
Question Answering on OLAP-like Data Sources
Nadine Steinmetz

Technische Universität Ilmenau
Germany

nadine.steinmetz@tu-ilmenau.de

Samar Shahabi-Ghahfarokhi
Technische Universität Ilmenau

Germany
samar.shahabi-ghahfarokhi@

tu-ilmenau.de

Kai-Uwe Sattler
Technische Universität Ilmenau

Germany
kus@tu-ilmenau.de

ABSTRACT
Today, knowledge is mostly stored in structured data sources
and requires to be queried by formal query languages. Natural
language interfaces to these data sources enable users to query
the data without knowledge about the technical details of the
query language which is particularly useful in analytics and deci-
sion support. In this paper, we present an approach to query data
that is stored in an OLAP database only using natural language.
We describe the preliminaries and transformation process from a
question to the formal SQL query on a snowflake schema. The
approach takes into account synonyms to identify the relevant
fact table and uses mapping techniques to appoint the correct
attributes and dimension tables within the schema. As an exam-
ple, we utilized the Foodmart data source to implement the first
prototype and prepared over 40 different questions to assess our
approach and provide a benchmark for further studies.

1 INTRODUCTION
The developments in the fields of speech recognition and natural
language processing (NLP) over the last few years have fostered
many novel applications. Apart from the now nearly ubiquitous
virtual assistants like AmazonAlexa or Apple Siri in smartphones,
smart speakers, and other consumer devices, research in the field
of question answering (QA) has made a significant progress since
IBM’s DeepQA system Watson won the quiz show Jeopardy! in
2011. QA systems – or in the special form of Natural Language
Interfaces to Databases (NLIDB) [2] – provide a user-friendly
way to access any type of knowledge base simply by entering a
question formulated in natural language (NL). To answer such
a question, the type of the question, objects and predicates as
well as entities have to be identified by parsing and analyzing the
sentence. Then, the question has to be mapped to a query, e.g. in
SQL or SPARQL, on a database or knowledge base providing the
necessary facts. Particularly, RDF-based knowledge bases such as
DBpedia [6, 9, 10] or databases enriched by ontologies [8] have
been used successfully.

OLAP databases are used to answer multidimensional analyti-
cal queries in the business intelligence context. Typically, OLAP is
based on a multidimensional data model distinguishing between
facts or measures and dimensions forming a so-called hypercube.
In such a hypercube, dimensions span the data space and provide
information about the facts represented by the cells of the cube.
OLAP cubes are usually queried either via visual interfaces (e.g.
Tableau) which generate and execute database queries, or simply
by standard query languages, such as SQL or MDX. While the
latter provides the most powerful access, particularly SQL with
advanced grouping features and OLAP functions is too difficult
for non-database experts. On the other hand, visual interfaces

© 2020 Copyright for this paper by its author(s). Published in theWorkshop Proceed-
ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, Copenhagen,
Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-
tribution 4.0 International (CC BY 4.0)

are easily to use (e.g. for drill down/rollup operations) even for
business users but limited in their expressiveness. Therefore,
combining question answering with OLAP seems to be a nat-
ural solution to provide access to analytical databases. QA for
(relational) OLAP means

• working with star or snowflake schemas consisting of fact
and dimension tables,
• answering questions referring to facts and dimensions/di-
mension values.

The goal of our work is an approach to answer basic questions
for facts such as “What were the total sales of beverages in March
2018?” but also more complex questions requiring calculations,
sorting and ranking or other more advanced operations like
“Whatwere the total sales per product class inMay 2018 compared
to May 2017?”.

The focus of our work is the processing of textual questions –
a speech recognition interface is out of the scope of our work but
can be easily added by using external cloud services such as Alexa
Voice Service or Google Speech-to-Text. The main contributions
of our work are twofold. We present an approach for mapping
NL questions to SQL queries on a snowflake schema. And we
describe a schema-agnostic technique to derive such mappings.
In addition, we provide a set of NL questions as benchmark for
the evaluation of QA systems for OLAP.

The remainder of this paper is organized as follows. In Sect. 2
we discuss related approaches from NLIDB and QA. The pro-
cessing of questions and the mapping approach to SQL queries
is described in Sect. 3. We have implemented this approach in
a prototype which is evaluated using a set of questions on the
Foodmart cube. The results of this evaluation presented in Sect. 4
demonstrate that our QA approach is capable of answering even
complex questions. Finally, we conclude the results in Sect. 5 and
point out to future work.

2 RELATEDWORK
Li et al. introduced an interface (NaLIR) that transforms NL to
SQL [5]. The interface is interactive and requests feedback from
the user. Hereby, the user interacts with the interface during the
query construction process at two different stages. First, the NL
phrase is parsed into a lexical tree. Afterwards, the parse tree is
analyzed and specific nodes are identified which can be mapped
parts of the underlying SQL schema information. At this stage,
if the mapping fails, the first feedback is requested by the user.
Otherwise, the successful mappings are presented to the user.
After all nodes are interpreted correctly (with the help of the
user), the parse tree is adapted according to the their system. If
necessary, implicit nodes can be inserted and the user is able to
give feedback on that process. The query tree – verified by the
user – is transformed to a SQL query containing joins, aggregate
functions etc. The system is designed to answer rather simple
questions. The authors claim, the question Return the author who



has the most publications in database area is hard to answer. Also,
the system relies on a high amount of feedback by the user.

The authors of the approach described above reference the
field of NLIDB for their scientific solutions as the interfaces are
designed to query (relational) databases in general. In addition,
the research field of question answering has emerged, especially
since new types of knowledge bases have been established, such
as graph databases or triple stores. Our approach is designed to
transform a NL question to SQL to be able to query a schema
stored in a database. However, we also relate our approach to
the research field of question answering, as it is based on OLAP.
A star or snowflake schema constitutes a specific and powerful
way of storing data respectively knowledge.

Naeem et al. presented an approach to generate OLAP queries
based on NL [7]. The question is analyzed for Part-of-Speech,
linguistic dependencies and semantic roles. They utilize SBVR
which is a vocabulary specific to business use cases. Different
parts of the NL question are mapped to different pre-defined
semantic roles. The SQL query is then generated according to
these assigned roles. The approach seems to be able to process
rather simple questions, but more complicated queries containing
comparisons, grouping and other functions are not considered.

Sen et al. just recently presented an approach to build com-
plex SQL queries using NL [8]. The authors focus on queries
that include subqueries and comparisons between different sub-
queries. Their approach is based on very few rules, but tailored
to a specific benchmark containing finance data. The heart of
their system is an ontology containing over 150 concepts and
several hundred properties. Input questions are mapped to the
ontology and then the SQL query is constructed based on the
ontological elements. As already stated above, our approach is
designed to be as agnostic as possible regarding the underlying
data source. Therefore, a change of the data source is enabled
without changing (parts of) the system.

There are several further approaches to NLIDBs published
in recent years. In addition to the analytical approaches as de-
scribed above, there are systems that transform natural language
to SQL using neural networks. But as we also chose an analytical
approach, these systems are out of scope in terms of related work.

Just recently, a survey has been published comparing NLIs for
databases [1]. The authors compare 24 interfaces that transform
NL to a formal query language (namely SQL or SPARQL). The
comparison is based on a set of 10 NL questions that have been
constructed by means of different challenges that developers are
facing when transforming the input into the respective query.
Unfortunately, none of the presented systems are based on OLAP-
like data sources, but some are transforming NL to SQL queries
- as we describe those systems above. For the evaluation of our
approach, we adopt the categorization of questions by means of
query challenges, as described in detail in Section 4.

In terms of Business Intelligence (BI) scenarios, Tableau is an
established software tool1. It focusses on querying business data
and visualizing the data in a very intuitive way. The user can eas-
ily manipulate the visualization and create different perspectives.
The user can query the data using NL, but an input is immediately
mapped to the underlying data source respectively pre-defined
terms and the user is provided with concrete items of the data
source – functions, relations, attributes or concrete data terms.
After choosing one of the suggestions, the user can complete or
refine the input query. In contrast to that, we focus on complete

1https://www.tableau.com/

NL questions that could also originate from a speech interface.
In our approach, the processing and mapping is performed on a
complete sentence/question.

In recent years, question answering is mostly focussed on an-
swering questions regarding an underlying semantic knowledge
base. NL questions are transferred to a SPARQL query based on
the knowledge structured as RDF triples. The challenge Question
Answering over Linked Data (QALD) has been established in
2011 as part of the Extended Semantic Web Conference (ESWC).
The latest challenge took place as part of the 18th International
Semantic Web Conference (ISWC) [3]. In addition to many con-
curring systems that participated in recent years, the organizers
of the challenge published all datasets containing at least 100
questions and the corresponding SPARQL queries. As we are
focussing on data sources stored in star/snowflake schema, the
comparison to the systems and datasets is not applicable for our
approach presented in this paper.

Table 1: Comparison of related approaches to our ap-
proach

NaLIR
[5]

Naeem
et al.
[7]

Sen et
al. [8]

Tableau Our
Approach

SQL ✓ ✓ ✓ ✓ ✓
OLAP ✓ ✓ ✓
Schema
agnostic

✓ ✓

NL
question

✓ ✓ ✓ ✓

Complex
queries

✓ ✓ ✓

In terms of a better understanding the contribution of our
approach, we compare related systems using the following char-
acteristics:
• data source is OLAP-like and the approach constructs SQL
queries based on facts and dimensions
• the approach is agnostic regarding the schema of the data
source
• NL questions are supported
• complex queries containing grouping, subqueries are sup-
ported

Table 1 shows the comparison of our approach to related ap-
proaches regarding the defined characteristics. Obviously, our
approach is bridging the gap between OLAP-like data sources
and NL questions in a schema agnostic way – and is also able to
answer complex questions.

3 METHOD
The proposed approach considers any given knowledge base
structured as a snowflake schema having one or more fact tables
and several dimension tables. Only one table of a dimension is
directly connected to the fact table. Thereby, the length of the
longest path between a fact table and the deepest dimension table
can be long and at least pmax > 1.

For our approach, we utilized the Foodmart data source2 – as
described further in Section 4. In the schema of the Foodmart
data source the longest path from the fact table to a dimension
2https://github.com/rsim/mondrian_demo/blob/master/db/foodmart.sql

https://www.tableau.com/
https://github.com/rsim/mondrian_demo/blob/master/db/foodmart.sql


table is pmax = 2. Therefore, and also for simplification reasons
in describing our approach, we assume a snowflake schema with
pmax = 2. Hence, we utilize the term first level dimension table for
the tables directly connected to the fact table (p = 1) and second
level dimension table for dimension tables that are connected via
one dimension table in between (p = 2).

However, our approach is also able to handle snowflake sche-
mas having pmax > 2.

There are certain preliminaries for the analysis of the under-
lying data. We extract information from the schema and use it as
pre-knowledge for the queries. In addition, we consider further
knowledge about the specific data and general language trans-
formation issues. The NL questions are processed based on this
preparative information and as a result a formal SQL query is
created to retrieve the requested data from the snowflake schema
and present it to the user. More details about our approach are
described in the following sections.

For our approach, some information about the underlying
data source is required to be able to transform the NL question
to a formal query. Most of the required information might be
provided by the data owner in database constraints, such as
foreign keys, fact and dimension table names. Our approach is
able to handle unknown data sources and extract the required
information from the given tables. In this way, we are able to
handle data sources given as a set of csv files or an undocumented
sql database provided by an URL. In the following sections we
describe the required process steps.

3.1 Preliminaries
The first and foremost prerequisite for our approach is having
the data in a snowflake schema. In addition, we require the infor-
mation about which tables in a given database are the fact tables.
Obviously, all other tables are assumed to be dimension tables.
If no schema containing foreign key constraints is given, we
identify the constraints using an automatic detection algorithm,
such as described in [4]. For the mapping of NL phrases to the
database, the tables and attributes require to have descriptive
names – in the best case. For synthetically created data sources
this might not be true. We identified several solutions for that
challenge:
• automatic detection of type of data based on the containing
data – this is effective for common data, such as person
names, locations or dates
• analysis of sample queries and respective NL questions –
this requires user input
• manual annotation of table names and attributes – this
also requires user input

For the description of our QA approach, we assume to have
descriptive names for tables and attributes – as it is the case for
popular benchmarks, such as TPC-H or TPC-DS, but also for the
Foodmart data source. The next section describes the knowledge
we extract from an unknown database to satisfy our prerequisites.

3.2 Knowledge about Data
We extract the following information required to map NL to a
snowflake schema:
• information about the schema – names of fact and di-
mension tables, join attributes and fact attributes, plus
synonyms
• mapping list to identify NL phrases for SQL operators
• thesaurus for general synonyms

Besides the actual data source containing the facts and dimen-
sions, we only utilize an additional data source having stored the
synonyms, extracted schema information and SQL vocabulary.
The concrete extraction of information and further knowledge
required for processing NL questions is described in detail in the
following sections.

3.2.1 Schema information. Provided that the name(s) of the
fact table(s) are known, we extract and store further required
information from the information schema of the database. This
includes:
• names of dimension tables
• join attributes
• names of fact attributes
• synonyms for table and attribute names

Information about foreign keys is either given by the database
constraints or automatically detected by an algorithm, such as
[4]. In this way, the join attributes for fact and dimension tables
are detected. All remaining attributes from the fact table(s) are
assumed to be fact attributes containing the actual measures and
numbers.

In addition, we analyze and clean the attribute and table names
and store them ready to be mapped by terms of the NL question.
However, the NL question might not mention the exact (anno-
tated) name of the affected attribute or fact table. Therefore, we
utilize the datamuse API3 to add synonyms for attributes and
tables.

3.2.2 SQL operators and functions. The required application
of SQL operators and functions in the formal query mostly can
be identified by certain keywords in the NL question of any
domain. These keywords are assumed to be static throughout
questions of different domains. Therefore, we utilize a list of
potential keywords to be able to map them to the correct SQL
operator resp. function. For instance, the keyword total indicates
the use of the SQL function SUM for the requested attribute. We
provide the complete mapping list as download4.

3.2.3 Thesaurus. Time information can be stored in various
ways. In return, time information can be referenced in various
ways in NL. For instance, the question How much bread was sold
in the first quarter of 2010? is targeted on all sales in the first
three months – namely January, February, and March. In this
case, we either have to filter for dates having 1, 2 or 3 in the
month field of the date or the date is stored having the month
information separately and we have to filter on this attribute.
In addition, the time information contains a separate field con-
taining the respective quarter. In either way, we have to analyze
the underlying data source and how date information is stored.
Furthermore, it is required to add synonymous information of
how dates might be referenced in NL. Therefore, we maintain a
thesaurus as a mapping table for date information. Dependent on
the underlying data source, terms like first quarter are mapped
to the data source, as e.g. to Q1.

3.3 Processing the Natural Language
The NL question is preprocessed and mapped to our thesaurus
and the underlying data source. After preprocessing and extrac-
tion of specific terms, the following checks are executed:
• which SQL operator – "total" -> SUM, "average"->AVG

3http://www.datamuse.com/api/
4https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/sql_operators.tsv

http://www.datamuse.com/api/
https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/sql_operators.tsv


Table 2: POS Tags that are taken into account for the ex-
traction of terms from the NL question

Tag(s) Type Example
CD cardinal numeral 1998
FW foreign word les
JJ* adjective total
NN* noun sales, costs
PDT predeterminer both sales and costs
POS possessive ending January’s
RB* adverb good, better, best
VB* verb sold
WRB wh-adverb when, how

• which fact table – e.g. "sales"-> sales_fact
• which dimension table – "which store [...]?", "In which city
[...]?"
• which attribute from fact table – "How many units where
ordered [...?]" -> units_ordered from inventory_fact
• is there a term from a dimension table? – "How much
bread [...]?" -> "Bread" is found as data term in the field for
product categories within the product_class dimension

After these checks, the NL question is presented as an interme-
diate formal description. This formal description is then trans-
formed to the actual SQL query5.

3.3.1 Preprocessing. The NL question is tagged for Part-of-
Speech (POS) using the NLTK library6 and the Brown tagset7.
Subsequently, the respective terms are extracted from the NL
question according to a predefined white list of POS tags. Table
2 shows the white list of POS tags and respective sample words
for each tag.

If there are continuous words having a noun tag (NN, NNS,
NNP, NNPS) these words are extracted as coherent terms. Words
marked with other tags are extracted as single words. Words with
tags not contained in the white list are dismissed. In addition,
further word combinations are identified, such as third month,
last month, how many.

For instance, for the question
How many paper wipes were sold in the first month of
1997?

the following terms are extracted: [how many],[paper wipes],
[were], [sold], [first month], [1997].

Subsequently, the list of extracted terms is checked for terms
contained in our thesaurus. For our example, the term first month
could be translated to January or 1 depending on how dates are
stored in our data source.

After this preprocessing step, the question is represented as
a list of n tuples – the question description desc . Each tuple
contains the extracted term (respectively its translation) and the
POS tag(s).

desc = (t1,t2, ...,tn ) (1)

with n = number of extracted terms,

ti = (ki , (POS1, ...,POSm )) (2)

5A detailed transformation process of a sample NL question to a SQL query is illus-
trated here: https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/sample_
transformation.pdf
6http://www.nltk.org/
7http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM

with k being an extracted term which can consist of one or more
words – which results in one or more POS tags for each extracted
term.

In the next steps, these terms are checked for query-related
operators and the schema of the data source. The list of tuples is
checked item per item and if a check is positive, the respective
tuple is replaced with a new tuple depending on the different
checks as described in detail in the following sections.

3.3.2 Operators. Based on what the question asks for, several
SQL operators might be relevant to be used in the query. We
utilize a mapping list of manually identified NL phrases that
indicate the use of a SQL operator. For instance, the NL phrase
maximum suggests to use the MAX operator in the SELECT clause
or different indicates the use of DISTINCT. If a term from the NL
question is matching a term from our mapping list, the term is
replaced with the respective SQL operator in the intermediate
representation desc of the question. The tuple ti (containing term
and POS tag(s)) in desc is replaced by the operator/function si as
a string:

si ∈ S (3)

with S being the set of all SQL operators and functions.

3.3.3 Fact Tables. As a preliminary we know the names of the
fact tables in the snowflake schema. To identify the correct fact
table (in case there are more than one fact table in the schema)
we check the remaining terms in the tuples if they are matching
a fact table’s name. As it is not very likely having the exact fact
tables’ name in the question, we utilize the datamuse API (as
described in Section 3.2.1) to map a term and identify the correct
fact table. For our example, the datamuse API provides the term
sold as one of the synonyms for sales.

The information about the correct fact table is stored sepa-
rately in addition to the intermediate representation desc of the
question.

3.3.4 Dimension Tables. In some cases a question might refer
directly to a dimension of the schema. For instance, a data source
with localized information one dimension could be the region. In
that case, a questionWhich region locates the most stores? directly
refers to the dimension region. The tuple ti of the matching term
is replaced with a new tuple d :

di = (′′,′′ ,dimj , (keyj1 , ...,keyjn )) (4)

with ′′ being empty strings,dimj the name of the dimension table,
(keyj1 , ...,keyjn ) the list of join attributes between the dimension
table and the fact table and potential second level dimension
tables. The first empty string in the tuple denotes an unspecified
data constraint, in terms of not having a concrete data term found
in the data source, such as Bread or January. The second empty
string stands for an unassigned attribute for the corresponding
table – there is no specific attribute affected.

3.3.5 Attributes. Questions might also refer directly to at-
tributes from the fact or dimension tables. For instance, a data
source about sales for different products might include a dimen-
sion table listing all available products and their properties. In
that case, a possible question could be What is the net weight
of [...]?. The net weight for all products is stored in a field in a
dimension table. The respective term in desc is mapped to the
attribute and the tuple t is replaced with a tuple a:

ai = (′′,attr j ,dimj , (keyj1 , ...,keyjn )) (5)

https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/sample_transformation.pdf
https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/sample_transformation.pdf
http://www.nltk.org/
http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM


with ′′ being an empty string, attr j the name of the attribute
mapped to the term, dimj the name of the dimension table,
(keyj1 , ...,keyjn ) the list of join attributes between the dimen-
sion table and the fact table and potential second level dimension
tables. Similar to di , the empty string denotes an unspecified data
constraint.

3.3.6 Term. Concluding, for the remaining tuples t of the list
it is checked, if the term is stored as data in the underlying data
source. In this way, the information for the WHERE clause con-
straining attributes to concrete data is retrieved. For all dimension
tables views are created having the concrete data in one field and
the corresponding attribute name in a second field. These views
are created for all dimension tables separately. Remaining terms
from the NL question are queried regarding the data fields in
these views. In case of a match, a tuple is created containing the
matching term, the attribute name, the name of the dimension
table and the join attribute for this dimension table:

wi = (term,attr j ,dimj , (keyj1 , ...,keyjn )) (6)

with term being the data term found in the data source, attr j
the attribute name where the data term is stored in the data
source, dimj the dimension table where the data term is stored,
(keyj1 , ...,keyjn ) the list of join attributes between the dimension
table and the fact table and potential second level dimension
tables.

The previous tuple containing the matching term in the de-
scription desc is replaced by the newly created tuplewi .

3.4 Construction of the SQL Query
After processing all checks as described above, desc consists of
processed tuples/strings only. All initial tuples that could not be
processed/mapped to the data source are dismissed. In the next
step, desc is transformed to the actual SQL query.

All tuples of desc are analyzed and the containing distinct
dimension tables are extracted and stored as a list for the cre-
ation of the joins in the query. As the schema might also contain
second level dimension tables, the list is analyzed if second level
dimension tables are contained and the corresponding first level
dimension table is missing. If so, the first level dimension table is
added to the list of tables.

As we identified the correct fact table from the NL question,
we have to check if the question can actually be answered based
on the retrieved dimension tables. Although we are able to handle
different fact tables in one schema, it is possible that a fact table
is not connected to a dimension table identified in the question.
If that is the case, we have to exit the transformation process and
give feedback to the user that the question cannot be answered
based on the underlying data source.

3.4.1 SELECT clause. The SELECT clause is created based on
the tuples in desc that contain at least one empty string at the
beginning (of type a and d) - resulting from steps 3.3.4 and 3.3.5.
As already described above, these two types of tuples contain
empty string(s) at the first (and second) position. The first empty
string in these tuples means that no data constraint is identified.
The second empty string denotes an unassigned attribute for the
corresponding table. Hence, these two types of tuples are consid-
ered to add the attributes to the SELECT clause. If only the first
string in the tuple is empty, the attribute set on second position
in the tuple (attr j ) is directly used in the SELECT clause. If also
the second string is empty, the tuple contains the affected table

on position three (dimj ) and the join attribute of this dimension
table to the fact table is used in the SELECT clause. Needless to
mention, if desc contains more than one tuple of these type, all
attributes are added and separated by a comma. As described
in Section 3.3.2, our approach is able to add SQL operators and
functions to the query. In that case, the operator/function is part
ofdesc at the relative position as mentioned in the SQL query. For
instance, the question How many different products [...]? requires
the functions COUNT (for How many) and DISTINCT (for different).
Both mentions are followed directly by the concrete reference
in the data source. Therefore, SQL functions are assigned to the
attribute referenced in the tuple directly following the function
in desc . Another special case is the existence of a compare opera-
tor in desc . In that case, the reference that the NL question asks
for a comparative query is stored in desc as string compare. The
string is set in desc at the position between the tuples stating the
comparative data constraints or before all tuples relevant for the
comparison. In the NL question such a type of query is identified
by NL phrases like compared to or comparing a and b. For instance,
the questionWhat were [...] in January 1997 compared to March
1998? requires two subqueries – one for January 1997 and one
for March 1998. In this case, the number of required subqueries is
counted and respective aliases created. For each alias, attributes
as previously described are added to the SELECT clause having
the alias as prefix. As described in Section 3.3.2 we identify NL
phrases that refer to SQL functions/operators, such as SUM or AVG,
and store as a string si in desc . When creating the SELECT clause,
this function is added to attributes contained in the following
tuple of si within desc . In case there are more than one attribute
added to the SELECT clause, the remaining attributes (including
table references) are added to a separate list to be processed later
when the GROUP BY case is checked.

3.4.2 FROM clause. The FROM clause includes the previously
identified fact table combined with INNER JOINs to the affected
(first and second level) dimension tables. As described in Section
3.2.1, the join attributes for fact and dimension tables are provided
and utilized for the joins in the FROM clause of the query. For the
special case of comparative subqueries, the FROM clause contains
the subqueries for each constraint from the NL question using
the previously created alias. For each subquery a tuplewi exists
in desc . wi contains the table, the attribute and the data term
required for creating the SQL query containing a constraint on
an attribute.

3.4.3 WHERE clause. The WHERE clause is constructed based
on the tuplesw contained in desc . All consecutive tuples of type
w (having the first string set to a concrete data term) are added
to the WHERE clause separated by AND. Each tuple w contains
the table (position 3), the attribute (position 2) and the con-
crete data term (position 1) required to construct the constraint:
w[2].w[1]=’w[0]’.

Concluding, the existence of hints for the use of the GROUP,
ORDER and LIMIT clauses are checked.

3.4.4 Further operators. For the GROUP clause a separate list
is created during the creation of the SELECT clause. If there is an
aggregation function used in the SELECT clause, the remaining
attributes identified for selection are added to this separate list.
This list is checked for containing items and if so, these attributes
are added to the end of the query surrounded by the grouping
function. The ORDER clause is utilized in case there is an aggregate
function in the SELECT clause. If so, the attribute used for the



aggregate function is also used for ordering the results. For the
LIMIT clause the NL question is analyzed for references to only
present a limited amount of results. For instance, the phrases first,
last, top followed by a number are hints to use a LIMIT clause
following the corresponding number at the end of the SQL query.

3.5 Potential Extensions
In the current version, our approach is able to answer a various
number of different question types – described more in detail in
Section 4. Nevertheless, we identified several issues we already
considered as a future concept but did not integrate a solution,
yet.

3.5.1 User Feedback. A NL interface might be expected to act
(almost) like a human when it comes to answering questions. As
already stated above, there are questions that cannot be answered
directly. In the current version, our prototype would simply exit
the process and give a feedback like This question cannot be
answered based on the current data source. But, we prefer to design
the interface in a more conversational way. If the process comes
across a problem, the interface should communicate the problem
to the user and ask for advice/help. So far, we identified two
different issues when a user’s feedback would be required:
• Ambiguity
• Missing data

The first case refers to data terms within the data source that
occur multiple times. This might be the case for different cities
having the same name (ambiguity for the same type, e.g. cities)
or data terms that occur in different attributes in different tables
(ambiguity over different types - stored in different tables, e.g. a
person and a city having the same name). In the current version,
our approach groups all results when the term occurs multiple
times in the same field (as for different cities with the same name)
– different cities with the same name are treated as if they are the
same. In the second case, our approach uses the first occurrence
of the data term in data source when searching for table and
attribute. In both cases, the best way of solving the ambiguity
would be to call for the user’s help. For the first case, the approach
is required to take additional information from the data source
and present it to the user when asking for advice which term is
the correct one. For instance, when a question asks for something
in Richmond the user should be called back: Do you mean the
Richmond in San Francisco district or in Vancouver district?. In
the second case, the schema information of the data source must
be taken into account. The different tables and corresponding
attributes must be presented to the user, so a selection can be
communicated. For instance, the user might be asked Do you
mean the region with city Camacho or the employee with last
name Camacho?. Obviously, this call back could be avoided as we
should be aware that with Camacho a place could be referred just
by analyzing the NL question more in detail. But, our approach
is as agnostic as possible regarding the data source. Although,
we might know what a place is in the NL question, we are not
aware which dimension tables store localized information.

For the case of missing data, the NL question is assumed to
ask for terms that are not contained in the data source or a term
from a dimension table that is not connected to the fact table.
In the first case, an incorrectly written term in the NL question
might be the cause for the issue. Therefore, in the first step we
will integrate a spell-checker to be able to automatically correct
words. In the second case, the NL question contains data source
information and reference to a fact table, but the tables are not

connected and a potential query does not present any result.
The user might be presented with an alternative question by
simplifying the question to an answerable query. For instance,
the questionWhat were the costs for bread in January 1997? refers
to expenses regarding bread for specific time period. When a fact
table about expenses is not connected to specific products, the
user might be called backWe cannot provide the costs for bread.
Would you rather be presented with the costs for all products for
January 1997?.

3.5.2 Rules. As mentioned, our approach is considered ag-
nostic regarding the actual underlying data source. There are
several prerequisites required for our transformation process, but
in general we extract the essential information from the (informa-
tion schema of the) data source and add additional information
by using APIs, such as datamuse. However, there are questions
that require a more detailed knowledge about the data source.
For instance, the question How many products were in stock [...]?
might be answered directly from the data source if the informa-
tion of items in stock are stored explicitly. But, there could also
be the case, that this information must be calculated from the
existing information. For this example, the data source might
provide the information of items ordered and items sold. Items
in stock are calculated by subtracting the number of items sold
from the number of items ordered.

To solve this type of issue, we consider explicit rules similar
to MDX (Multidimensional expressions – a query language for
OLAP data sources, based on SQL). Thereby, so-called calculated
members can be created using various expressions and operators.
A member can be stored in the OLAP cube to be available in
further queries.

We are aware of the fact, that this type of rules cannot be
retrieved from the (unknown) data source following our agnostic
approach. Therefore, this extension builds upon the extension
on user feedback as described above. We consider two different
ways of retrieving additional rules:

(1) A user provides additional information about the data
source when the data source is initialized. This requires
the user to have further knowledge about the information
schema and the contained data.

(2) The rules are retrieved as part of the user feedback when
a question cannot be answered. The unknown term could
be presented to the user together with (parts of) the infor-
mation schema.

In either case, the user feedback could be retrieved in a visual
way. The user might mark parts of the schema and add operators
or comments. Thereby, the user is not required to have detailed
knowledge about SQL or the desired rule language.

4 EVALUATION
4.1 Domain Application
Data stored in an OLAP-like structure is especially useful for
BI scenarios. A (filtered) fact can be queried and the additional
dimensions allow the user to drill up or down along the (hier-
archical) structured data. Thus, NLIs for OLAP databases are
an effective instrument for data scientists in marketing or other
business contexts. We therefore initially apply our approach to
a business scenario and utilized data provided by Foodmart and
structured in a snowflake schema8. A similar data source is the

8https://github.com/rsim/mondrian_demo/blob/master/db/foodmart.sql

https://github.com/rsim/mondrian_demo/blob/master/db/foodmart.sql


TPC-H benchmark9. It also comprises several fact and dimen-
sion tables including speaking attribute and table names. Our
approach is therefore directly applicable to this benchmark. But,
due to the size of the dataset and for illustration purposes, we uti-
lized the Foodmart data source10. To be able to test and evaluate
our system, we created a set of questions containing several chal-
lenging SQL operators or functions. The benchmark is described
more in detail in the next section.

4.2 Benchmark
We are not aware of a benchmark containing questions and
queries based on an OLAP data source. Hence, we are not able to
present a qualitative evaluation in terms of accuracy or precision
in comparison to other approaches. Though, we are eager to
create and provide such a benchmark for further research ap-
proaches. Therefore, we utilized the Foodmart data source where
data is stored in a snowflake schema with first and second level
dimensions. The data source contains three different fact tables –
holding data about sales, inventory and expense facts – and 17
dimension tables – holding data about additional information,
such as stores, regions, customers, products etc. Each fact table
is connected to at least four dimension tables directly and sev-
eral dimension tables are connected in second level via other
dimension tables.

We identified different question types and levels of difficulty
for a NL interface to OLAP. There are simple questions with
restrictions on one dimension table or complicated questions
requiring calculations, subqueries and/or several SQL function-
s/operators. For the development process and assessment, we
collected a number of over 40 different questions and grouped
them together according to difficulty levels. To further explain
the different levels, we adopt the approach presented by Affolter
et al .[1]. The authors classify different questions by the required
usage of operators and functions for the respective formal query.
The following operators are applicable for our use case: Join,
Filter, Aggregation, Ordering, Subquery, Concept. Concept de-
notes a pre-defined term, as e.g. “great movie” or “in stock” (when
this information must be calculated and is not stored in the data
source explicitly). Using these challenges, we identified four dif-
ferent levels:

Level 1 refers to rather simple questions with a simple con-
straint of one or more dimensions like How many different prod-
ucts were sold in October 1998?. Here, only a COUNT on one attribute
and a constraint in one dimension table is required. The queries
contain the challenges (J, A, F).

Level 2 refers to questions containing aggregations and group-
ing like Show for each brand the total sales in 1998. The word each
indicates the use of the an aggregation in the SELECT clause and
a grouping function for the respective attribute associated with
brand. The queries contain the challenges (J, A, F, O).

Level 3 refers to queries containing subqueries for compared
results or comparison using <, >, == like In which month less
bread was sold than in January 1997?. For this type of question,
a subquery containing the data for January 1997 is constructed
and it is compared using the operator < and the HAVING clause.
The queries contain the challenges (J, A, S, F, O).

Level 4 refers to complicated queries containing calculations
on attributes or pre-defined constraints of data terms, such as
9http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
10The queries described in Section 2.4 of the TPC-H specification might reflect
real-world business questions, but cannot be summarized in one NL question -
which our approach is aiming at.

How many units by Jeffers were in stock in the first month of 1997?
– in case the term in stock cannot be mapped directly to an at-
tribute of the data source. In this case, in stock must be calculated
from available fields, such as ordered and shipped or similar at-
tributes. This type of challenge is defined as Concept. Therefore,
the queries contain the challenges (J, A, F, C) and optionally (O, S).

Table 3 shows sample questions and the respective challenges
for each difficulty level. The full dataset containing over 40 dif-
ferent questions based on the Foodmart data source is available
as download11. The dataset includes three columns, with the NL
question in the first column, the difficulty level in the second
column, and the corresponding SQL query in the third column.
The dataset contains 14 questions of level 1, 12 questions of level
2, 11 questions of level 3 and 4 questions of level 4.

In the current version, our prototype is able to process ques-
tions of level 1-3 directly and questions of level 4 for specific cases,
such as calculating in stock from the attributes units_ordered and
units_shipped in the Foodmart data source. Regarding the bench-
mark, this means that our approach is able to answer 93% of
the questions. Of course, we are aware of the fact that these re-
sults are not statistically firm – neither in terms of the number
of questions nor regarding the subjective nature of the bench-
mark. Unfortunately, none of the competing systems presented
in Section 2 is available as API or other source. Therefore, we are
not able to compare the quality of the results of our approach
to other approaches. We aim to encourage other researchers to
utilize and expand our benchmark. Thereby, a qualitative evalua-
tion can be enabled in the future. But, the current results show
that our approach is able to construct SQL queries for a good
number of NL questions with different difficulty levels facing
several challenges.

As described in Section 3.5, we plan to integrate rules to be
able to do calculations and constraints as required by compli-
cated questions of level 4. Several concepts might be identified
automatically or added manually by the respective user. This
applies for concepts like important, in stock or great (in terms of
good reviews). Another special case is What are the total sales in
the business year 1997/98?. Here, business year might refer to a
time period from July 1997 to June 1998. The data source does not
contain sales information in terms of business years. Therefore,
the query must contain constraints from pre-defined rules where
concrete terms are mapped to data item constraints.

4.3 Portability of the Benchmark’s Domain to
other Domains

Initially, we applied our approach to an existing data source struc-
tured in a snowflake schema from the domain of business data.
This type of data design makes sense when you need insights
into your data and receive metrics or ratios, as e.g. mostly ques-
tions that start with how many/much or what were the total xy
for ab. For this type of questions, it is a reasonable approach to
structure the respective data in fact and dimension tables and
make the data source accessible via a QA application. In this way,
business analysts or marketing strategists are able to get insight
into their key data without being forced to have knowledge about
any formal query language. Although, we utilized the Foodmart
data source for our first prototype, the data source and the data’s
domain can be easily replaced respectively changed. For instance,
similar questions as collected in our benchmark are applicable

11https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/queryDataset.tsv

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
https://dbgit.prakinf.tu-ilmenau.de/code/qa-data/blob/master/queryDataset.tsv


Table 3: Question examples for the Foodmart data source

Level Question Challenges

1
How many different
customers were in the
first quarter of 1997?

J(sales_fact, customer, time_by_day)
A(COUNT(customer_id))
F(quarter=’Q1’, year=’1997’)

2 How much bread was
sold per city in 1997?

J(sales_fact, product, product_class, store, time_by_day)
A(COUNT(product_id), GROUP BY(store_city))
O(COUNT(product_id))
F(product_category=’Bread’, year=’1997’)

3
In which month less
bread was sold than in
January 1997?

J(sales_fact, time_by_day, product, product_class)
A(COUNT(product_id)
S(HAVING(COUNT(product_id)) < F(month=’January’, year=’1997’, product_category=’Bread’))
F(month=’January’, year=’1997’, product_category=’Bread’)
O(COUNT(product_id))

4
How many units by
Jeffers were in stock in
the first month of 1997?

J(inventory_fact, product, time_by_day)
A(SUM(units_ordered, SUM(units_shipped)))
F(brand_name=’Jeffers’, month=’January’, year=’1997’)
C(in stock = units_ordered - units_shipped)

for data about issue trackers and software projects, such as How
many bug fixes were committed in January 2019 per developer?.

5 SUMMARY & OUTLOOK
In this paper, we presented our approach in the research field
of NLIDB specifically for OLAP data sources. We designed our
prototype system to be as agnostic as possible regarding the un-
derlying data source. Required information is extracted from the
schema and the datamuse API is utilized to add synonyms to the
data that is used to map phrases from the NL question to terms of
the data source. In our approach, the NL question analyzed and
an intermediate representation of the question is created. After
several processing steps, this representation contains different
types of tuples which are utilized in the subsequent construction
of the SQL query. Depending on the type of the tuple it is used
to create the SELECT, FROM, or WHERE clause. Specific terms iden-
tified in the NL question indicate the use of SQL operators and
functions, such as SUM, MAX, GROUP BY, or LIMIT.

With this approach, we are able to answer questions of dif-
ferent difficulty levels. In default of an OLAP benchmark, we
created a dataset containing more than 40 questions based on
the Foodmart data source. The benchmark is available for down-
load and we are planning to collect more questions to be able to
evaluate our approach and compare it to other approaches.

Future work includes the implementation of the extensions
described in Section 3.5. The first and foremost prerequisite for
these extensions is the design and development of a graphical
user interface (GUI). On the one hand, our intended user frontend
is targeted on being interactive regarding the presented results
from the data source. On the other hand, further developments
aim at an conversational interface. The user is either presented
with concrete results from the data source, or asked for feedback
to give a relevant answer for an initially unclear question. For
further data insights, the user is enabled to request more informa-
tion by asking questions that build upon the preceding questions.
Furthermore, the user frontend should provide the user with a
facility to add an own data source and ask questions on it. The
data source might be provided as a bunch of csv files or an SQL
file or as an URL to a distant database. The data source is analyzed
regarding the required information for our approach. Eventually
the user is involved to extract the required information or give

more descriptive hints about the schema, if essential parts are
missing (such as speaking attribute or table names). The imple-
mentation of rules – as described in Section 3.5.2 – is a desired
enhancement of our approach. This enables the construction of
even more complex queries and give answers to questions of the
highest difficulty level.

Overall, our approach is already able to construct SQL queries
for rather complex NL questions. The addressed GUI will make
the prototype available for users and the enhancements will
complete our approach in terms of complexion of queries.

6 ACKNOWLEDGEMENTS
This work was partially funded by the German Research Founda-
tion (DFG) under grant no. SA782/26.

REFERENCES
[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative

survey of recent natural language interfaces for databases. The VLDB Journal
28, 5 (01 Oct 2019), 793–819. https://doi.org/10.1007/s00778-019-00567-8

[2] Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. 1995. Natu-
ral language interfaces to databases - an introduction. Natural Language
Engineering 1, 1 (1995), 29–81.

[3] Key-Sun Choi, Luis Espinosa Anke, Thierry Declerck, Dagmar Gromann, Jin-
Dong Kim, Axel-Cyrille Ngonga Ngomo, Muhammad Saleem, and Ricardo
Usbeck (Eds.). 2018. Joint Proceedings of ISWC 2018 Workshops SemDeep-4 and
NLIWOD-4. Workshop on Semantic Deep Learning (SemDeep-2018). Vol. 2241.
CEURS.

[4] Lan Jiang and Felix Naumann. 2019. Holistic primary key and foreign key
detection. Journal of Intelligent Information Systems (2019), 1–23.

[5] F. Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. Proc. VLDB Endow. 8, 1 (Sept. 2014), 73–84.
https://doi.org/10.14778/2735461.2735468

[6] Giuseppe M. Mazzeo and Carlo Zaniolo. 2016. Answering Controlled Natural
Language Questions on RDF Knowledge Bases. In Proceedings of the 19th Inter-
national Conference on Extending Database Technology, EDBT 2016, Bordeaux,
France, March 15-16, 2016, Bordeaux, France, March 15-16, 2016. 608–611.

[7] M. Asif Naeem and Imran Sarwar Bajwa. 2012. Generating OLAP Queries
from Natural Language Specification. In ICACCI ’12. ACM, 768–773. https:
//doi.org/10.1145/2345396.2345522

[8] Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish Mittal, Manasa
Jammi, Chuan Lei, Diptikalyan Saha, and Karthik Sankaranarayanan. 2019.
Natural Language Querying of Complex Business Intelligence Queries. In
SIGMOD ’19. ACM, New York, NY, USA, 1997–2000. https://doi.org/10.1145/
3299869.3320248

[9] Nadine Steinmetz, Ann-Katrin Arning, and Kai-Uwe Sattler. 2019. From
Natural Language Questions to SPARQL Queries: A Pattern-based Approach.
In Datenbanksysteme für Business, Technologie und Web (BTW 2019). 289–308.

[10] Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu, Wenqiang He, and
Dongyan Zhao. 2014. Natural Language Question Answering over RDF: A
Graph Data Driven Approach. In SIGMOD ’14. 313–324.

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.1145/2345396.2345522
https://doi.org/10.1145/2345396.2345522
https://doi.org/10.1145/3299869.3320248
https://doi.org/10.1145/3299869.3320248

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Preliminaries
	3.2 Knowledge about Data
	3.3 Processing the Natural Language
	3.4 Construction of the SQL Query
	3.5 Potential Extensions

	4 Evaluation
	4.1 Domain Application
	4.2 Benchmark
	4.3 Portability of the Benchmark's Domain to other Domains

	5 Summary & Outlook
	6 Acknowledgements
	References

