This is exactly why mobile devices are subject to numerous security discussions [1].

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

271

2 Application security standards

2.1 ISO/IEC 27034. Information technology. Security techniques. Application
Security

ISO/IEC 27034 offers guidance on information security to those specifying, designing
and programming or procuring, implementing and using application systems, in other
words business and Information Technology (IT) managers, developers and auditors,
and ultimately the end-users of Information and Communication Technology (ICT).
The aim is to ensure that computer applications deliver the desired or necessary level
of security in support of the organization’s Information Security Management System,
adequately addressing many ICT security risks.

This multi-part standard provides guidance on specifying, designing/selecting and
implementing information security controls through a set of processes integrated
throughout an organization’s Systems Development Life Cycle (SDLC). It is process
oriented [2] - [5].

It covers software applications developed internally, by external acquisition, out-
sourcing/offshoring or through hybrid approaches. It addresses all aspects from deter-
mining information security requirements, to protecting information accessed by an ap-
plication as well as preventing unauthorized use and/or actions of an application. The
standard is SDLC-method-agnostic: it does not mandate one or more specific develop-
ment methods, approaches or stages but is written in a general manner to be applicable
to them all. In this way, it complements other systems development standards and meth-
ods without conflicting with them. One of the key driving principles is that it is worth
investing more heavily in specifying, designing, developing and testing software secu-
rity controls or functions if they are reusable across multiple applications, systems and
situations, albeit at the risk of propagating vulnerabilities more widely than might oth-
erwise be the case. In a nutshell, “Do it properly, do it once, and reuse it”. The approach
may seem a little idealistic, but some far-sighted organizations are already successfully
using it: it is more than just an academic interest [3] - [6].

Section 8.5 “Security Audit” of this standard consists of verification and formal con-
firmation of evidence that the application that is being developed is at the required level
of security, which is written in the technical documentation. An application security
audit can be performed at any time during the development and operation life cycle.
The sixth part of the standard ISO / IEC 27034-6:2016. Information technology. Secu-
rity techniques. Application security. Part 6. Case studies does not describe how and by
what means it is necessary to conduct testing. It shows just what needs to be tested [7],
[8].

2.2 NIST 800-163 Vetting the Security of Mobile application

This document defines an app vetting process and provides guidance on planning and
implementing an app vetting process, developing security requirements for mobile
apps, identifying appropriate tools for testing mobile apps and determining if a mobile
app is acceptable for deployment on an organization’s mobile devices. An overview of

272

techniques commonly used by software assurance professionals is provided, including
methods of testing for discrete software vulnerabilities and misconfigurations related
to mobile app software [9], [10].

Standards includes security checks according to which mobile applications are tested
[10]:

1.2.1 Incorrect Permissions. Permissions allow accessing controlled functionality
such as the camera or Global Positioning System (GPS) and are requested in the pro-
gram. Permissions can be implicitly granted to an app without the user’s consent.

1.2.2 Exposed Communications. Internal communications protocols are the means
by which an app passes messages internally within the device, either to itself or to other
apps. External communications allow information to leave the device.

1.2.3 Exposed Data Storage. Files created by apps on Android can be stored in
Internal Storage, External Storage, or the Keystore. Files stored in External Storage
may be read and modified by all other apps with the External Storage permission.

1.2.4 Potentially Dangerous Functionality. Controlled functionality that accesses
system-critical resources or the user’s personal information. This functionality can be
invoked through API calls or hard coded into an app.

1.2.5 App Collusion. Two or more apps passing information to each other in order
to increase the capabilities of one or both apps beyond their declared scope.

1.2.6. Obfuscation. Functionality or control flows that are hidden or obscured from
the user. For the purposes of this appendix, obfuscation was defined as three criteria:
external library calls, reflection, and native code usage.

1.2.7. Excessive Power Consumption. Excessive functions or unintended apps run-
ning on a device which intentionally or unintentionally drain the battery.

1.2.8. Traditional Software Vulnerabilities. All vulnerabilities associated with tra-
ditional Java code including: Authentication and Access Control, Buffer Handling,
Control Flow Management, Encryption and Randomness, Error Handling, File Han-
dling, Information Leaks, Initialization and Shutdown, Injection, Malicious Logic,
Number Handling, and Pointer and Reference Handling [2] - [7], [10].

2.3 National Information Assurance Partnership (NIAP)

This document presents functional and assurance requirements found in the Protection
Profile for Application Software which are appropriate for vetting mobile application
software (“apps”) outside formal Common Criteria (ISO/IEC 15408) evaluations.
Common Criteria evaluation, facilitated in the U.S. by the National Information Assur-
ance Partnership (NIAP), is required for IA and IA-enabled products in National Secu-
rity Systems according to Committee on National Security Systems (CNSS) Policy #11.
Such evaluations, including those for mobile apps, must use the complete Protection
Profile. However, even apps without IA functionality may impose some security risks,
and concern about these risks has motivated the vetting of such apps in government and
industry [2].

Security Functional Requirements [3]:

273

1.3.1. Random Bit Generation Services. If implement Deterministic Random Bit
Generator (DRBG) functionality is chosen, then additional security requirements ele-
ments shall be included in the ST. In this requirement, cryptographic operations include
all cryptographic key generation/derivation/agreement, Initial Vector`s (IVs) (for cer-
tain modes), as well as protocol-specific random values.

1.3.2. Storage of Credentials. This requirement ensures that persistent credentials
(secret keys, Public Key Infrastructure (PKI) private keys, or passwords) are stored
securely. The assurance activity implicitly restricts which selections can be made, on
per-platform basis. For example, if a platform provides hardware-backed protection for
credential storage, then the third selection cannot be indicated. If implement function-
ality to securely store credentials is selected, then the following components must be
included in the Security Target (ST). If other cryptographic operations are used to im-
plement the secure storage of credentials, the corresponding requirements must be in-
cluded in the Security Target.

1.3.3. Access to Platform Resources. The intent is for the evaluator to ensure that
the selection captures all hardware resources which the application accesses, and that
these are restricted to those which are justified. On some platforms, the application must
explicitly solicit permission in order to access hardware resources. Seeking such per-
missions, even if the application does not later make use of the hardware resource,
should still be considered access. Selections should be expressed in a manner consistent
with how the application expresses its access needs to the underlying platform. For
example, the platform may provide location services which implies the potential use of
a variety of hardware resources (e.g. satellite receivers, WiFi, cellular radio) yet loca-
tion services are the proper selection. This is because use of these resources can be
inferred, but also because the actual usage may vary based on the particular platform.
Resources that do not need to be explicitly identified are those which are ordinarily
used by any application such as central processing units, main memory, displays, input
devices (e.g. keyboards, mice), and persistent storage devices provided by the platform.
Sensitive information repositories are defined as those collections of sensitive data that
could be expected to be shared among some applications, users, or user roles, but to
which not all of these would ordinarily require access.

1.3.4. Network Communications. This requirement is intended to restrict both in-
bound and outbound network communications to only those required, or to network
communications that are user initiated. It does not apply to network communications in
which the application may generically access the filesystem which may result in the
platform accessing remotely mounted drives/shares.

1.3.5. Encryption of Sensitive Application Data. Any file that may potentially con-
tain sensitive data (to include temporary files) shall be protected. The only exception is
if the user intentionally exports the sensitive data to non-protected files.

1.3.6. Supported Configuration Mechanism. Configuration options that are stored
remotely are not subject to this requirement.

1.3.7. Secure by Default Configuration. Default credentials are credentials (e.g.,
passwords, keys) that are automatically (without user interaction) loaded onto the plat-
form during application installation. Credentials that are generated during installation
using requirements laid out in ST are not by definition default credentials. The precise

274

expectations for file permissions vary per platform but the general intention is that a
trust boundary protects the application and its data.

1.3.8. Specification of Management Functions. This requirement stipulates that an
application needs to provide the ability to enable/disable only those functions that it
actually implements. The application is not responsible for controlling the behavior of
the platform or other applications.

1.3.9. User Consent for Transmission of Personally Identifiable Information
(PII). This requirement applies only to PII that is specifically requested by the applica-
tion; it does not apply if the user volunteers PII without prompting from the application
into a general (or inappropriate) data field. A dialog box that declares intent to send PII
presented to the user at the time the application is started is sufficient to meet this re-
quirement.

1.3.10. Use of Supported Services and APIs. The definition of documented may
vary depending upon whether the application is provided by a third party (who relies
upon documented platform APIs) or by a platform vendor who may be able to guarantee
support for platform APIs.

1.3.11. Anti-Exploitation Capabilities. Requesting a memory mapping at an ex-
plicit address subverts address space layout randomization (ASLR). Requesting a
memory mapping with both write and execute permissions subverts the platform pro-
tection provided by Data Execution Prevention (DEP). If the application performs no
just-in-time compiling, then the first selection must be chosen.

1.3.12. Integrity for Installation and Update. This requirement is about the ability
to “check” for updates. The actual installation of any updates should be done by the
platform. This requirement is intended to ensure that the application can check for up-
dates provided by the vendor, as updates provided by another source may contain ma-
licious code.

1.3.13. Use of Third-Party Libraries. The intention of this requirement is for the
evaluator to discover and document whether the application is including unnecessary
or unexpected third-party libraries. This includes adware libraries which could present
a privacy threat, as well as ensuring documentation of such libraries in case vulnerabil-
ities are later discovered.

1.3.14. Protection of Data in Transit. Application should transmit sensitive data
only via encryption channel.

2.4 Mobile application security verification standard (MASVS).

The MASVS is a community effort to establish a framework of security requirements
needed to design, develop and test secure mobile apps on iOS and Android [4].

MASVS contains three parts (see Fig. 1):

275

Fig. 1. MASVS Systems

The Mobile Application Security Verification Standard (MASVS): This standard
document defines a mobile app security model and lists generic security requirements
for mobile apps. It can be used by architects, developers, testers, security professionals,
and consumers to define what a secure mobile application is [4]. Check controls:

V1: Architecture, Design and Threat Modeling Requirements.
V2: Data Storage and Privacy Requirements.
V3: Cryptography Requirements.
V4: Authentication and Session Management Requirements.
V5: Network Communication Requirements.
V6: Platform Interaction Requirements.
V7: Code Quality and Build Setting Requirements.
V8: Resilience Requirements.
The Mobile Security Testing Guide (MSTG): The MSTG is a manual for testing the

security of mobile apps. It provides verification instructions for the requirements in the
MASVS along with operating-system-specific best practices (currently for Android
and iOS). The MSTG helps ensure completeness and consistency of mobile app secu-
rity test. It is also useful as a standalone learning resource and reference guide for mo-
bile application security testers [4], [5].

Mobile App Security Checklist: A checklist for tracking compliance against the
MASVS during practical assessments. The list conveniently links to the MSTG test
case for each requirement, making mobile penetration app testing a breeze [4].

The MASVS defines two security verification levels (MASVS-L1 and MASVS-L2),
as well as a set of reverse engineering resiliency requirements (MASVS-R). MASVS-
L1 contains generic security requirements that are recommended for all mobile apps,
while MASVS-L2 should be applied to apps handling highly sensitive data. MASVS-
R covers additional protective controls that can be applied if preventing client-side
threats is a design goal (see Fig. 2).

276

Fulfilling the requirements in MASVS-L1 results in a secure app that follows secu-
rity best practices and doesn't suffer from common vulnerabilities. MASVS-L2 adds
additional defense-in-depth controls such as SSL pinning, resulting in an app that is
resilient against more sophisticated attacks - assuming the security controls of the mo-
bile operating system are intact, and the end user is not viewed as a potential adversary.
Fulfilling all, or subsets of, the software protection requirements in MASVS-R helps
impede specific client-side threats where the end user is malicious and/or the mobile
OS is compromised [4].

Fig. 2. MASVS security level [3], [4]

1.4.1. MASVS-L1: Standard Security. A mobile app that achieves MASVS-L1
adheres to mobile application security best practices. It fulfills basic requirements in
terms of code quality, handling of sensitive data, and interaction with the mobile envi-
ronment. A testing process must be in place to verify the security controls. This level is
appropriate for all mobile applications [4].

1.4.2. MASVS-L2: Defense-in-Depth. MASVS-L2 introduces advanced security
controls that go beyond the standard requirements. To fulfill MASVS-L2, a threat
model must exist, and security must be an integral part of the app's architecture and
design. Based on the threat model, the right MASVS-L2 controls should have been
selected and implemented successfully. This level is appropriate for apps that handle
highly sensitive data, such as mobile banking apps [4].

1.4.3. MASVS-R: Resiliency Against Reverse Engineering and Tampering. The
app has state-of-the-art security, and is also resilient against specific, clearly defined
client-side attacks, such as tampering, modding, or reverse engineering to extract sen-
sitive code or data. Such an app either leverages hardware security features or suffi-
ciently strong and verifiable software protection techniques. MASVS-R is applicable
to apps that handle highly sensitive data and may serve as a means of protecting intel-
lectual property or tamper-proofing an app [4].

Notes:
I: Although OWASP recommend implementing MASVS-L1 controls in every app,

implementing a control or not should ultimately be a risk-based decision, which is
taken/communicated with the business owners.

277

II: Note that the software protection controls listed in MASVS-R and described in
the OWASP Mobile Security Testing Guide can ultimately be bypassed and must never
be used as a replacement for security controls. Instead, they are intended to add addi-
tional threat-specific, protective controls to apps that also fulfill the MASVS require-
ments in MASVS-L1 or MASVS-L2 [4] - [6].

3 Statistics

3.1 Us perform testing statistics

Us personal statistics of vulnerability assessment Android mobile application (see
Tabl. 1 – 5). We perform 5 tests on real mobile application and use MASVS for describe
vulnerabilities [4] - [6].

Table 1. Cryptocurrency exchanger 1

High level vulnera-
bilities

Medium level vul-
nerabilities

Low level vulnera-
bilities

Information level
vulnerabilities

Sensitive data in
logs

SMS spam Session fixation Application uses old
library

Brakeforce pass-
word

Mobile phone num-
ber enumeration

SSL certificate
potential vulnerable

Cross-origin re-
source sharing

 OTP return in re-
sponse

No Certificate and
Public Key Pinning

Vulnerability in old
version of WebView

 Absence of source
code obfuscation

Application data can
be backup

Table 2. Cryptocurrency exchanger 2

High level vulnera-
bilities

Medium level vul-
nerabilities

Low level vulnera-
bilities

Information level
vulnerabilities

 No Certificate and
Public Key Pinning

Application can run
on rooting applica-

tion
 SSL certificate

potential vulnerable

 Application can be
backup

Table 3. Cryptocurrency wallet 1

High level vulnera-
bilities

Medium level vul-
nerabilities

Low level vulnera-
bilities

Information level
vulnerabilities

Sensitive data in
logs

Absence of source
code obfuscation

Backup private key
explicity visible

Application uses old
library

Sensitive data saves
in local files

 Insecure communi-
cation – application

uses HTTP

 No Certificate and
Public Key Pinning

278

Table 4. Cryptocurrency wallet 2

High level vulnera-
bilities

Medium level vul-
nerabilities

Low level vulnera-
bilities

Information level
vulnerabilities

Root and developer
mode bypass

Absence of source
code obfuscation

Application data can
be backup

Vulnerability in old
version of WebView

Critical bug in
money transfer

Check modify
source code

No Certificate and
Public Key Pinning

Personal data in logs User Enumeration

Table 5. Mobile marketplace

High level vulnera-
bilities

Medium level vul-
nerabilities

Low level vulnera-
bilities

Information level
vulnerabilities

Two vulnerabilities
– OTP value return

in response

Absence of source
code obfuscation

Unrestricted user
creation

Four vulnerabilities
– Insecure direct ob-

ject

Cleartext password
submission

No Certificate and
Public Key Pinning

 User`s info enumer-
ation

Password changed
attack

3.2 Google security statistics

In 2018, 0.04% of all downloads from Google Play were Potentially Harmful Applica-
tions (PHAs). In 2017, the number was 0.02%. This increase is due to the change in
methodology of upgrading the severity level of click fraud applications from policy
violations to PHAs. If we omit the addition of click fraud for a comparison, 2018 is at
0.017% which is still a reduction from 2017 (see Fig. 3). Now we look for click fraud
inside and outside of Google Play and warn users about these apps. All other PHA
categories have declined each year or increased at low levels [11].

279

Fig. 3. Google security statistics

3.3 Quick Heal

Quick Heal Annual Threat Report 2019 brings forth insights and intelligence gathered
by Quick Heal Security Labs about all that unfolded in the realm of cybersecurity in
2018 – divided into two sections viz (see Fig. 4). Windows and Android. The threat
report begins with significant cyber-attack predictions made by Quick Heal Security
Labs in 2018 that proved to be true, flagging off the possibility for future cyber-attacks.
The report also sheds light on detection highlights of 2018 for both Windows and An-
droid, with a breakup of detections made per day, per hour, per minute, and the entire
year, along with a list of top 10 Windows and Android malware [12].

Fig. 4. Quick Heal statistics

280

Conclusions
Based on the research results, it can be concluded that the ISO/IEC 27034 standard
regulates that vulnerability testing should be carried out, but it is not specified how and
what should be tested for vulnerabilities. NIST and NIAP both refer to OWASP
MASVS and contain controls by which the mobile application is tested, mainly focus-
ing on vulnerabilities that relate to vulnerabilities in data storage and authorization. This
is confirmed by statistics provided by Digital Security. The most recognized is
MASVS. One of the parts of MASVS describes what and how to test.

It should be noted that all standards rather weakly assess vulnerabilities that relate
to interaction with the API. As it can be seen from the tests described in Section 3.1,
the most critical vulnerabilities are vulnerabilities that are associated with interaction
with the application server.

References
1.Google publishes its Android Security & Privacy 2018 Year in Review,

https://betanews.com/2019/03/30/google-android-security-and-privacy-2018-year-in-review/,
last accessed 2019/03/30.

2.National Information Assurance Partnership, Protection Profile for Mobile Device Fundamen-
tals, Version 3.1, June 16, 2017, https://www.niap- ccevs.org/MMO/PP/pp_ md_v3.1.pdf, last
accessed 2019/10/21.

3.National Information Assurance Partnership, Requirements for Vetting Mobile Apps from the
Protection Profile for Application Software, Version 1.2, April 22, 2016, https://www.niap-
ccevs.org/MMO/PP/394.R/pp_app_v1.2_table-reqs.htm, last accessed 2019/10/21.

4.OWASP Foundation, Mobile AppSec Verification, Version 1.1.3, January 2019,
https://github.com/OWASP/owasp-masvs/releases/download/1.1.3/OWASP_Mobile_
AppSec_Verification_Standard_1. 1.3_Document.pdf, last accessed 2019/10/01.

5.OWASP Foundation, Mobile Security Testing Guide (MSTG), 1.1.0 Release, 30-Nov-18,
https://www.owasp.org/index.php/owasp_mobile_security_testing_guide, last accessed
2019/10/21.

6.OWASP, Man-in-the-middle attack, https://www.owasp.org/index.php/Man-in-the-middle_at-
tack, last accessed 2019/10/21.

7.Dent S., “Report finds Android malware pre-installed on hundreds of phones,” Engaged, May
24, 2018, https://www.engadget.com/2018/05/24/report- finds-android-malware-pre-installed-
on-hundreds-of-phones, last accessed 2019/10/01.

8.International Organization for Standardization, ISO/IEC 27034-6. Information technology. Se-
curity technique’s Application Security, first edition 2016, https://www.iso.org/stand-
ard/60804.html, last accessed 2019/10/01.

9.Digital Security, Checking for information security vulnerability, august 2018. Available at
https://dsec.ru/wp-content/uploads/2018/08/checklist.pdf, last accessed 2019/10/01.

10.National Institute of Standards and Technology, NIST 800-163. Vetting the Security of Mobile
application, https://doi.org/10.6028/NIST.SP.800-163r1, last accessed 2019/10/01.

11.Android Security & Privacy 2018 Year In Review, https://www.google.com/url?sa=t&rct=
..source.android.com%2Fsecurity%2Freports%2FGoogle_Android_Security_2018_Report
_Final.pdf&usg=AOvVaw0q4HKyiHNyxRsWeebYfxbP, last accessed 2019/10/01.

12. Quick heal annual threat report 2019. Available athttps://www.google.com/url?sa=t&rct=
..Annual-Threat-Report-2019.pdf&usg=AOvVaBxp0Txjy0ExKPWN, last accessed 2019/10/01.

