
Visualizing Dependencies during Incremental Discovery
Processes

Bernardo Breve
Department of Computer Science

University of Salerno
Fisciano (SA), Italy
bbreve@unisa.it

Loredana Caruccio
Department of Computer Science

University of Salerno
Fisciano (SA), Italy
lcaruccio@unisa.it

Stefano Cirillo
Department of Computer Science

University of Salerno
Fisciano (SA), Italy
scirillo@unisa.it

Vincenzo Deufemia
Department of Computer Science

University of Salerno
Fisciano (SA), Italy
deufemia@unisa.it

Giuseppe Polese
Department of Computer Science

University of Salerno
Fisciano (SA), Italy
gpolese@unisa.it

ABSTRACT

Functional dependencies (fds), and their extensions relaxed func-
tional dependencies (rfds), represent an important semantic
property of data. They have been widely used over the years for
several advanced database operations. Thanks to the availability
of discovery algorithms for inferring them from data, in the last
years (relaxed) fds have been exploited in many new application
contexts, including data cleansing and query relaxation. One of
the main problems in this context is the possible “big” number
of rfds that might hold on a given dataset, which might make it
difficult for a user getting insights from them. On the other hand,
one of the main challenges that has recently arisen is the possi-
bility of monitoring how dependencies change during discovery
processes run over data streams, also known as continuous dis-
covery processes. To this end, in this paper we present a tool for
visualizing the evolution of discovered rfds during continuous
discovery processes. It permits to analyze detailed results for dif-
ferent types of rfds, and uses quantitative measures to monitor
how discovery results evolve. Finally, in order to facilitate the
analysis of results in long discovery processes, the tool enables
the comparison among rfds holding in different time-slots. The
effectiveness of the proposed tool has been evaluated in a case
study focused on dependencies discovered from streams of data
associated to the tweets posted over the Twitter social network.

KEYWORDS

relaxed functional dependencies, visual analytics, continuous
discovery, data profiling

1 INTRODUCTION

Metadata have been recognized as a fundamental mean to assess
the quality and integrity of data. They range from basic statis-
tics on domain distributions and cardinalities to more complex
properties of data, such as data dependencies [18]. The necessity
to collect metadata from big data collections is the goal of data
profiling approaches. Among the different types of data profil-
ing tasks, in this paper we focus on the discovery of functional
dependencies (fds), and their extensions relaxed functional de-
pendencies (rfds). They describe relationships among database

© 2020 Copyright held by the owner/author(s). Published in the Workshop Proceed-
ings of the EDBT/ICDT 2020 Joint Conference, (March 30-April 2, 2020 Copenhagen,
Denmark) on CEUR-WS.org .
Distribution of this paper is permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0) .

attributes, which might be exploited in several advanced data-
base operations, such as query optimization, data cleansing, and
so forth. In particular, rfds relax some constraints of canonical
fds by admitting the possibility for a functional dependency to
hold on a subset of data (also referred to as rfds relaxing on the
extent), and/or by relying on approximate paradigms to compare
pairs of tuples (also referred to as rfds relaxing on the attribute
comparison) [3].

fds were traditionally specified at design time, based on the
semantics of attributes, and could only change upon schema
evolution operations [7]. rfds can also be specified at design time,
but due to the thresholds they require this would be a complex
task. Moreover, since they are mainly used in the big data context,
it is desirable to have means to automatically discover them from
data, so as to be able to capture their evolutions upon changes to
the database instances [2][16].

Although the problem of discovering fds and rfds from data
is extremely complex, the recent definition of efficient algorithms
enabled their discovery from “big” data collections. Among these,
it is worth to mention [20, 21, 26] for fd discovery, and [4, 6,
15, 25] for rfd discovery. Moreover, recent proposals dealt with
incremental or continuous data profiling scenarios [2, 22]. We
particularly focus on such kind of scenarios, where the goal is
to get holding fds/rfds even when the input data dynamically
change over time, permitting the discovery of rfds also from data
streams. Nevertheless, in the context of continuous profiling, the
possibly huge quantity of holding rfds at each point in time yields
the necessity to graphically visualize them. Indeed, a proper
analysis of how rfds change over time cannot be accomplished
by looking at such a huge number of holding rfds over millions
of time instants. To the best of our knowledge, the literature does
not offer solutions for mastering such a problem.

In this paper, we present devis (DEpendency VISualizer), a
tool for analyzing and comparing rfd discovery results. It permits
to analyze the set of rfds extracted from data streams and their
evolution over time. Moreover, devis enables the user to i) visual-
ize the trend related to the number of holding rfds over time, ii)
compare the rfds holding at different time-slots, and iii) interact
with the discovery results by hiding details and/or attributes, and
by filtering them according to a specific Right-Hand-Side (RHS)
attribute. devis and its visual components can be used over all
the available incremental rfd discovery algorithms, also thanks
to a parsing module enabling the standardization of discovery
results.



The paper is organized as follows. Section 2 describes related
visualization approaches and tools. Section 3 presents definitions
and theoretical foundations of fds and rfds. Section 4 presents
devis, whereas Section 5 reports the experimental case study on
streams of tweets. Finally, summary and concluding remarks are
included in Section 6.

2 RELATEDWORK

The availability of efficient rfd (or fd) discovery algorithms
yields the necessity to manage big result sets of rfds, most of
which differing only for some values of relaxation parameters.
However, only recently such algorithms are becoming capable to
scale over big data sources, but there are no many solutions in the
literature for handling the complexity related to the visualization
of possibly huge numbers of discovered rfds. Among these, one
of the most effective platforms for data profiling is the Metanome
project [19], which embeds several algorithms to automatically
discover complex metadata, including functional and inclusion
dependencies. Moreover, it embeds various result management
techniques, such as list-based ranking techniques, and interactive
diagrams of discovery results. To this end, a representative scal-
able platform for analyzing data profiles is Metacrate [14], which
permits the storage of different meta-data and their integrations,
enabling users to perform several ad-hoc analysis. In this context,
the first proposal for visualizing large sets of rfds is described
in [5]. It presents several metaphors for representing rfds at
different levels of detail. Starting from a high-level visualization
of attribute correlations, details are interactively revealed, also
including details on the relaxation criteria.

A related research context is represented by visual data min-
ing. In the literature, there are many approaches and tools that
aim to improve the understanding of data mining algorithms
and results (see [10] for a survey). Among these, it is worth to
mention Association Rules (ARs) visualization approaches, since
the concept of AR is somehow related to that of rfd. Effective
examples are the tool in [24], which provides multiple views
to visually inspect the overall set of ARs; and the hierarchical
matrix-based visualization technique presented in [8].

Although all of these approaches represent effective tools to
visualize and explore properties and metadata after the execution
of mining/discovery algorithms, our proposal goes beyond the
only result visualization problem, since it allows users to explore
how rfds change over time, and to perform result comparisons
among different time-slots. This meets the recent need of re-
searchers to focus on more complex scenarios and issues, such
as the possibility to explore how data change [1] and to perform
continuous profiling [18]. For these reasons, even if in the liter-
ature several time-related visualization approaches/tools have
been proposed [9, 12, 17, 23], they focus on different application
scenarios. Thus, to the best of our knowledge devis is the first
proposal that enables the exploration and comparison of rfd
discovery results in dynamic scenarios.

3 PRELIMINARES

Before describing the proposed tool we will review the definition
of fd, and the general definition of rfd.

fd definition. Let R be a relational database schema defined
over a set of attributes attr (R), and r an instance of R, then we
use {A,B,C, . . . } to denote single attributes inattr (R), {X ,Y ,W , . . .}
sets of attributes in attr (R), t[A] and t[X ] the projection of t
onto A and X , respectively. An fd over R is a statement X → Y

(X implies Y ), such that, given an instance r of R, X → Y is
satisfied in r if and only if for every pair of tuples (t1, t2) in r ,
whenever t1[X ] = t2[X ], then t1[Y ] = t2[Y ]. X and Y represent
the Left-Hand-Side (LHS) and Right-Hand-Side (RHS) of the fd,
respectively.

Starting from the canonical definition of fd over 35 extended
definitions have been provided in the literature, which have been
generalized under the concept of Relaxed Functional Dependency
(rfd) [3]. In particular, rfds enable the consideration of two main
relaxation criteria. The first one generalizes the equality con-
straint used into the fd definition. It requires that the projections
of two tuples over a subset of attributes are compared by means
of the equality function. Instead, rfds consider a constraint as a
predicate evaluating whether the distance or similarity between
two values of an attribute satisfies a given threshold. Thus, it
involves a similarity or difference function, such as the Jaro or
the Edit distance [11], whose results are verified according to a
comparison operator and a threshold.

The second relaxation criterion, defined as relaxation on the
extent, admits the possibility that the dependency might hold for
a subset rather than all the tuples. In particular, the satisfiability
degree of an rfd can be formally specified by means of condi-
tions restricting the application domain of the rfd or through a
coverage measure. The latter measures the minimum number or
percentage of tuples on which the rfd must hold. Examples of
widely used coverage measures are the confidence and д3-error
[13].

rfd definition. Consider a relational database schema R, and
a relation schema R = (A1, . . . ,Am ) of R. An rfd φ on R is
denoted by

Dc : XΦ1
Ψ≤ε
−−−−→ YΦ2 (1)

where

• Dc =
{
t ∈ dom(R) |

m∧
i=1

ci (t[Ai ])}

with c = (c1, . . . , cm ), and each ci is a predicate ondom(Ai )
filtering the tuples on which φ applies;

• X = B1, . . . ,Bh and Y = C1, . . . ,Ck , with X ,Y ⊆ attr (R)
and X ∩ Y = ∅;

• Φ1 =
∧

Bi ∈X
ϕi [Bi ] (Φ2 =

∧
Cj ∈Y

ϕ j [Cj ], resp.), where ϕi (ϕ j ,

resp.) is a conjunction of predicates on Ci (Cj , resp.) with
i = 1, . . . ,h (j = 1, . . . ,k , resp.). For any pair of tuples (t1,
t2)∈ dom(R), the constraint Φ1 (Φ2, resp.) is true if t1[Bi ]
and t2[Bi ] (t1[Cj ] and t2[Cj ], resp.) satisfy the constraint
ϕi (ϕ j , resp.) ∀ i ∈ [1,h] (j ∈ [1,k], resp.).

• Ψ is a coverage measure defined on dom(R), quantify-
ing the amount of tuples violating or satisfying φ. It can
be defined as a function Ψ : dom(X ) × dom(Y ) → R+,
where dom(X ) is the cartesian product of the domains of
attributes composing X .

• ε is a threshold indicating the upper bound (or lower bound
in case the comparison operator is ≥) for the result of the
coverage measure.

Given r ⊆ Dc a relation instance on R, r satisfies the rfd φ,
denoted by r |= φ, if and only if: ∀ t1, t2 ∈ r , if Φ1 indicates
true, then almost always Φ2 indicates true. Here, almost always

is expressed by the constraint Ψ ≤ ε . A more general definition
covering more types of rfds has been provided in [3].

In the following we consider fds, rfds relaxing on the tuple
comparison only, rfds relaxing only on the extent through a
coverage measure, and a hybrid version of them, with the general



acronym rfd. In fact, they can be described according to the
equation (1). In this study, we do not consider rfds relaxing on
the extent through a condition of domain values.

For rfds relaxing on the tuple comparison only, when no cou-
ple of tuples yields an rfd violation, the expression Ψ(X ,Y ) = 0
is omitted from the rfd expression. Moreover, for sake of simplic-
ity in what follows we always consider the д3-error as coverage
measure, the operator ≤ for tuple comparison, and several dis-
tance functions, such as the edit distance for textual values, the
absolute difference for numerical values, and so forth. Finally,
without loss of generality, we can consider rfds with a single
value on the RHS.

As an example, in a database of tweets, it is likely to have the
same number of followed accounts (#Friends) for accounts with
the same name and location. Thus, an fd {Name, Loc}→ #Friends
might hold. However, this property might also hold for names
and locations stored using different abbreviations and/or similar
numbers of friends, hence the following rfd might hold:

{Name≤2, Loc≤4} −→ #Friends≤10

Moreover, since accounts might change location during their
account’s life, or there might be changes in the number of friends,
the previous rfd should tolerate possible exceptions. This can
be modeled by introducing a different coverage measure into the
rfd:

{Name≤2, Loc≤4}
ψ (Name ,Loc ,#Fr iends)≤0.03
−−−−−−−−−−−−−−−−−−−−−−−−−−→ #Friends≤10

Among all rfds holding on a given relation database schema
R, only a subset of them can be considered as the most mean-
ingful ones. In fact, in the context of fds, Armstrong’s inference
rules have been theoretically defined in order to derive the mini-
mal set of fds. The latter represents the set of fds from which
all valid ones can be derived. Into the context of rfds, an rfd

XΦ1

ψ (X ,A)≤ε
−−−−−−−−−→ Aϕ2 is said to be minimal if and only if 1) it is

non-trivial, i.e. no attributes are shared between the LHS and
RHS; 2) it has the minimum possible number of LHS attributes;
3) it has LHS attributes with maximum possible threshold values;
and 4) it has the RHS attribute with minimum possible threshold
value.

Algorithms for discovering rfds typically return the set of
minimal rfds satisfied by the database instance provided in the
input. However, as said before, the number of holding rfds can be
huge, especially when relaxation criteria settings increase. This
prevents a proper analysis of rfds, and mostly their evolution
over time. Aiming to solve this problem, we propose devis, which
is described in the next section.

4 A TOOL FOR ANALYZING AND

COMPARING RFD DISCOVERY RESULTS

In this section, we describe devis. It enables monitoring of rfd
discovery results over time. In particular, we first present the
system architecture (Section 4.1), and then provide details on
i) the visual interface (Section 4.2), ii) the feature enabling the
comparison between two different time-slots (Section 4.3), and
iii) the interactions that a user can perform (Section 4.4).

4.1 System architecture

Visualizing rfd discovery results during the execution of incre-
mental algorithms is a quite complex problem. There are several
issues related to discovery processes that lead to specific choices
for the system architecture: 1) the amount of rfds processed at

Figure 1: The system architecture.

Figure 2: Examples of rfds processed by the parser mod-

ule.

each point in time can be significantly big, 2) the presence of
several visualization components could require frequent updates
in short time, and 3) discovery algorithms rely on different im-
plementation technologies. To this end, devis has been designed
aiming to enable users monitor results during the execution of
rfd discovery algorithms through a responsive visual interface.
Moreover, it is based on a client-server architecture, whereas each
of its modules is standalone and shares information with other
modules by using the JSON standard. High component modular-
ity and maintainability allow for the substitution of any back-end
component, provided that its output is formatted according to
the JSON standard defined for the interaction.

Figure 1 shows the architecture of devis. In particular, the
client is a web application based on the model-view-controller
(MVC) architecture that communicates with the back-end mod-
ules through live queries. The back-end server is a long-lived
Node.js application running distributed jobs while keeping a live
connection with the database. Back-end modules receive data
from live queries, process and represent them on the devis’s
dashboard.

Although the architecture is flexible, to make devis compatible
with most fd and rfd discovery algorithms, it is necessary to use
a parsing module that uniforms the syntax of the dependencies
regardless of possible thresholds. Figure 2 shows an example
of a parsing operation. In particular, it shows three rfds on its
left-bottom part. The first one is an fd, and the other two are
rfds relaxing on the attribute comparison, but with different
thresholds. The module receives the dependencies, manipulates
their syntax, and extracts a compact version so as to store it in
the real-time database RethinkDB1. The latter guarantees high
scalability, REST API, and real-time monitoring for the storage
operations. It allowed us to build multi-language connection
1https://rethinkdb.com



modules to integrate different discovery algorithms into devis. As
said before, devis focuses on continuous data profiling algorithms
[18] and therefore it requires tomaximize fluidity and tominimize
processing times within the visual interface. Thus, all selected
technologies for both client- and server-side support real-time
updating of data.

4.2 rfds visualization

Systems for data relationship visualization vary in what they dis-
play and how users interact with them. However, most of these
data visualization systems are not intended for the dynamic elab-
oration of data, restricting themselves to a static representation
of large sets of data. In the case of rfd discovery algorithms, a
static representation only allows for the visualization of results.
However, in the context of continuous data profiling it provides
much more useful insights studying how dependencies evolve
over time.

The dynamic representation of a large portion of data requires
the application of interactive graphs, capable of highlighting the
arrival of new information without losing track of pre-existent
information. Hence, a dynamic visual representation has been de-
fined and implemented through a line plot, showing the variation
on the number of dependencies being discovered or invalidated.
Moreover, a dependency table has been used to highlight further
details concerning discovered dependencies.

Figure 4 shows the line plot, which is responsible to display
information about the number of valid dependencies discovered
over time. The line plot block is divided into two sections, the
upper one is the main line plot, showing the number of valid
rfds on its y-axis and the time-stamp on its x-axis; the line plot
at the bottom of the figure is a replica of the upper one, but it
enables the interaction with the user, allowing him/her to select
an interval of time through a brush in order to visualize details on
how the number of discovered rfds changed during the selected
period. Both these line plots are updated, so that users can see
how the trend changes at any time instant, as the rfd discovery
process progresses.

The dependency table displayed below the line plot is struc-
tured so that each row represents an rfd, whereas each column
represents an attribute of the dataset. More specifically, the first

(a) Dependency validation counters.

(b) Minimal dependencies on single RHS attributes.

Figure 3: Statistical counter included into devis.

column labeled “RHS” informs the user about the RHS attribute
of the dependency. Instead, the other columns display details on
all the attributes that can appear in a dependency.

We provided devis with statistical counters displaying the
number of rfds that are valid, invalid and minimal, on a given
time instant (Figure 3(a)). Furthermore, at the bottom of the
interface, the number of minimal dependencies are grouped by
each RHS attribute appearing in the discovered rfds (Figure 3(b)).

4.3 Comparing dependencies over time

An important feature of devis is the possibility to monitor the
variation of the dependency status in two different time intervals.
This process has no impact on the discovery algorithm, which
continues to provide new status variations while the user is
focused on the analysis.

A comparison between discovery results at different time in-
tervals by processing a dedicated button placed in the side menu,
which duplicates both the line-plot and the dependency table.
Both the line plots and the dependency tables are continuously
updated, but they react differently to the interaction of the user.

Figure 5 shows the disposition of the line plots. By interacting
with the bottom line-plots, the user can select the time intervals
to be analyzed, and visually compare the dependencies through
the two associated dependency tables.

4.4 Interaction in depth

As mentioned above, users interact with the interface through
the bottom line plot(s) by selecting time intervals. To this end, the
user places the mouse pointer in correspondence with the start-
ing point of the interval and drags it by holding the left mouse
button up to the end point of the time interval. The selection is
highlighted with a grey rectangle on the bottom line plot. During
the process the top line plot reacts consequently, reducing the
scale on the x-axis in order to adapt the range boundaries spec-
ified by the user. Nevertheless, the discovery process is still in
progress, and the user can verify this through the UI when s/he
stops the brushing process by pressing the left mouse button at
any point of the bottom line plot.

Concerning the dependency table, Figure 6 highlights all the
interaction functionalities offered by devis. In order to allow the
user to reduce the table content, we added two different types
of filters: a search text field (Figure 6, yellow rectangle) allowing
for a global search over the attributes in the table, and a column-
based filter (Figure 6, green rectangle). Based on the text the
user inserts in the search text field, the table content is adapted
showing only the rows containing that specific value. If the user
writes a value in the column-based filter, the table content shows
only the rows having that value for the attribute corresponding to
the specific column. Instead, if more column filters get compiled,
only the rows having those values for all corresponding columns
are shown. We planned a different behavior in the case the user
decides to filter out the dependency on the table typing a value
for the column “RHS”. Indeed, for this particular column only, as
the user provides information about an attribute name, the query
also affects the top line plot, presenting a new blue line showing
information about how the number of dependencies having that
attribute on their RHS has changed (Figure 7).

The dependencies are sorted by default in a way that the most
recently altered ones get added on top of the table. However, users
can also define column-based sorting criteria by clicking on the



Figure 4: Line plot visualization.

Figure 5: Comparing dependencies between two different time-slots.

Figure 6: Interacting with the dependency table.

chosen column and selecting either an ascending or descending
order.

Due to the conspicuous amount of dependencies that might
be discovered, we also added a paging functionality (Figure 6, red
rectangle), allowing the user to decide how many rows should

be displayed in a single table page, preventing devis’s UI to be
overfilled with too many elements.

Finally, the buttons below the table allow the user to decide
which column to hide or show in the table (Figure 6, orange
rectangle). Pressing on the “x” symbol hides the column and



Figure 7: Interacting with the line plot.

ID #Tweet

Initial

Time

End

Time

#Validations

#Analyzed

fds

#Minimal

fds

A 1347 11:42 16:51 967077 3731 150
B 1450 19:00 23:59 876810 3600 175
C 1053 11:40 17:05 604652 3503 172
D 1150 19:38 23:47 472650 2885 159

Table 1: Statistics on the different evaluation sessions.

makes the corresponding rectangle turn to black. Another click
on the “x” symbol reverses this process.

5 ANALYZING FDS FROM TWITTER

STREAMS: A CASE STUDY

In order to verify the effectiveness of devis on a real-world sce-
nario we analyzed discovery results on the data stream of Twitter.
We selected this scenario for its stressful data load, and the possi-
bility to monitor fd and rfd discovery algorithms for long time.
In particular, we monitored the results of the incremental fd
discovery algorithm described in [2], extended to discover fds in
data streams.

More specifically, we selected 11 attributes concerning tweet’s
account details from the items of Twitter, avoiding all the key at-
tributes, images and so on, (i.e., Name, Email, Description, #Follow-
ers, #FriendsCount,CreatedAt, #Favourites, TimeZone, Lang, #Sta-
tuses, #Listed), and filtered tweets by considering only those con-
taining specific keywords (“2020”, “newyear”, “leapyear”, “happy”).
Tests have been performed by considering 4 execution sessions of
the algorithm, totally lasting about 4 hours, during which devis
continuously updated the set of discovered dependencies as new
tweets were read.

Table 1 shows some statistics concerning the performed eval-
uation, such as the initial and the end-time of each session, the
number of the tweets caught in the given period, and some de-
tails on the number of validations performed by the fd discovery

⋂ A

150
B

175
A∩B

90
C

172
A∩C

87
B∩C

114
A∩B∩C

76
D

159
A∩D

117
B∩D

85
A∩B∩D

81
C∩D

79
A∩C∩D

73
B∩C∩D

70
A∩B∩C∩D

68
Table 2: Statistics about the minimal fds obtained from

the tweet streams of the two experimental sessions.

algorithm and the number of distinct fds involved in the total
session time. Last column reports the number of minimal fds
discovered at the end of the given session. We can notice that
at the end the number of minimal fds are quite similar, even
if the number of performed validations is not necessarily close.
This is due to the fact that we had no influence on tweets caught
on the stream, and therefore each session may yield different
validation/invalidation processes.

To get some knowledge on the fd validation trend, devis en-
abled us to analyze line plots. As an example, Figure 8 shows the
line plots of two executions, both performed in the morning. As
expected, the two plots present a high variation at the beginning,
and then tend to be stable. However, by comparing the two plots
we can notice that the two trends present several differences,
especially for the first hour of execution.

As said above, the final number of minimal fds discovered
in the different sessions is quite similar. Thus, devis allowed
us to compare the holding and minimal fds at the end of the
single execution. Quantitative comparison results between all
considered sessions are reported in Table 2, which show that the
different sessions shared many fds. This result is not obvious,
since in most cases the tweets of the sessions are created by
different accounts.



(a) Session A.

(b) Session B.

Figure 8: Line plots of two execution sessions.

Some examples of minimal fds shared between the two consid-
ered sessions are shown in Table 3. The first fd is quite intuitive,
whereas the other ones require some explanation. As an example,
the second fd states that given two tweets, if they are created by
the same account (Name) and the number of followers is the same
(#Followers), then the number of the account’s friends does not
change (#Friends). This might be due to the fact that in the con-
sidered period of time the users focused on writing tweets (this
is the baseline of our scenario) without following new accounts.
The breadth of the time interval also affected the other three
fds. In particular, by comparing the last two fds we can deduce
that the number of likes (#Favourites) changes more frequently
wrt. the number of lists to which the account owner is registered
(#Listed). In fact, #Favourites required another attribute #Lang on
the LHS to be determined.

From these experiments of Twitter data devis allowed us to
figure out the monitored characteristics of different accounts
obey to similar fds. This was an interesting insight, because
such findings might be obvious for fake accounts, but not for the
genuine accounts we used in the experiments.

6 CONCLUSION AND VISION

Continuous profiling permits to consider extremely complex sce-
narios, where data are dynamically produced. In particular, each
modification to data might produce the evolution of many fds
and/or rfds. In some cases, due to both the quantity of holding
fds and rfds and the high-frequency of updates, it is unthinkable
to analyze the minimal fds and rfds for each time instant. Thus,
to facilitate the interpretation of discovered dependencies over
time, we have proposed the tool devis, which relies on several
visual components to let users actively analyze and explore the
evolution of holding rfds discovered through incremental fd or
rfd discovery algorithms.

In the future, we would like to investigate the analysis tasks
involved during the incremental discovery of rfds by conducting
interviews to potential users. The latter can belong to many

different categories, depending on the application context in
which rfds are exploited. So far rfds have beenmainly destinated
at data engineers and scientists. The aim of such interviews will
also be to identify new filtering criteria for comparing rfds, and
to embed them within devis. Finally, based on the results of
users interviews, we would like to design new visual metaphors
to graphically represent the general evolution of holding rfds,
so as to better support the identified analysis tasks.

Examples of fds

TimeZone → Lang
Name, #Statutes → #Friends
Descr, Lang, #Statuses → CreatedAt
Descr, #Followers, CreatedAt → #Listed
Descr, #Followers, Lang, CreatedAt → #Favourites

Table 3: Some meaningful fds shared into the sessions.

REFERENCES

[1] Tobias Bleifuß, Leon Bornemann, Theodore Johnson, Dmitri V Kalashnikov,
Felix Naumann, and Divesh Srivastava. 2018. Exploring change: a new di-
mension of data analytics. Proceedings of the VLDB Endowment 12, 2 (2018),
85–98.

[2] Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, and Giuseppe Polese.
2019. Incremental Discovery of Functional Dependencies with a Bit-vector
Algorithm. In Proceedings of the 27th Italian Symposium on Advanced Database

Systems.
[3] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. Relaxed

Functional Dependencies – A Survey of Approaches. IEEE Transactions on

Knowledge and Data Engineering 28, 1 (2016), 147–165.
[4] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2019. Mining

relaxed functional dependencies from data. Data Mining and Knowledge

Discovery (2019), To appear.
[5] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2019. Visual-

ization of (multimedia) dependencies from big data. Multimedia Tools and

Applications 78, 23 (2019), 33151–33167.
[6] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2020. Discover-

ing Relaxed Functional Dependencies based on Multi-attribute Dominance.
IEEE Transactions on Knowledge and Data Engineering (2020), To appear.

[7] Loredana Caruccio, Giuseppe Polese, and Genoveffa Tortora. 2016. Synchro-
nization of queries and views upon schema evolutions: A survey. ACM Trans-

actions on Database Systems (TODS) 41, 2 (2016), 1–41.



[8] Wei Chen, Cong Xie, Pingping Shang, and Qunsheng Peng. 2017. Visual
analysis of user-driven association rule mining. Journal of Visual Languages
& Computing 42 (2017), 76–85.

[9] Luca Corcella, Marco Manca, Fabio Paternò, and Carmen Santoro. 2018. A
Visual Tool for Analysing IoT Trigger/Action Programming. In International

Conference on Human-Centred Software Engineering. Springer, 189–206.
[10] MC Ferreira De Oliveira and Haim Levkowitz. 2003. From visual data explo-

ration to visual data mining: a survey. IEEE Transactions on Visualization and

Computer Graphics 9, 3 (2003), 378–394.
[11] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate record detection: A survey. IEEE Transactions on Knowledge and

Data Engineering 19, 1 (2007), 1–16.
[12] Daniel A Keim, Jörn Schneidewind, and Mike Sips. 2004. CircleView: a new ap-

proach for visualizing time-related multidimensional data sets. In Proceedings

of the working conference on Advanced visual interfaces. ACM, 179–182.
[13] Jyrki Kivinen and Heikki Mannila. 1995. Approximate inference of functional

dependencies from relations. Theoretical Computer Science 149, 1 (1995), 129–
149.

[14] Sebastian Kruse, David Hahn, Marius Walter, and Felix Naumann. 2017.
Metacrate: Organize and analyze millions of data profiles. In Proceedings

of the 2017 ACM on Conference on Information and Knowledge Management.
ACM, 2483–2486.

[15] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate
dependencies. Proceedings of the VLDB Endowment 11, 7 (2018), 759–772.

[16] Chien-Min Lin, Yu-Lung Hsieh, Kuo-Cheng Yin, Ming-Chuan Hung, and Don-
Lin Yang. 2013. ADMiner: An Incremental Data Mining Approach Using a
Compressed FP-tree. JSW 8, 8 (2013), 2095–2103.

[17] Adam Marcus, Michael S Bernstein, Osama Badar, David R Karger, Samuel
Madden, and Robert C Miller. 2012. Processing and visualizing the data in
tweets. ACM SIGMOD Record 40, 4 (2012), 21–27.

[18] Felix Naumann. 2014. Data profiling revisited. ACM SIGMOD Record 42, 4
(2014), 40–49.

[19] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data profiling with Metanome. Proceedings of the VLDB
Endowment 8, 12 (2015), 1860–1863.

[20] Thorsten Papenbrock and Felix Naumann. 2016. A hybrid approach to func-
tional dependency discovery. In Proceedings of the 2016 International Conference
on Management of Data. ACM, 821–833.

[21] Hemant Saxena, Lukasz Golab, and Ihab F Ilyas. 2019. Distributed Discovery
of Functional Dependencies. In IEEE 35th International Conference on Data

Engineering (ICDE ’19). IEEE, 1590–1593.
[22] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Dennis Hempfing,

Torben Meyer, Daniel Neuschäfer-Rube, and Felix Naumann. 2019. DynFD:
Functional Dependency Discovery in Dynamic Datasets. In Proceedings of the

22nd International Conference on Extending Database Technology (EDBT ’19).
253–264.

[23] Vinícius Segura and Simone DJ Barbosa. 2017. Historyviewer: Instrumenting
a visual analytics application to support revisiting a session of interactive
data analysis. Proceedings of the ACM on Human-Computer Interaction 1, EICS
(2017), 11.

[24] Yoones A. Sekhavat and Orland Hoeber. 2013. Visualizing Association Rules
Using Linked Matrix, Graph, and Detail Views. International Journal of Intelli-
gence Science 3 (2013), 34–49.

[25] Shaoxu Song and Lei Chen. 2013. Efficient discovery of similarity constraints
for matching dependencies. Data & Knowledge Engineering 87 (2013), 146–166.

[26] Ziheng Wei and Sebastian Link. 2019. Discovery and ranking of functional
dependencies. In IEEE 35th International Conference on Data Engineering (ICDE

’19). IEEE, 1526–1537.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminares
	4 A tool for analyzing and comparing RFD discovery results
	4.1 System architecture
	4.2 rfds visualization
	4.3 Comparing dependencies over time
	4.4 Interaction in depth

	5 Analyzing fds from Twitter streams: a case study
	6 Conclusion and Vision
	References

