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ABSTRACT

The availability of a large amount of Automatic Identification
System (AIS) data has fostered many studies on maritime vessel
traffic during recent years, often representing vessels and ports
relationships as graphs. Although the continuous research effort,
only a few works explicitly study the evolution of such graphs
and often consider coarse-grained time intervals. In this context,
our ultimate goal is to fill this gap by providing a systematic
study in the graph evolution by considering voyages over time.
By mining the arrivals and departures of vessels from ports, we
build a graph consisting of vessel voyages between ports. We
then provide a study on topological features calculated from such
graphs with a strong focus on their temporal evolution. Finally,
we discuss the main limitations of our approach and the future
perspectives that will spawn from this work.

1 INTRODUCTION

Maritime transportation represents 90% of international trade
volume and plays a paramount role in today’s economy;, in terms
of cargo shipping, passenger transportation, leisure navigation,
and fishing operation[21]. Globalization and multiple mode trans-
portation of goods in the shipping industry resulted in a massive
extension of the maritime vessel route network. The study of
vessel movements is a well-established source of information to
understand the role of maritime routes and ports in economic, so-
cial, and environmental contexts. These studies include maritime
traffic control and prediction [18], human migration flows [8],
bioinvasion [9] and maritime piracy [20]. However, such a role
cannot be adequately unraveled by looking at ports and routes in
isolation, but instead, they must be put in relation to one another.

This allows the study of the interplay of all the components
in the complex maritime network, and it is even more important
for understanding the evolution over time of that interplay.

A central concept for the analytical study of vessel routes is
the Global Shipping Network (GSN), in which nodes are ports
and edges are the routes between ports of cargo ships. Figure 1
illustrates the GSN resulting from the vessels’ routes of 2017 in
the American coast using the MarineCadastre.gov dataset [16].
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Since the automatic identification system (AIS) for vessels was
made mandatory in 2004 [1], there has been a surge of studies on
the GSN and other maritime networks that use such data. Many
works modeled the GSN based on graph theory [19, 22], but only
a few of them analyzed the network in terms of its evolution over
the years [14, 17]. Also, those works which studied the network
evolution used private data and performed exciting but high-level
and coarse-grained analysis, such as in [6].

The main goal of our analysis is to provide a systematic study
of the evolution aspect regarding maritime vessel routes, with the
purpose of identifying recurrent patterns in their evolution. The
analysis is based on publicly available data and with a defined
and well-documented data model. This aspect is fundamental
for the reproducibility of our analysis and its expansion and
updating of results when new data arrives. Also, it considers the
two necessary dimensions of time and layers (i.e., the evolution
of the network can be observed for multiple types of vessels, such
as cargo and passengers).

Such an ambitious objective has some inherent challenges
that must be tackled. First, the analysis of AIS datasets typically
presents a Big Data challenge: the datasets are usually vast, and
data can arrive at a high rate. For example, ExactEarth alone
claims to consistently track 165,000 vessels and compiling over

Figure 1: American coast vessels’ routes in 2017. The nodes
represent ports, and the edges are voyages between two
ports



7,000,000 AIS messages dailyl, but data still need to be processed
in a reasonable time.

Second, the purpose of any network analysis is to abstract the
complexity of a system in order to extract meaningful information
that is not directly available when the individual components
are examined separately. Therefore, the definition of a network
that encompasses time information is a complex task. Suitable
approaches need to be carefully selected to study the evolving
network.

The contributions of this work can be outlined as the follow-
ing:

e We propose an approach that uses AIS data to extract con-
nections between ports derived from the vessels’ move-
ments. From these connections (or voyages), we build
graphs in which the vertices correspond to the ports,
whereas the edges or links correspond to the vessel voyage
between two different ports. In addition, each edge has a
semantic defined by the vessels’ type.

e We study several topological properties of the temporal
graphs generated from vessels’ movements and how these
features evolve over time. Specifically, we investigate fea-
tures relative to graphs dimension, ability to form clusters,
and geographical spatiality.

e We design and run an extensive analysis using a real
dataset with AIS Data collected from vessels navigating in
the U.S. coastal area. In our experiments, we investigate
the aspect of stationarity of the time series of the topo-
logical properties of the graph and discuss the obtained
insights.

The rest of the paper is organized as follows. Section 2 dis-
cusses related works. Section 3 introduces some concepts used
through the paper. In Section 4, we describe our approach for
deriving time-series of topological properties from graphs based
on vessels’ visits to ports. We perform some analysis in Section
5 and draw conclusions envisioning future works in Section 6.

2 RELATED WORK

The work done in [11] is one of the first to study the concept
of GSN as a complex network. They use information about the
itineraries of 16363 ships of three types (bulk dry carriers, con-
tainer ships, and oil tankers) during the year 2007 to build a
network of links between ports. The work of [11] shows that the
three categories of ships differ in their mobility patterns and net-
works. Their results show that container ships follow regularly
repeating paths, whereas bulk dry carriers and oil tankers move
less predictably between ports. They also show that the network
of all ship movements possesses a heavy-tailed distribution for
the connectivity of ports and the loads transported on the links
with systematic differences between ship types [11].

The work of [14] also uses a sample of the Lloyds database
with the world container ship fleet movements from Chinese
ports from the years of 2008 to 2010. The objective of their work
is to look at changes in the maritime network prior to and after
the financial crisis (2008-2010) and to analyze the extent to which
large ports have seen their position within the network change.
The authors show how the global and local importance of a
port can be measured using graph theory concepts. They also
show that the goods transportation network was contracted with
respect to port throughput, but no contraction in the distribution
capacity of the main hub ports was found [14]. Finally, the authors
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show that there are new port regions placed in the entrance
and exit of the Panama Canal, and there are several significant
business opportunities in that region.

A study of topological changes in the maritime trade network
is shown in [13]. The authors propose two new measures of
network navigability called random walk discovery and escape
difficulty. Their results show that the maritime network evolves
by increasing its navigability while doubling the number of active
ports. The authors suggest that unlike in other real-world evolv-
ing networks studied in the literature up to date, the maritime
network does not densify over time, and its effective diameter
remains constant [13].

In [6], the author investigates the degree of overlap among
the different layers of circulation composing global maritime
flows. His work uses several methods from complex network
analysis to understand the dynamics affecting the evolution of
ports and shipping. The results show that there is a strong and
path-dependent influence of multiplexity on traffic volume, range
of interaction, and centrality from various perspectives (e.g., ma-
trices correlations, homophily, assortativity, and single linkage
analysis) [6]. When growing the network and concentrating the
analysis around large hubs over time, results show that the traffic
distribution is place-dependent due to the reinforced position of
already established nodes [6].

The work of [22] builds a GSN using the 2015 AIS data of the
world with multiple spatial levels. Their process mainly consists
of five steps, where the first three generate the network nodes,
and the last two create the network links. The work of [22] applies
the Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) to detect where ships stop and cross this information
with terminal candidates of ports. A directed GSN is generated
with the trip statistics between two nodes as the edges. Their
work evaluates features such as average degree and betweenness
centrality of each node, average shortest path length between
any two nodes, and community clusters of the GSNs.

Following a similar idea of building GSNs, but with focus on
anomaly detection, the work of [19] provides a mechanism that
classifies vessel behavior in normal and abnormal, using historical
information about similar vessels that operate in a particular
area. In [19], the authors identify waypoints (i.e., a region of
interest for a given application) that characterizes the operations
and the sort of movement patterns that they follow (i.e., the
nodes). As edges, the work of [19] uses the subtrajectories that
links two waypoints, also using the extracted features of those
subtrajectories for analysis. They identified each edge by the
subtrajectory that links two ways points. Features of each edge
are generated using a trajectory mining library introduced by
[7]. Their analysis tries to detect outliers from the subtrajectory
features (e.g., course over ground, speed over ground, etc.) and
using transition probabilities as the edges of the network.

Differently from [6, 11, 13, 14], our work use AIS data to de-
termine vessel routes. Differently from [22], which uses stop
points as nodes and evaluate centrality, shortest-path, and com-
munities, our work is focused on the evolution of the network
instead of using waypoints as nodes and being focused on anom-
aly detection like [19], or using stop points as nodes to evaluate
centrality, shortest-path, and communities like [22], we use the
ports as nodes, and we evaluate the evolution of the network as
our primary task.



3 PROBLEM FORMULATION AND
DEFINITIONS

Vessels report their location through AIS messages while navigat-
ing. A vessel may send AIS messages with a frequency that varies
from a few seconds to a few minutes, depending on the type of
message. When they are at the underway, they may send AIS
messages every 2 to 10 seconds, while when they are at anchor,
this time window can increase to every 3 minutes [22]. Therefore,
positional information extracted from AIS messages can be seen
as a representation of the spatial-temporal movement of a travel-
ing vessel. We are interested in this spatial information with the
intent of understating when a vessel is visiting a port. By merging
subsequent visits to ports of vessels, it is then possible to build
the sequence of vessels’ voyages. Then the idea is to construct
a graph (or network) representation out of these voyages in a
given interval of time, to be able to study the evolution of the
graph with complex network mechanisms.

Graphs have some properties useful to unravel interesting in-
formation about the dynamism between two and more entities. In
particular, in the context of a voyages graph, the topological prop-
erties of the graph can help us identify relevant characteristics
within a network that would not have meaningful information if
the individual entities were examined separately [6, 13]. Topo-
logical properties can be applied to the network as a whole or to
individual nodes and edges. In particular, for our study, we are
concerned with global network properties. Below, we provide
a compact formalization of an AIS message, as well as of some
other important concepts that covers the scope of this paper.

Definition 3.1. (AIS Message): An AIS Message m, is a tuple
(x,y, t, c) that represents the GPS coordinate (x, y) at a time stamp
t assigned to a vessel e of type c. We define M as the set of all
AIS messages.

Definition 3.2. (Port): A Sea Port p is represented as a tuple
(id, x, y), where x and y are the latitude and longitude coordinates
of its geographical center, and id is the code that identifies the
port. We also define the spatial function a(p, r) that defines a
circular area of radius r centered on the coordinates of port p.

Definition 3.3. (Visit): Given a radius r, we formally define a
visit v = (p, me, t) of the vessel e to a port p when it exists at
least one m, € M at time ¢ whose coordinates x and y are in the
area defined by a(p, r).

Definition 3.4. (Voyage): A voyage vj = (v1,v2) is a pair of
visits, such that v1 (p) # v2(p) and v1(e) = va(e) and v1(t) < va(t)
and they are consecutive (there is no visits to other ports between
them for the same vessel). The ports of v; and vy are called
respectively origin and destination ports. The duration of the
voyage vj(d) is the time of the last visit of e in the origin port
and the time of first visit in the destination port.

Definition 3.5. (Voyage Graph): The Voyage Graph (VG) is a
graph G = (V, E) built according to a set of voyages V J, in which
V contains all the ports in V] and E contains an edge for each
unique pair of ports in VJ.

Definition 3.6. (Voyage Graph Snapshot): The Voyage Graph
Snapshot (VGS) G,, = (V,E),, is an extension of the VG that
includes a temporal time window w used to create the snapshot
of the graph. This interval is used to select the AIS messages that
will be used to build the snapshot G,, of VG G.

Algorithm 1: Trips Graph Snapshot Extraction

Input :M: AIS Messages divided into areas
w: Time window size
s: Time shifting
r: Radius
P: Set of ports
Output: G: set of Voyage Graph Snapshots
Init G« 0;V«<20
1V« Visits(A;, P, r);
2 Ry « Voyages(V);
3 Ry « Clean(R1);
4 foreach b € Buckets(w,s) do
5 L G <« G + Graph(Ry, b);

6 return G

4 METHODOLOGY

This section describes the procedural methodology that we use
to transform raw AIS data to a set of time series observations on
the topological features of voyage graphs. We first describe the
algorithm to build the voyage graph from the source data, then
which features we extract from the graph, and finally how we
create the time series.

4.1 Building Voyage Graphs

Building the set of voyage graph snapshot directly from the origi-
nal data would be possible, but also very unpractical. The dataset
has a lot of noise, entries are not ordered in time, and much
information is redundant. Therefore, we applied an incremen-
tal approach to process the data. First, we exploit the fact that
the original dataset is already divided into geographical areas
(i.e., the zones of the MarineCadastre.gov dateset, see Section5).
For each area, we remove redundant information (e.g., subse-
quent entries for the same vessel in the same port, with the same
timestamp) and compute the set of visits. Second, we compute
the set of voyages using the visits, removing incorrect and noisy
voyages. Third, from the voyages we can determine the graph
and the snapshot according to the time window considered. This
incremental process has several advantages: (i) graphs building
is very fast, as the set of voyages is practically an edge list; (ii) the
costly cleaning process is done only once, and from the clean col-
lection of voyages it is possible to build multiple graphs; and (iii)
it is interesting to study wvisits and voyages without transforming
them into a graph.

The pseudocode in Algorithm 1 illustrates the steps that ex-
tract all the voyage graph snapshots (G, . . ., Gy,) for a given set
of AIS Messages M. Besides M, the algorithm also receives as
parameters a Radius r, a set of ports P, a time window size w,
and a shifting s. The shifting parameter s indicates the number
of days to move forward the time window for each successive
graph. For example, with s = 10, if the first time window starts
on the 1st of January, the second starts at the 10th of January,
and so on.

The algorithm starts by extracting the set of visits V (see
definition 3.3) from M in each geographical area A; in the original
dataset with the function Visits() (line 1). This function returns
V C Aj, such that V contains the AIS records transmitted inside
the area a(p, r) (see definition 3.2) for each port p € P. Depending
onr, there could be overlapping port areas such that the same AIS



record results transmitted inside multiple ports. In these cases,
we discriminate by associating the record to the closest port.

In turn, V feeds the function Voyages() that extracts the voy-
ages of the vessels (line 2). The underlying assumption is that if
a vessel e is seen at the port p, € P at time tj and e is also seen
at the port py at time t; and t; > to, then we record a voyage
(definition 3.4).

The set of voyages is then cleaned by the function Clean() (line
3), to retain only the valid voyages. AIS data inevitably contains
noise due to many reasons, including malfunctions, errors in
transmission, and malicious use. In our context, such noise and
mistakes translate into incorrect voyages. To remove them, we
performed two cleaning actions. First, we removed those entries
having null or invalid data in relevant fields (typically position
or vessel type). For example, several incorrect entries had a ves-
sel identifier, called Maritime Mobile Service Identity (MMSI),
whose value is composed only by zeroes, which may indicate a
placeholder for missing MMSI. We then removed the voyages
that, depending on their duration (vj;) and length, imply an
impossible speed for a vessel. We set the length of a voyage by
computing the geodesic distance between starting and arrival
ports. The geodesic distance is the minimum distance between
two points on earth, which can be used as the shortest possi-
ble maritime voyage. By using the length and the duration, we
compute the estimated average speed based and removed those
voyages whose speed exceeds 60 knots (which is still very high
speed, but we left some margin to cope with a possible degree of
approximation in the data). We did not remove the slow speed
voyages as we cannot estimate how long is the actual maritime
route between two ports with respect to the geodesic distance.

Finally, the algorithm builds the set of Voyage Graphs (defi-
nition 3.5) thought the function Graph() using the clean set of
voyages Ry (line 5). This function uses the ports as vertices and
the voyages as edges to build the graph. It considers the func-
tion Bucket() that creates all the possible time windows for the
parameters w and s.

4.2 Topological Voyage Graph Features

In order to study the evolution of the voyages graph, we employ
a set of graph metrics that are related to the different aspects
we wish to evaluate, called Topological Voyage Graph Features
(TVGs). In this paper, we studied only global network metrics
(i-e., related to the whole graphs). We used the networkx library
[10] to compute such metrics.

An important metric in studying and comparing graphs is the
dimensions of the graph. To this end, we have considered the
order (i.e., amount of nodes/ports in the graph) (f;,) and the size
(i-e., amount of edges) (fe). Semantically, these two measures
are connected. A higher order and size can indicate an increased
overall vessel traffic, and/or the tendency to perform less conser-
vative routes, as more ports are involved. Inversely, a lower order
and size can indicate a decreased overall vessel traffic, and/or the
tendency to perform more conservative routes, as less ports are
involved.

A relevant aspect is the identification of cohesive subgroups
of ports in the graph, as a way to identify those ports that share a
strong tie in the traffic for a particular vessel type. The number of
Connected Components (CC, f¢) is the number of subgraphs in
which any node is connected to each other by edges, and which
is not connected to another subgraph. The number of Connected
Components (f¢) indicates how much the graph represents a

global scale activity (low CC number), rather than composed by
a set of not connected and local activities (high CC number). The
Average Clustering coefficient (fy), is the average of local clus-
tering of nodes. The local clustering of each node in the graph
is the fraction of triangles (set of 3 vertices such that any two
of them are connected by an edge) that exist over all possible
triangles in its neighborhood. In other words, this coefficient
represents the probability that two neighbors of a node are neigh-
bors themselves, and can serve to evaluate how many voyages
happen around the same set of ports.

Another essential metric for the maritime networks is the ex-
tension of their geographical spatiality, as the distance between
ports can be directed linked with various cost aspects as fuel
consumption, maintenance rates, and insurance costs [6]. In ad-
dition, such a metric can give insights on whether certain vessel
types are more oriented toward short or long routes. In this pa-
per we have considered the average (f;) and weighted average
(fw) link distance. The former represents the geodesic distances
between connected ports in the graph, expressed in kilometers.
The weighted version multiplies each distance by the number of
voyages made between the two ports.
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4.3 TVGs Time-Series

A time-series is a collection of observations made sequentially
over the time [3]. Examples include (i) sales of a particular product
in successive months, (ii) electricity consumption in a particular
area for successive one-hour periods.

In particular, we build time-series of the TVG features. For this
purpose, we use Algorithm 1 to return the set of Voyages Graph
Snapshot G, compute the TVGs for each one of the graph g; € G
and store them as separated time-series T; where j indicate the
TVG feature (i.e. number of nodes (f,), number of edges (fe), av-
erage clustering (fz), number of strongly connected components
(fc), the average (f;) and weighted average (fi) link distance.

Let function; be the function that compute the topological
metric of a given graph g indicated by the index j, for instance
if j is equal to f;, then function; computes the number of edges
on the graph g. Also, let I be the set of existing temporal buckets
in G and let J be the set of TVG features.

We then formalize the TVG time-series (Tf ) with the following
equations:

T) = { function;(g:) | g € Gi e Lj € ]}
where:

J = Afn, fe: fas fo> fas fw}

I:={wy,wo, ..., wn}

5 EXPERIMENTS

In this section, we present the experiments conducted to assess
the stationary behavior of the TVG features. We perform such
analysis for the different spectrum of types of vessels. In the ex-
periments, to build the Voyage Graph Snapshot using Algorithm
1, we assign respectively the values r = 5km, s = 10days, and
w = 30days.

Our source of AIS data is the MarineCadastre.gov dataset [16],
which contains filtered AIS records for the US coastal waters
for the years 2015-2017, for a total of about 934 GB. Records are
sampled to one minute and organized in the comma-separated
value (CSV) format, for a total of about 8 billions of records.

Additionally, we use the Sea-Ports dataset [15] that contains
spatial information, such as latitude and longitude, of all known

seaports in the world. From the original datasets, we have re-
tained only the ports of North America.

The experiments conducted aim to answer the following re-
search questions comprehensively. Our research question can be
summarized as the following: Are the TVG time series station-
ary? Stationarity is an essential characteristic of a time series.
A time series is said to be stationary if its statistical properties
do not change over time. In other words, it has constant mean
and variance, and covariance is independent of time. Section 5.2
address this research question. To address this research question,
we will use a statistical test designed to comment on whether a
time series is stationary explicitly.

5.1 Data Overview

Figure 2 shows, in percentage, the amount of unique MMSIs and
route counts by vessel type and for the whole dataset. In the orig-
inal dataset, there are several vessel categories: cargo, passenger,
sailing, military, fishing, tanker, and tug tow. Interestingly, for
cargo and tanker, a relevant percentage of unique MMSI corre-
spond to a much lesser portion of total voyages. This is expected
as these types of vessels perform less but longer voyages con-
cerning other vessel types. By comparison, tug boats with 26%
unique vessels have 61% of total routes. Unlike cargo and tankers,
these routes are very short and relative to the vessels moving
between nearby ports.

Among all categories, military and fishing account only for 1%
of the total voyages, meaning that there are too little data to build
meaningful graphs for these categories. We also did not consider
tug tows as their routes mostly regard only two ports resulting
in not interesting graphs. Therefore, from now on, we consider
only the following categories: cargo (which also includes tanker)
passenger, and sailing.

Figure 3 top and bottom show the amount of unique MMSIs
respectively and voyages count for each vessel type and for each
month in the period considered. Looking at cargo and tug tows,
we can notice an evident pattern of less naval traffic in the winter
periods (for example, from February to March 2016), in which
both the number of unique MMSI and voyages has a clear drop.
The drops are also visible (especially for cargo) in the same period
of 2015 and 2017. Also, it interesting to notice the similarity in
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the trend of the cargo and tug tow, which can be explained by
the fact the tug boats are mostly used to help large vessels, such
as cargoes, into ports.

Figure 4 shows the graph resulting from cargo vessels in the
northeast US in February-2016 (Figure 4 a) and August-2016 (Fig-
ure 4 b). It is clear from the graph that the traffic is more abundant
during the summer because of the better climatic conditions. The
graphs also show the complete halt of voyages in the great lakes
during winter due to the formation of ice in the lakes.

Figure 5 shows the extracted time-series using the MarineCadas-
tre.gov dataset for the features: number of nodes, number of
edges, number of connected components, and average clustering,
average distances and weighted average distance. For each TGV
feature, we consider four different series: passenger, sailing, cargo,
and all.

5.2 Stationary behavior analysis

In this section, we address our research question of investigat-
ing the (non) stationary behavior of the TVGs. A time series is
stationary if they do not have a trend or seasonal effects. This
means that the statistics calculated on the time series, such as
the mean, variance, and auto-correlation of the observations are
consistent over time [2]. Most statistical forecasting methods are
based on the assumption that the time series can be modeled
approximately stationary through the use of mathematical trans-
formations [12]. Thus, stationary time series are easier to model.
Indeed, statistical modeling methods assume or require the time
series to be stationary to be effective.

There are different methods to verify whether a time series
is stationary or not. Statistical tests are widely used to analyze
if the requirements of stationary are met or have been violated.
Here, we adopted the Augmented Dickey-Fuller Test [5] (ADF)
that uses an auto-regressive model and optimizes an information
criterion across multiple different lag values [4].

The null hypothesis of the test is that the time series is not
stationary. The alternative hypothesis (rejecting the null hypoth-
esis) is that the time series is stationary. When interpreting the
p-value from this test, values below a threshold (such as 5% or
1%) suggests to reject the null hypothesis, i.e., the time-series is
stationary. While, p-values above the threshold suggests to do
not to reject the null hypothesis, meaning that the time-series is
non-stationary.

We performed an ADF test on the TVG Time-series extracted
from our dataset. The idea is that the more negative (lower) this
ADF statistic, the more likely we have a stationary time-series
or does not have time-dependent structure. We report the ADF
test results on Table 1. The table reports for each TVG feature,
and for each serie, the ADF-Statistic, the p-value and the critical
values (1%, 5%, and 10%).

By looking at the results of each TGV feature, it is possible
to see that most of the series have statistic values lower than
the critical value of 1%, except the features avg clustering, for
the Serie sailing (ADF statistic equals to -2.851), and #cc, for the
Serie passenger (ADF statistic equals to -3.431). This indicates
weak evidence against the null hypothesis, so for these 2 cases,
considering critical values at 1% level, these two TVG time-series
are non-stationary.

Therefore, our analysis using the MarineCadastre.gov dataset
suggests that there is a stationary characteristic over the time of
the vessel’s voyages in the USA coast for the different considered
vessels’ type (i.e., all, sailing, cargo and passenger). This char-
acteristic has been presented in most of the investigated TGVs
time-series, and it implies that the voyage graphs at different
ranges of time points keep constant on average, without showing
significant trends or seasonality during the years of 2015 and
2017.



Serie ADF p-Value | Crit 1% | Crit 5% | Crit 10%
# nodes
all -9.355 8.104785e-16 -3.494 -2.889 -2.582
cargo -9.831 5.036417e-17 -3.494 -2.889 -2.582
passenger | -10.303 | 3.341735e-18 -3.494 -2.889 -2.582
sailing -8.957 8.412623e-15 -3.494 -2.889 -2.582
# edges
all -9.588 2.077671e-16 -3.494 -2.889 -2.582
cargo -8.962 8.154913e-15 -3.494 -2.889 -2.582
passenger | -10.476 | 1.249137e-18 -3.494 -2.889 -2.582
sailing -9.668 1.296871e-16 -3.494 -2.889 -2.582
avg_clustering
all -3.633 5.152565e-03 -3.499 -2.892 -2.583
cargo -8.795 2.182865e-14 -3.494 -2.889 -2.582
passenger | -9.243 1.561285e-15 -3.494 -2.889 -2.582
sailing -2.851 5.137153e-02 -3.497 -2.891 -2.582
#cc
all -8.284 4.431598e-13 -3.494 -2.889 -2.582
cargo -11.461 | 5.54062%-21 -3.494 -2.889 -2.582
passenger | -3.431 9.952558e-03 -3.498 -2.891 -2.582
sailing -8.160 9.189961e-13 -3.494 -2.889 -2.582
avg_distance
all -9.729 9.121595e-17 -3.494 -2.889 -2.582
cargo -9.946 2.595040e-17 -3.494 -2.889 -2.582
passenger | -10.358 | 2.434362e-18 -3.494 -2.889 -2.582
sailing -11.361 | 9.454762e-21 -3.494 -2.889 -2.582
weighted_average_distance
all -4.527 1.758368e-04 -3.495 -2.890 -2.582
cargo -10.204 | 5.860322e-18 -3.494 -2.889 -2.582
passenger | -9.783 6.668246e-17 -3.494 -2.889 -2.582
sailing -12.326 | 6.577707e-23 -3.494 -2.889 -2.582

Table 1: Augmented Dickey-Fuller (ADF) Test

6 CONCLUSION

This paper presented an analysis of the evolution of networks
made by voyages of vessels between ports, based on several
topological features of the network so-called Topological Voyage
Graph Features (TVGs). The networks were built in a bottom-up
and data-driven fashion, considering 3 years of AIS data of the
US coastal waters. The analysis unraveled insights about the
stationarity of several features over time, including the number
of nodes and edges, clustering coefficient, and geodesic distance
between the ports (nodes) of the network. The analysis was
performed on the MarineCadastre.gov dataset containing vessels’
voyages in the USA coast. In particular, for this dataset, we found
that for most of the TVGs, the time-series do not present any
trend or seasonality behaviors.

We are aware of the limitations of applying our approach to a
single dataset that only covers the coast of the United States in a
relatively short time period of 3 years (2015 - 2017). In the future,
we plan to extend our study both in terms of the geographical
area covered (i.e., by including dataset from other countries and
possibly a worldwide network) and the time period. In addition,
the definition of the spatial area of ports can be improved to
increase the precision in voyages detection, in a way similar to the
one performed in [22]. Finally, in terms of network analysis, the

metrics we considered in this paper are global. Still, an analysis
of local node metrics (such as node centrality) is an interesting
future improvement.
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