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ABSTRACT

Several MapReduce frameworks have been developed in recent
years in order to cope with the need to process an increasing
amount of data. Moreover, some extensions of them have been
proposed to deal with particular kind of information, like the
spatial one. In this paper we will refer to SpatialHadoop, a spatial
extension of Apache Hadoop which provides a rich set of spatial
data types and operations. In the geo-spatial domain, spatial
join is considered a fundamental operation for performing data
analysis. However, the join operation is generally classified as
a critical task to be performed in MapReduce, since it requires
to process two datasets at time. Several different solutions have
been proposed in literature for efficiently performing a spatial
join which may or may not require the presence of a spatial
index computed on both datasets or only one of them. As already
discussed in literature, the efficiency of such operation depends
on the ability to both prune unnecessary data as soon as possible
and to provide a balanced amount of work to be done by each
parallelly executed task.

In this paper, we take a step forward in this direction by propos-
ing an evolution of the Partition-based Spatial Merge Join algo-
rithm which tries to completely exploit the benefit of the paral-
lelism induced by the MapReduce framework. In particular, we
concentrate on the partition phase which has to produce filtered
balanced and meaningful subdivisions of the original datasets.
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1 INTRODUCTION

The MapReduce paradigm has been specifically developed for
processing huge amount of data in an efficient way. In particular,
it requires to subdivide the desired analysis operation into two
subsequent phases: the first one is called map and it performs in
parallel the same operation on independent chunk of data, pro-
ducing a set of partial results. These partial results are (possibly)
combined by the second phase which is called reduce and may
be parallelized as well. Nowadays there are several frameworks
that implement the MapReduce paradigm, undoubtedly the most
famous ones are Apache Hadoop [15] and Apache Spark [17].
Moreover, in order to cope with the specific needs of particular
kinds of information, such as the spatial and temporal one, some
extensions have been developed which provides the implemen-
tation of the necessary data types and operations. As regards to
the spatial context, notable systems are SpatialHadoop [8] and
GeoSpark [16].

The basic partitioning approach traditionally implemented by
a MapReduce framework essentially uses a predefined amount
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of bytes as splitting criteria, without considering the content of
such data. In other words, given the original dataset, its records
are placed inside the current partition (or split) until a given size
threshold is reached, then another partition is initialized, and so
on. Such an approach can be suitable in the general case when
all the dataset content has to be processed. However, in other
cases when data are analyzed using selective queries based on
some attributes, such as time intervals or spatial regions, this
approach may be very inefficient, since the correlation between
data instances is completely ignored. For this reason, in the spatial
context, some global indexing (or partitioning) techniques have
been developed, which try to place inside the same partition data
which are spatially correlated in some way (i.e., placing inside
the same partition nearby objects).

In geo-spatial applications, spatial join is considered an es-
sential operation for data analysis [4, 5], since it allows the data
analyst to discover important correlations between data or enrich
the available information. A spatial join is a multi-dimensional
join specifically tailored for spatial data, in particular given two
datasets A and B each one characterized by a geometric attribute,
called д and f respectively, a spatial join A ◃▹ B returns the set of
pairs (a,b) such that a ∈ A and b ∈ B and the geometric intersec-
tion between the attributes a. f and b .д is not empty. For instance,
we can consider the case in which a geographer needs to compute
the spatial join between two huge datasets, one containing the
main roads and one the water areas, in order to predict the main
roads of her country which could be subject to flooding risks.
Similarly, a geographer may need to perform a join between a
dataset containing the main roads and another one representing
the administrative subdivisions of her country, in order to study
the density of the road network in each state.

However the join operation has been traditionally considered
a critical operation in MapReduce for two main reasons: (1) the
need to process two distinct datasets (files) at the same time, (2)
the need to perform some pruning or filtering operation in order
to reduce the amount of unnecessary comparisons. In order to
solve such problems, many efforts have been devoted in recent
years leading to the development of different MapReduce imple-
mentation of the join [6, 10] each one applicable to a particular
context. This also holds in the spatial context, where several
algorithms have been defined and implemented, which essen-
tially differ for the use of a spatial index and in the way this
index is built and used. At this regard SpatialHadoop is one of
the available framework which provides an implementation for
all these algorithms [9] that can also be combined with different
kinds of indexes (partitioning techniques) [7]. In general, none
of these algorithms can be considered better than the others, but
the choice might depend on the characteristics of the involved
datasets [2].

As we will describe in Sect. 2, the application of a spatial par-
titioning technique before the execution of a join operation is
particularly useful in order to both discard entire partitions from
the analysis, or to balance the amount of work to be done in



parallel (typically by each map task). Relatively to this aspect, in
literature has been extensively studied the importance of balanc-
ing the amount of work to be done by each map task in order to
completely exploit the parallelism induced by the MapReduce
paradigm [1, 3]. However, the preliminary application of a spatial
partitioning technique comes with its cost and sometimes it is
justified only if such new organization of data can be reused
several time, absorbing such initial cost. Moreover, the right par-
titioning technique to be applied may depends not only on the
dataset characteristics, such as its distribution [3], but also from
the type of analysis will be performed [12].

From these considerations, since the join operation requires
to process two distinct datasets together, the choice of the right
partitioning technique has necessarily to consider both datasets
together in order to balance the amount of work to be done by
each map task. As we will better explain in Sect. 3, given two
datasetsA and B, each one individually partitioned with the most
appropriate partitioning technique, it may happen that the splits
obtained by combining them for the join will not necessarily
produce the overall better setting w.r.t. the balancing criterion.

In this paper we consider the implementation of the Partition
Based Spatial Merge Join [13] provided by SpatialHadoop, de-
noted as Sjmr, which is the only spatial join algorithm that does
not rely on the preliminary application of individual spatial par-
tition techniques on the input datasets, but it defines a partition
grid based on both datasets together. Given such algorithm we
enhance the definition of a common partitioning grid in order
to both preliminary prune unnecessary data and promote the
balancing of the obtained splits. Such partitioning technique has
to consider the spatial characteristics of both dataset together,
such as the spatial distribution of its objects as well as the global
covered area.

2 BACKGROUND

SpatialHadoop provides four different spatial join algorithms
which essentially differ for the use of spatial indexes or for the
way data are repartitioned on the fly. In particular, the simplest
solution is represented by the Djni algorithm. Djni stands for
Distributed Join with No Index, it uses the default random parti-
tioning technique, which is provided by any MapReduce frame-
work and is based only on the size constraint. In other words, it
does not involve any preliminary repartition of the data based
on their spatial properties (no index or global repartitioning is
applied). Since Djni cannot rely on any spatial property, given
two datasets Di and D j subdivided into n andm partitions, re-
spectively, the number of map tasks to be instantiated is equal to
the Cartesian product n ×m. This case represents the worst case
scenario for both the number of map tasks to be instantiated and
the amount of data to be processed. Moreover, since each pair of
input partitions can contain data from any region of the space,
there could be some map tasks that produce a huge number of
intersecting pairs, while others could have to compare only very
far geometries that do not partecipate to the result.

A first improvement of Djni is represented by the Djgi algo-
rithm which starts from indexed data. Djgi stands for Distributed
Join with Grid Index, in this case both input datasets are assumed
to be previously repartitioned by using one of the available spa-
tial indexes: the most suitable one given the dataset characteris-
tics [3]. In this case, each partition is identified by a global MBR
(Minimum Bounding Rectangle) and map tasks are instantiated
only for those pairs of partitions that have a not empty MBR

intersection, potentially reducing the number of map tasks and
the number of comparisons to be performed inside them.

Fig. 1 illustrates the application of Djni and Djgi to the same
pair of datasets containing rectangles: dataset Di contains the
blue rectangles, while D j contains the orange ones, for both
datasets the corresponding MBR is also depicted. As you can no-
tice for both algorithms, the input datasets have been subdivided
into a certain number of partitions (or splits), but while for Djni
each split can contain data coming from any zone of the space,
for Djgi each split contains only data that are located nearby,
reducing both the number of split combinations to be considered
and the amount of unnecessary comparisons to be done. This
is a consequence of the fact that the splits of Djni cover almost
the whole MBR of the dataset (see spliti and splitj rectangles in
Fig. 1), while the splits (cells) of Djgi cover a small part of the
reference space (see ci and kj cells in Fig. 1), thus reducing the
number of geometric intersections to compute.
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Figure 1: Example of execution of Djni and Djgi on the

same pair of datasets.

As you can notice, when the Djgi algorithm is applied, the
dimension of each combined split can be very different from
each other, depending on the size and shape of the intersection
between the original splits. In order to promote the definition of
balanced map tasks, theDjre algorithm has been developed.Djre
stands for Distributed Join with Repartition, in this case only one
of the two input datasets has been previously partitioned by
using the most appropriate spatial index, while the other one is
repartitioned by using the subdivision (or grid) induced by the
first one. In this case, the number of map tasks to be instantiated
is equal to the number of partitions of the previous dataset that
intersect also the other one. Moreover, while the shape of the
obtained splits is uniform, there could be great differences in the
number of objects contained in each split, particularly if the two
datasets covers only a partial overlapping space, or they cover
the same space with different distributions.

Sjmr is the only spatial join algorithm which does not assume
that the data have been preliminary partitioned with respect
to spatial criteria, but it performs itself the best subdivision by
considering both datasets together. Sjmr stands for Spatial Join
MapReduce and it is the MapReduce implementation of the Parti-
tion Based Spatial Merge Join [13]. It uses a common global grid
for partitioning data before executing the required comparisons.
As illustrated in Fig. 2, this grid is regular, namely the shape and
dimension of its cells is uniform and is automatically determined



based only on the input file size. The grid definition does not take
care of neither the dataset distribution, nor the reference space
individually covered by the two input datasets. In this paper,
we extend the global partitioning performed by the Sjmr at the
beginning in order to take care of also these aspects.

Di 
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Grid ixj 

Join cij 

cij 

cij 

Figure 2: Example of execution of the Sjmr algorithm. In

this case a global partitioning grid I∪ is build which in-

cludes the union of the MBRs of the two datasets. Each

cell ci j is separately processed considering the geometries

coming from both datasets.

Tab. 1 provides a brief comparison between the available spa-
tial join algorithms. The first column Op reports the name of
the spatial join algorithm. Column BR indicates if the algorithm
requires the use of a modified binary reader in order to load two
dataset at time. In particular, a tick indicates that the algorithm
considers each dataset individually and contemporarily loads a
partition from each of them. Conversely, in the Sjmr case, the
algorithm uses the default Hadoop reader and is able to load data
coming from the two inputs by simply merging the original files.
Notice that the modified binary reader induces some additional
problems w.r.t. the locality principle: the system guarantees that
at least one of the two inputs is locally loaded by the computation
node, but the second one can be read both locally or remotely,
inducing some overhead. Conversely, with the Sjmr each map
task is always able to locally read its input, with great advan-
tage in terms of performance of the I/O operations. Column In

reports the number of datasets that are assumed to be indexed
before the spatial join execution, while column Rep indicates
if a repartition of one dataset is applied before the join. Finally,
column Ref reports a reference to the original algorithm.

Table 1: Summary of the various spatial join operators.

Op BR In Rep Ref

Djni X 0 ✗ Block Nested Loop Join
Djgi X 2 ✗ Grid File Spatial Join algorithm [11]
Djre X 1 X Bulk-Index Join [14]
Sjmr ✗ 0 ✗ Partition Based Spatial Merge Join [13]

3 MOTIVATING EXAMPLES

In this section we illustrates some example of situations in which
the application of the classical partitioning technique provided
by the Sjmr algorithm can produce unbalanced situations.

We will start by considering the best case regarding the join
between two spatial datasets A and B whose geometries are uni-
formly distributed around the same reference space. This situa-
tion is illustrated in Fig. 3.a. The global uniform grid is computed
starting from the MBR of the union of the two datasets (i.e.,
MBR(A ∪ B)) and by uniformly subdividing the space both hori-
zontally and vertically into ⌈

√
ds/sp⌉ cells, where ds is the size

in bytes of the dataset A ∪ B, while sp is the size in bytes of the
default split size.

Figure 3: (a) Example of application of Sjmr to two com-

pletely overlapping datasets. (b) Example of unbalanced

grid produced by Djgi: the four left upper cells have been

highlighted for showing their different shape and dimen-

sion.

This subdivision may be preferable to the application of indi-
vidual indexes w.r.t. the balancing criteria, because it considers
both datasets together. Fig. 3.b illustrates an example in which
the splits produced by using separate individual indexes (one in
green and one in red) can generate not only a greater number
of combinations of intersecting splits, but also very unbalanced
combinations, like the ones highlighted in the upper left corner
of Fig. 3.b where one green cell is combined with four red cells.

The default construction of the grid in Sjmr considers the
union of the two datasets. However, if their original reference
spaces are not completely overlapping, this grid can contain cells
outside the join reference space that include data coming only
from one dataset. Some exemplifying situations are illustrated in
Fig. 4: in the first case the reference space of one dataset is con-
tained inside the other one, while in the second case the reference
spaces of the two datasets are shifted. These situations reveal
that it is not necessary to compute the global grid starting from
the union of the MBRs of the two datasets, but in order to reduce
the amount of unnecessary work, we can instead consider the
intersection between the MBRs of the two input datasets during
the grid definition. Moreover, in case of uniformly distributed
datasets, the definition of the grid starting from the intersection
of the MBRs ensures that the obtained splits are also more likely
to be balanced.

Figure 4: Example of reference spaces that are not com-

pletely overlapping: (a) one reference space inside the

other, (b) two shifted reference spaces.

Finally, we consider the case in which the two datasets are not
uniformly distributed. In this case the use of cells with the same
shape and dimension can induce unbalanced split dimensions, as
illustrate in Fig. 5.



Figure 5: Unbalanced situation: the cells located closer to

the boundary are more populated then the central ones.

4 PROBLEM FORMULATION

This section formalizes the problem of obtaining balanced parti-
tions in the context of the spatial join execution.

Definition 4.1 (Spatial Dataset). A spatial dataset D = {r1, . . . , rn }
is a collection of records ri each one characterized by a spatial
attribute д.

In the following, we will use the notation ri .д in order to
denote the spatial attribute д contained in the record ri .

Definition 4.2 (Partitioning). Given a dataset D = {r1, . . . , rn },
a partitioning P is a collection of subsets of D:

P = {p1, . . . ,ph } such that ∀pi ∈ P (pi ⊆ D ∧ D = ∪ipi ) (1)

The general notion of partitioning does not require that any
other specific property holds between the contained objects. Con-
versely, the notion of spatially-enhanced partitioning is defined
in order to place nearby objects inside the same partition.

Given a subdivision of the space covered by a dataset D and
represented by a set of cells G = {c1, . . . , ch }, each cell ck will
contain only the records of D whose spatial attribute д has a not
empty intersection with ck . Partitions are then defined starting
from this grid subdivision, so that each partition corresponds to
a cell of G.

Definition 4.3 (Minimum Bounding Rectangle). Given a geom-
etry д defined by a not empty set of 2D coordinates, i.e. д =
{(x1,y1), . . . (xn ,yn )}, the Minimum Bounding Rectangle (MBR)

of д is the rectangle representing the maximum extension of
д. In other words, the MBR of д is defined by the coordinates
min({x1, . . . ,xn }), min({y1, . . . ,yn }), max({x1, . . . ,xn }), max(
{y1, . . . ,yn }). The definition of MBR can be easily extended to a
set of geometries as well.

In the following we will use MBR(д), MBR(D) or MBR(pi ) to
denote the MBR of a generic geometry д, of a dataset D or a
partition pi , respectively.

Definition 4.4 (Spatially-enhanced partitioning). Given a dataset
D and a grid G = {c1, . . . , ch } covering MBR(D), a spatially-

enhanced partitioning P of D is a collection of subsets of D such
that:

P = {p1, . . . ,ph } such that ∀pi ∈ P
(pi ⊆ D ∧ D = ∪ipi ∧ ∀r j ∈ pi (r j .д ∩MBR(pi ) , ∅))

Independently from the kind of considered partitions (i.e., spa-
tially-enhanced or not), we can define the concept of balanced
partitioning as follows.

Definition 4.5 (Balanced Partitioning). A partitioning P for a
dataset D is said to be balanced if and only if:

∀pi ,pj ∈ P : abs(|pi | − |pj |) < ε (2)

where |pi | denotes the cardinality of partition pi .

The aim of this paper is to obtain balanced spatially-enhanced
partitions which contains data from both input datasets involved
in the join operation.

5 PROPOSED SOLUTION

This section presents the proposed solution, called Esjmr (En-
hanced Sjmr), together with a detailed description of the differ-
ences introduced w.r.t. the original Sjmr algorithm provided by
SpatialHadoop.

Sjmr is composed of three MapReduce jobs: the first two are
responsible for computing the MBR of the two involved datasets
separately. The union of these two MBRs is then used by the
third job for computing the global uniform grid and performing
the spatial join. In particular, as regards to the third job, during
the map phase, each mapper assigns its input geometries to one
or more cells of the uniform grid, then the reducers (potentially
one for each grid cell) receives the geometries contained in a
cell and computes the join on them by executing a plane-sweep
algorithm. Some expedients are used to avoid the production of
duplicated tuples in the final output.

In Esjmr we propose a unique job for computing the MBR of
both datasets together, as illustrated in Algorithm 1. In particular,
the produced output is already the intersection of the dataset
MBRs. Notice that, in order to read the two input dataset, the job
uses a strategy already known in literature [6, 15] that combines
the two inputs into a unique file by keeping a reference to the
source. In the algorithms this additional reference is denoted
by representing the value of a tuple as ⟨ri , f ⟩ where ri is the
original record contained in the input file, while f with f =
{1, 2} denotes the fact that the record ri originally belongs to the
first or second input file. Moreover, together with the MBR of
the intersection, we produce also an estimation of the number
of geometries contained in such intersection. This estimation
is useful in order to properly instantiate the partitioning grid,
indeed the intersection should contain less geometries than the
union of the two original datasets, particularly in the case their
reference spaces are not completely overlapping.

In Algorithm 1 each mapper is responsible for updating the
dataset MBRs based on the geometries contained in its split, in
the psedo-code ri .д stands for the geometric attributeд contained
in the record ri . Notice that instead of building only two sep-
arate MBRs, each mapper maintains and updates two ordered
lists of partial MBRs (one for each input file). When a new ge-
ometry is processed, the first overlapping MBR intersecting it
is updated accordingly, or a new partial MBR is added to the
corresponding list. A counter is also maintained for each partial
MBR which represents the number of geometries intersecting it.
This counter will be used for estimating the number of geome-
tries belonging to the dataset intersection. Clearly, this may be
an overestimation, but it is more indicative than considering the
sum of the cardinality of the two datasets. At the end of each
map, the Cleanup procedure will perform some aggregations of
adjacent overlapping MBRs, so that the unique reducer will re-
ceive a limited amount of MBRs. The reducer can easily compute
both the intersection of the dataset MBRs and an estimation of
the number of geometries in the intersection. Notice that in all



Algorithm 1: MBR computation
1 class Mapper

2 mbr1i ←−mbr2i ←− ∅

3 method Map( _ , ⟨ri , f ⟩)
4 if f = 1 then
5 if ∃x ∈mbr1i (x .mbr ∩Mbr(ri .д)) then
6 x .mbr ←− Extend(x .mbr ,Mbr(ri .д))
7 x .count ←− x .count + 1
8 else

9 x .mbr ←− Mbr(ri ,д)
10 x .count ←− 1
11 mbr1i .SortedAdd(x)

12 else

13 if ∃y ∈mbr2i (y.mbr ∩Mbr(ri .д)) then
14 y.mbr ←− Extend(y.mbr ,Mbr(ri .д))
15 y.count ←− y.count + 1
16 else

17 y.mbr ←− Mbr(ri ,д)
18 y.count ←− 1
19 mbr2i .SortedAdd(y)

20 method Cleanup()

21 Compact(mbr1i )

22 for x ∈mbr1i do

23 Write( _ , ⟨x .mbr ,x .count , 1⟩)
24 Compact(mbr2i )

25 for y ∈mbr2i do

26 Write( _ , ⟨y.mbr ,y.count , 2⟩)

27 class Reducer

28 mbr1 ←−mbr2 ←−mbr ←− EmptyMbr
29 l1 ←− l2 ←− ∅

30 method Reduce( _, ⟨mbri , counti , f ⟩)
31 if f = 1 then
32 mbr1 ←− ⟨Extend(mbr1,mbri )

33 l1 ←− l1 ∪ {(mbri , counti )}

34 else

35 mbr2 ←− ⟨Extend(mbr2,mbri )

36 l2 ←− l2 ∪ {(mbri , counti )}

37 method Cleanup()

38 mbr ←−mbr1 ∩mbr2
39 for x ∈ l1 ∪ l2 do
40 if x .mbr ∩mbr then
41 count ←− count + x .count

42 Write( _ , ⟨mbr , count⟩)

algorithms, the symbol “_” denotes a dummy serial identifier for
a MapReduce input for which we do not take care of.

Given the MBR of the dataset intersection which represents
the grid extension, the second task is responsible for performing
the balanced partitioning of the two input datasets. It is very
similar to the map phase of the second Sjmr task, but it also uses
a reduce phase for refining the obtained partitions and producing
more balanced splits. This second job is described in Algorithm 2,
where it is assumed that each map task knows: (1) the initial

Algorithm 2: Partitioning computation
1 class Mapper

2 G ←− grid computed using the previous job
3 th ←− cell occupation threshold
4 method Map( _ , ⟨ri , f ⟩)
5 cl ←− IntersectingCells(G, ri .д)
6 for c ∈ cl do
7 Write(c, ⟨ri , f ⟩)

8 class Reducer

9 method Reduce(c, l = {⟨ri , f ) . . . }
10 if |l | > th then

11 ll ←− ∅

12 while ll = ∅ ∧ BigSplits(ll) do
13 ll ←− Split(c, ll)
14 for l ∈ ll do
15 WriteInSplit(l)

16 else

17 WriteInSplit(l)

uniform grid G which has an extension equal to the MBR of
the datasets intersection and cells with uniform size computed
using the dimension (number of objects) of the intersection and
the given split size, (2) a threshold value th representing the
maximum number of objects to be included in each split.

More specifically, given the datasetD∩ obtained from the inter-
section of the two input datasets, whose size in bytes is denoted
as size(D∩), and the desired size in bytes of a split, denoted as
size(split), the estimated initial number of cells of the gridG is
computed as #cells = ⌈size(D∩)/size(split)⌉. Given such estima-
tion, the grid G will have the dimension ⌈

√
#cells⌉ × ⌈

√
#cells⌉,

while the cell weight will be equal towidth(MBR(D∩))/⌈
√
#cells⌉

and the cell height will be equal to heiдht(MBR(D∩))/⌈
√
#cells⌉.

Function IntersectingCells(G,д) returns the set of cells of
G which have a not empty intersection with д. This set can be ef-
ficiently obtained by considering the MBR of д and thanks to the
fixed dimension of the cells. In other words, the index of the first
intersected cell is obtained by dividing the minimum x and the
minumum y ofMbr(д) for the cell width and height, respectively.
In this way the map tasks produce an initial uniform subdivision
of the geometries which can be enough if geometries are uni-
formly distributed. Otherwise, some recursive subdivisions of an
overcrowded cell can be necessary.

The reducers, potentially one for each not empty cell produced
by the mappers, are responsible for checking the degree of occu-
pancy of such cells. In particular, if the degree of occupancy is
less than the given threshold, the geometries contained in the cell
can be directly written in a split by the function WriteInSplit().
Otherwise, the geometries inside the cell will be partitioned again
by recursively subdividing the cell into four splits (like in a quad-
tree index). Function Split is responsible for doing such recursive
subdivision, while function BigSplit returns true if the degree
of occupancy of c overcomes the threshold th.

The last job is responsible for performing the spatial join be-
tween the geometries that belong to the intersection, namely the
geometries of D∩. This is done during a map phase, where each
mapper receives a split, namely the geometries of both datasets
that belong to a particular cell. The first operation to be done is



subdividing the geometries into two lists (one for each dataset)
and then the plain sweep algorithm is performed to compute
the intersecting pairs. Some expedients can be applied in order
to avoid the production of duplicated pairs during the writing
performed by the mappers, as already done by SpatialHadoop.

Algorithm 3: Spatial Join
1 class Mapper

2 l1 ←− l2 ←− {}

3 method Map( _ , ⟨ri , f ⟩)
4 if f = 1 then
5 l1 ←− l1.SortedAdd(ri )
6 else

7 l2 ←− l2.SortedAdd(ri )

8 method Cleanup()

9 pl ←− PlaneSweep(l1, l2)
10 for ⟨r1, r2⟩ ∈ pl do
11 Write(r1, r2)

6 EXPERIMENTS AND VALIDATION

This section presents some preliminary results obtained by apply-
ing the proposed Esjmr technique, together with a comparison
with the partitioning used by Sjmr. In particular, we are inter-
ested in analysing the degree of balancing obtained by the two
partitioning techniques.

Such results are illustrate in Table 2 where two real world cases
are considered: (1) the join between the water area (WA) and the
primary roads of USA (PR), and (2) the join between the roads
(RD) and the administrative subdivisions (AS) of Australia. In the
table column |Mbr∪ | reports the number of geometries contained
in the union of the two MBRs, while |Mbr∩ | the number of
geometries in the intersection between the two MBRs. As you
can notice, in both cases this number is quite different: the use of
the intersection allow to prune unnecessary geometries as soon
as possible. Column #splits reports the number of not empty cells
produced by the two techniques, while column %RDS reports the
relative standard deviation between the size of the splits. This
last measure is intended as a measure of the balancing degree
between the split sizes.

As regards to the number of splits, while Sjmr is able to pro-
duce less splits (smaller number of join mappers), Esjmr guar-
antees more balanced parallel tasks. Consider for example the
first case: given the original uniform grid, six splits contains a
number of geometries less than the desired threshold, while the
remaining two contain more than half of the geometries, so they
are recursively subdivided by Esjmr.

Table 2: Comparison of the experimental results obtained

by applying Sjmr and Esjmr algorihtms.

Datasets Sjmr Esjmr
|Mbr∪ | #splits %RDS |Mbr∩ | #splits %RDS

WA ◃▹ PR 2,305,162 8 181% 2,007,414 22 50%
AS ◃▹ PR 1,245,200 5 188% 1,244,800 14 65%

The preliminary experiments encourage the investigation in
this direction, since the proposed technique ensures the construc-
tion or more balanced splits.

7 CONCLUSION

In recent years the amount of spatial data to be processed is
continuously increasing, thanks also to the spread of IoT and
mobile devices with geo-spatial capabilities. For this reason, some
MapReduce frameworks have been developed which are specifi-
cally tailored for modeling and processing spatial data.

Among the possible spatial operation, spatial join is certainly
considered a fundamental one for performing meaningful geo-
spatial analysis. However, the join is traditionally considered a
critical operation to be performed in the MapReduce context,
since it requires to process two distinct datasets (files) at time.
For this reason, several join solutions have been developed both
in the general case and in the spatial one. As already discussed in
literature, the performances of such algorithms greatly depends
on the ability to prune unnecessary data as soon as possibile, and
to produce balanced partitions. Having balanced partitions means
that the parallel map tasks have essentially the same amount of
work to do. In this way, we can maximize the benefits induced
by the parallelism.

This paper takes inspiration from the Sjmr algorithm provided
by SpatialHadoop which is the only one that does not require a
preliminary construction of a spatial index on both input datasets
and also considers both datasets together during the repartition.
Starting from this algorithm, we propose an enhanced version
of Sjmr, called Esjmr, with the aim to produce both more bal-
anced and filtered partitions. Some preliminar experiments have
been performed in order to check the benefits of the partitioning
induced by Esjmr w.r.t. the one produce by Sjmr. Such initial
results encourages further development in this direction and will
guide the definition of future works.
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