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ABSTRACT
This paper introduces two novel contributions in the context
of multi-stakeholder recommender system. First, we present
a simple and intuitive method for multi-objective and multi-
stakeholder recommendation that relies on preferences for each
stakeholder. The second contribution is the adaptation of Halpern
and Pearl’s definition of causality to introduce definitions of
causes and explanations for multi-stakeholder recommender sys-
tems. Experiments conducted on real data study the tractability
of such explanation approach in the context of RS.

1 INTRODUCTION
Recommender systems solve the problem of predicting the value
of a user-item relationship to propose the most appropriate list of
items to each user based on personalization and contextualization
mechanisms [3, 19]. Traditional approaches like content-based,
KNN systems or Latent Factor Models can generate recommen-
dations for which simple, limited explanations can be derived
(e.g., "other customer also bought that item"). However, modern,
multi-objective, multi-stakeholder recommender systems [18, 21]
make the generation of explanations more challenging.

In this paper, we introduce two novel contributions in this
regard. First, we introduce a simple and intuitive method for
multi-objective and multi-stakeholder recommendation that re-
lies on preferences of each stakeholder. Following previous works
on multi-stakeholder recommenders [1, 9, 15], we express the
multi-stakeholder recommendation problem with an additive
gain-based formulation. We compute a profile for each stake-
holder, and define the gain brought by the recommendation us-
ing the classical NDCG measure, to confront the profile with the
ranks of the recommended items.

The second contribution is the adaptation of Halpern and
Pearl’s definition of causality [12] and more precisely, its adapta-
tion in the context of databases as developed in [14], to introduce
definitions of causes and explanations for multi-stakeholder rec-
ommender systems. This so-defined framework allows to explain
both the recommendations given but also each individual stake-
holder profile, in terms of the items rated by this stakeholder.

The outline of the paper is as follows. The next section presents
related work and Section 3 motivates our approach with an ex-
ample. We present our first contribution, the multi-stakeholder
recommender, in section 4. Section 5 introduces our second con-
tribution, namely explanation generation. Section 6 presents
preliminary tests and Section 7 concludes by discussing future
work.
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2 RELATEDWORK
2.1 Multi-stakeholder recommender systems
As stated by [1] “multi-stakeholder recommendation has emerged
as a unifying framework for describing and understanding rec-
ommendation settings where the end user is not the sole focus”.
Practically, a multi-stakeholder recommender produces an ag-
gregated recommendation that maximizes the utility for several ,
with possibly conflicting objectives, stakeholders at once. Burke
et al. [9] describe the utility space to explore as a tuple where each
tuple’s component is the utility of a stakeholder computed as the
sum of items utility for this stakeholder. Other works consider
more complex models with multiple objectives per stakeholder
[15].

This improvement of the traditional recommendation problem
allows to model different stakeholders’ types such as consumer,
providers or system [2, 15] and to take into account new evalua-
tion metrics such as novelty or fairness among stakeholders (to
counter the popularity bias as in [9]). Several approaches have
been proposed in the recent years [1–3] and [1] introduces a first
effort to structure this novel domain by proposing a classifica-
tion of multi-stakeholder systems depending on: (1) the types of
stakeholders involved, (2) if they are active or passive or (3) if the
recommendation is neutral or personalized for each stakeholder.

As recalled in [15], and similarly to business rules, multi-stake-
holders approaches [9, 18] are most of the time a posteriori meth-
ods applied on top of existing traditional recommender systems.

For example, [18] proposes an approach that inputs a user ×
item matrix as provided by a traditional recommender system,
and then finds an optimal binary assignment for items by providers
to enforce constraints related to providers and enhance the distri-
butions of recommendations across retailers. Similarly to these
approaches, in our proposal, we also rely on a traditional recom-
mender system to compute a profile for each stakeholder.

Finally, in [15] the adaptation to multiple-objective multi-
stakeholder is done as a post-processing step after a first ranking
of items is already obtained for each consumer. The proposed ap-
proach aims to re-rank it such that the new ranking remains close
to the initial one and optimizes the commission perceived by the
"system" stakeholder. Interestingly, the proposed approach com-
putes a ranking of items instead of predicting scores, to produce
the recommendations. To combine all conflicting stakeholders
objectives, [15] introduces a new learn to (re-)rank optimization
approach based on the kernel version of the Kendall tau cor-
relation metric. A similar approach that learns to rank is also
used in [21] to determine ratings that would be unknown to the
multi-stakeholder recommender.

In our proposal, we consider a more straightforward rank-
based approach that involves Normalized Discounted Cumula-
tive Gain to measure to which extent the ranking preferences
of a stakeholder are respected. The solution space is explored
with a simple simulated annealing. Similarly to [21], we use a
recommender system to predict user item scores that are missing



in the data to construct a complete ranking over the set of items,
as our stakeholder profile.

2.2 Explanations
Explaining recommendations. Explainable recommendations

refers to personalized recommendation algorithms that “not only
provide the user with recommendations, but also make the user
aware why such items are recommended” [20]. Gedikli et al.
[10] evaluate different explanation types and propose a set of
guidelines for designing and selecting suitable explanations for
recommender systems.

Various forms of explanations have been explored. For in-
stance, in [7], the authors introduce the problem of meaningful
rating interpretation (MRI) in the context of recommendation
systems and as such provide two main heuristics for explaining
collaborative ratings. Explanations are here provided as a subset
of reviewers presented to the user and described by metadata
attributes shared among all reviewers in the group. Groups are
build under constraints to minimize a description error while
maximizing the coverage of ratings. Similarly, meaningful differ-
ences are provided by determining the most unbalanced subset
of reviewers in terms of positive / negative ratings and are meant
to highlight controversial items, i.e. items for which groups of
users consistently disagree.

Interestingly, it turns out that so far, to our knowledge, ex-
planations based on the notion of causality have not attracted
attention in the recommender system community.

Explanation and causality. Causality has been studied and
defined algorithmically by Judea Pearl, in a highly influential
work primarily using the concepts of counterfactuals and degree
of responsibility [16].

At the core, causality is defined in terms of intervention: an
input is said to be a cause if we can affect the output by changing
just the value of that input, while keeping all others unchanged.
Importantly, causality can only be established in a controlled
physical experiment, and cannot be derived solely from data,
while an explanation only requires that a change in the input
affects the output: the more it affects the output, the better the
explanation [16].

Recently, many authors in the database community (e.g., [14,
17]) adapted these notions to explain the results of database
queries. In this context, a major challenge in finding explanations
is the difficulty of defining and computing in real time interven-
tions for complex datasets and queries. Noticeably, in both [7]
and [17] data cube operations are used to compute explanations,
hence benefiting from built-in database optimizations. We leave
as future work an in-depth study of optimization mechanisms
for computing explanations in our context of multi-stakeholder
recommendations.

The approach we present in this paper, depicted in Figure 1,
is particularly inspired by that of Meliou et al. [14], who bor-
rowed from Pearl and Halpern’s theory of causality the following
important concepts:

• Partitioning of variables into exogenous and endogenous:
exogenous variables define a context determined by ex-
ternal, unconcerned factors, deemed not to be possible
causes, while endogenous variables are the ones judged
to affect the outcome and are thus potential causes. In
their work, Meliou et al. propose to partition a database
instance into exogenous and endogenous tuples [14], and
look for explanations among the endogenous tuples only.

Figure 1: Overview of a user’s profile explanation

We follow a similar approach in this paper, partitioning
the set of events in exogenous and endogenous events.

• Contingencies: a piece of information (tuple in [14]) t
is a cause for the observed outcome only if there is a
hypothetical setting of the other endogenous variables
under which the addition/removal of t causes the observed
outcome to change. Therefore, in order to check that t is
a cause of an outcome based on a given dataset, one has
to find a data set (called contingency) to remove from (or
add to) the data set, such that t immediately affects the
outcome in the new state of the data set. In theory, in order
to compute the contingency one has to iterate over the
subsets of the data set, meaning that checking causality is
NP-complete in general [8]. In the context of this paper, the
considered outcome is a set of recommended items and the
dataset is the set of ratings used by the recommendation
algorithm.

• Responsibility measures the degree of causality as a func-
tion of the size of the smallest contingency set. In ap-
plications involving large datasets, it is critical to rank
the candidate causes by their responsibility, because the
outcome may have large lineages and large numbers of
candidate causes. In theory, in order to compute the re-
sponsibility one has to iterate over all contingency sets
meaning that computing responsibility in general is hard
[5].

3 MOTIVATING EXAMPLE

i1 i2 i3 i4 i5
u1 1 2 2 5 6
u2 11 3 7
u3 2 5

Table 1: Toy example of user purchases

Figure 1 gives the intuition of our approach. Assume a set of
events relating users to items (e.g., purchases), expressing implicit
user preferences. From this set, a profile σu1 can be inferred for
a given user u1, e.g., by predicting scores for unseen items. To
explain this profile to u1, one could look for events that are the
most responsible of it. To do so, we compute interventions on the
set of events, by removing some events from it. Each intervention
leads to another profile σ ′

u1 for u1. If the two profile σu1 and σ ′
u1

are different, this means that the removed events have, to a certain



degree, a responsibility in σu1 . As there can be many such events,
instead of presenting them as explanations to u1, we summarize
them using pattern extraction, and present the extracted patterns.
We next illustrate this approach with a detailed example.

Consider Table 1, that details consumption events of three
users. An event corresponds to a quantity purchased, and a user
can purchase different quantities of the same item at different
moments. For instance, user u1 purchased initially 5 items i3
and then another 6 items i3 subsequently. Assume we have two
categories of stakeholder: that of users ui and that of a provider
p. Each purchased item i j is described by two properties, price
and popularity (see Table 2.

i1 i2 i3 i4 i5
price med med med high high

popularity high med high high high
Table 2: Item description for the toy example

Stakeholder preferences can be modeled following a strategy
particular to each stakeholder category, and computed using the
set of events. For instance, users’ preferences should be such that
most purchased items are preferred. The provider’s preferences
could be that the same number of each item is purchased. For
instance, according to Table 1, the preferences of user u1 are that
i3 is preferred over i2 that in turns is preferred over i1, that in turn
is preferred over both i4 and i5. The preferences of stakeholder p
is that i4 is preferred (since it sold less) over i2, in turns preferred
over i5, in turns preferred over i1 and then over i3.

Assume now that we have a way of constructing a user profile
from each user’s preferences so that the profile corresponds to a
total order of the items, consistent with that user’s preferences.
For instance, a simple baseline approach, where prediction is the
sum of consumptions by item, would allow to deduce that the
profile σu1 of u1 ranks all items as follows: σu1 = [i3, i2, i1, i5, i4].

Now, assume that we want to issue a recommendation achiev-
ing a compromise between all stakeholders. A multi-stakeholder
multi-objective recommendation algorithm can be used to com-
pute this recommendation from the profiles. This recommenda-
tion can take the form of a total ranking of the items, proposed
to all stakeholders, noted σ∗. In our example, suppose this rec-
ommendation is σ∗ = [i4, i3, i1, i2, i5].

As stakeholders’ profiles and recommendation σ∗ have the
same form, both can be explained in the same way. We illus-
trate here how profiles can be explained. Suppose we would like
to explain σu1 , considered as the outcome of the process that
computes the profile. We then intervene on the set of events by
removing those of the events responsible for the current profile.
For instance, we can see that removing any of the events in en-
tries (u1, i1) (u1, i2) or (u1, i3) would leave σu1 unchanged, while
removing the event in entry (u2, i5) would alter σu1 . Therefore,
the event in entry (u2, i5) can be said to be a direct cause, or
counterfactual cause, for σu1 . Note that both purchases made
by u1 and not made by u1 can be counterfactual causes for u1’s
profile. Indeed, event (u3, i4) is not a counterfactual cause.

Note also that events pertaining to preferences can also be
counterfactual causes. Consider indeed user u2, whose profile is
σu2 = [i1, i5, i3, i2, i4]. It can be seen that events (u2, i1), (u2, i5)
are counterfactual causes for σu2 , as is (u3, i2).

Understanding the responsibility of non counterfactual causes
in the profile can be done by trying to remove more than one

event and measuring the responsibility as a function of the num-
ber of events to remove (called contingency set) before the non
counterfactual cause becomes a counterfactual cause. For in-
stance, removing both events in entry (u1, i3) changes σu1 , mean-
ing that both events in that entry have a responsibility in the
profile, but with a lesser degree than that of (u2, i5) (which does
not need another event to be removed to be counterfactual).

Explaining a profile σui means presenting to ui the events
most responsible for their profile. Consider for instance user u2.
The events most responsible foru2’s profile are the counterfactual
causes (u2, i1), (u2, i5) and (u3, i2).

However, since the number of causes can be large, presenting
the events themselves may not be user-friendly. A better way is
to summarize them using patterns extracted from the properties
of the items concerned by the events. Indeed, consistently with
earlier literature on deriving explanations using causality theory
[17], we propose to present explanations under the form of pred-
icates P = v where P is property and v is a value. In our example,
suppose we use frequent itemset mining [11] to extract proper-
ties appearing more than two third of the time in items i1, i2, i5.
Two frequent itemsets can be extracted from these counterfactual
events’ properties: (i) price=med and (ii) popularity=high.

4 MULTI-STAKEHOLDER
RECOMMENDATION

4.1 Stakeholders and their profiles
We formalize the problem as follows. We assume a set O of n
objects, where each object is described by a list of properties. Let
F be a set of property names and V be a set of property values,
function properties : O × F → V denotes the values of a given
property for a given object. We assume a set S of stakeholders
and a set R of stakeholder roles, like : "user", "provider", "system
owner", etc. The role of a stakeholder is given by a surjective
function role : S → R. Finally, we have a set E of events, where
an event is a 4-tuple ⟨s,o, r , t⟩ with s a stakeholder in S , o an
object in O , a numerical value r ∈ R, representing e.g., a rating
or an amount, and t a timestamp.

Preferences. Each stakeholder s is associated with their prefer-
ences, expressed as a weak order (a partial order that is nega-
tively transitive) over the setO , noted ⪯s . This preference relation
induces a partition of the set O .

Example 4.1. Consider the example of the previous section.
The preferences of u1 can be deduced from Table 1. They corre-
spond to the following weak order over the set of consumption
events i3 ⪯u1 i2 ⪯u1 i1 ⪯u1 {i4, i5}.

Profile. The profile of a stakeholder s ∈ S consists of a total
order σs over the objects of O that is consistent with the pref-
erence relation ⪯s , i.e., σs is obtained by composing ⪯s with
a total order ≺ using priority composition [6], where the total
order ≺ is expressed in a quantitative way through function
utility : S ×O → R.

These preferences can be noted by a vector ⟨utility(s,o1), . . . ,
utility(s,on )⟩, where the oi ’s are the objects of O , and utility’s
are pairwise different, or alternatively by a permutation σs of the
objects in O . We note P the set of permutations of size n. Let a
permutation σ , we note σs (o) = i the rank i given by s to object
o, and σs [i] = o the object ranked i by s .



Example 4.2. Assume that it is predicted, based on u1’s prefer-
ences, that u1 is more likely to prefer i5 to i4. The profile of u1
therefore consists of the total order σu1 = [i3, i2, i1, i5, i4].

4.2 Recommendation objective
Our recommendation objective is to find the optimal permuta-
tion σ∗ in the sense of a compromise between a subset S of all
stakeholders of S . Given a subset S ⊆ S the recommendation σ∗
for S is given by function R : 2S → P :

R(S) = σ∗ = argmax
σ ∈P

∑
s ∈S

αsQ(σ , s) (1)

where αs is the weight of the stakeholder s such that
∑
s ∈S αs = 1

and Q : P × S → R+ is a quality function measuring how well a
permutation σ is for stakeholder s .

In this work, we have chosen the classical NDCG to measure
the quality of the solution. In other words, the quality is measured
in terms of the gain brought by σ∗ for the stakeholder s with
respect to their preference. Equation 1 becomes:

σ∗ = argmax
σ ∈P

∑
s ∈S

αs
DCG(s,σ )

IDCG(s)
(2)

where:

DCG(s,σ ) =
n∑
r=1

utility(s,σ [r ])

log2(1 + r )
(3)

IDCG(s) = DCG(s,σs ) (4)

This formulation makes the recommendation problem an in-
stance of the well-studied rank aggregation problem, aiming at
aggregating the total order preferences of multiple agents [13].
Particularly, our problem is similar to the Kemeny optimal ag-
gregation problem that determines the best consensus ranking
minimizing the number of permutations as a Kendall-tau distance
with the rankings of each agent. This problem is known to be
NP-Hard even when there are only few rankings to aggregate.
Because of this complexity, stochastic or evolutionary algorithms
are often proposed as an efficient way to explore the space of pos-
sible rankings and then solve what is known as Mallows problem
[4]. In this work, we follow a similar idea and use simulated an-
nealing to find the consensual ranking based on all stakeholders
rankings.

5 EXPLAINING PROFILES AND
RECOMMENDATIONS

Our framework is inspired by that of Meliou et al. for explaining
query answers in relational databases [14].

5.1 Profile explanations
Inspired by Meliou et al [14], it makes sense to partition the set of
all events E into endogenous and exogenous events. However, in
this preliminary work, and without loss of generality, we consider
all events as endogenous, and in what follows, only the set of all
events E is used in the definitions. Let E be a set of (endogenous)
events and a stakeholder s with preference ⪯s , we note E |= σs
if the profile σs is obtained using E and ⪯s .

Counterfactual cause. Given a stakeholder s with preference
relation ⪯s and profile σs , and a set of events E, an event e =
⟨s,o, r , t⟩ of E is a counterfactual cause in E for σs if E |= σs
and E − {e} |= σ ′

s with σ ′
s , σs . In other words, removing event

e from E causes the profile of s to change.

Actual cause. Given a stakeholder s with preference relation
⪯s and profile σs , and a set of events E, an event e = ⟨s,o, r , t⟩ of
E is an actual cause in E for σs if there exists a set Γ ⊆ E called
contingency for e , such that e is a counterfactual cause for σs in
E − Γ. An event is an actual cause if one can find a contingency
under which it becomes a counterfactual cause.

Responsibility. If an event e is a cause, the responsibility of e
for σs is ρe = 1

1+min |Γ | where Γ ranges over all the contingency
sets for e .

The responsibility is a function of the minimal number of
events to remove from E before the event becomes counterfactual.

Causality problem. Compute the set C ⊆ E of actual causes
for σs .

Responsibility problem. For each actual cause e ∈ C , compute
its responsibility ρe .

Explanation. Given a set C of causes for σs , consider the set
OC = {o ∈ O |∃e = ⟨s,o, r , t⟩ ∈ C}. An explanation for σs is a
set of frequent patterns extracted from {⟨properties(o, f1), . . . ,
properties(o, f |F |)⟩|o ∈ OC , fi ∈ F }.

5.2 Explanations for σ∗
In this case, we look for what causes the differences between σ∗
and σs , in the profiles (and then preferences) of the stakeholders
other than s . Intuitively, we want to explain to stakeholder s why
is the compromise σ∗ not more favorable to them. Precisely, an
event e is a counterfactual cause for σ∗ if we remove e from E then
σs does not change but there are some change in σs ′ for some
stakeholder s , s ′ and σ∗ improves the score Q for s . Formally:

• E |= σ∗
• for all stakeholders (including s) si ∈ S , E |= σsi
• E − {e} |= σs
• E − {e} ̸|= σ∗ but E − {e} |= σ∗′ with σ∗′ , σ∗,
• QE−e (σ∗′, s) > QE (σ∗, s)

Actual cause, responsibility and explanations are defined ac-
cordingly.

6 WORK COUNCIL USE CASE
The recommender system and the explanation framework are
implemented in Python 3.6. User profiles are computed from
raw data using the Surprise Scikit1. Simulated annealing for
exploring the space of permutations is an in-house development.
We experimented on a real use case based, with purchase data
from Kalidea-Up, a company that provides a service platform to
works councils. We considered two stakeholder roles: "workers"
who can purchase discounted services from works councils, and
"system" to represent Kalidea-Up system. Available purchase
data correspond to the 2014-2018 period, gathering over 5, 840
workers for 540 services and 168, 965 transactions, where each
transaction corresponds to an event as defined in Section 4.

6.1 Testing the recommender system
These purchases are used to build profiles for the workers, using
Surprise’s off the shelve k-NN prediction algorithm, and baseline
predictions to ensure a total ranking of the services. The profile
for the system is a ranking computed based on the subsidies
collected from the work councils for the services. As such, system

1http://surpriselib.com/

http://surpriselib.com/


preferences may not coincide with those of the users that may
prefer discounts on other types of services.

Simulated annealing. The objective function optimised by the
simulated annealing is provided in Equation 2. In order to crawl
the space of possible permutations to determine the best σ∗, each
new candidate permutation is generated by a random mutation
that swaps 2 elements of the previous permutation at random.
A temperature parameter allows to retain a solution that is not
optimal after a mutation. In order to force the convergence, a
geometric progression with common ratio 0.996 is applied to the
temperature. The maximum number of iterations for simulated
annealing was set to 500 in our experiment.

We consider the following settings in our experiments:

• as in [18], we first observe to which extent the addition of
new stakeholders decreases the quality of recommenda-
tion for each stakeholder: we vary the number of stake-
holders from 2 : 1 recipient and the system as represented
by Kalidea-Up, to 10 : 9 recipients and the system ;

• for each of the previous settings, we vary the distribution
of weights αs of Equation 2, for each stakeholder s ∈ S.
Settings for αs are: either a uniform distribution, meaning
that all stakeholders have the same weight in the final de-
cision, or a 80% weight given to all workers, meaning that
the system only accounts for 20%, or finally the symmetric
situation where 80% of the weight is set to the system ;

For these settings, we expect the following results:

• if our approach performs well, it should be able to produce
a good quality consensus aggregation of all stakeholders’
preferences. In this case, the overall quality, as measured
by our objective function should be as close to 1 as possible.
This would reflect that our choice of a simple simulated an-
nealing algorithm is a fair enough solution in our context
of multi-objective optimization ;

• we should observe that the decrease for each stakeholder
is moderate and comparable to the one observed in other
works such as [18], indicating that our approach manages
to accommodate all stakeholders simultaneously and with
approximately the same effectiveness for each of them ;

Results. As can be seen in Table 3, our approach obtains sat-
isfactory optimization results in terms of NDCG with approxi-
mately 0.82 as a global optimization score when weights α are
uniform. As expected, our approach proves to be efficient when
biasing the convergence towards one of the stakeholder or the
other by adjusting the weights accordingly. Interestingly, when
favoring one stakeholder, the global NDCG decreases reflecting
that both stakeholders had contradictory profiles.

To provide the readerwith a range for acceptable NDCGvalues,
it can be noticed that [18] have achieved very high NDCG score
(above 0.95) on a tweaked MovieLens dataset where providers
have been set manually for each movie. We have reproduced this
data set and on the aforementioned 2 stakeholders settings and
by tuning system preferences based on fairness we have achieved
0.96 NDCG which proves that simulated annealing paired with
NDCG are a fair choice for the problem of multi-stakeholder
optimization.

6.2 Testing explanation generation
For those tests, we used Surprise’s off the shelf Baseline only
predictor to compute profiles. The advantage of this predictor is

α NDCG user NDCG System NDCG Global

Uniform 0.79 ± 0.05 0.85 ± 0.03 0.82 ± 0.01
80% system 0.63 ± 0.07 0.89 ± 0.04 0.76 ± 0.04
80% user 0.95 ± 0.01 0.56 ± 0.04 0.75 ± 0.02

Table 3: Mean NDCG over 3 runs for the setting with 2
stakeholders: 1 recipient user and the system. “Uniform”,
“80% system / user” refer to the settings for parameters α

Tableau 1

Uniform User System Global
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0,79 0,81 0,79
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0,85 0,86 0,89
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NDCG user 0,79 0,81 0,79 NDCG user 0,63 0,72 0,78 NDCG user 0,95 0,87 0,89
NDCG System 0,85 0,86 0,89 NDCG System 0,89 0,93 0,94 NDCG System 0,56 0,74 0,70
NDCG Global 0,82 0,82 0,80 NDCG Global 0,76 0,76 0,80 NDCG Global 0,75 0,84 0,87
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Figure 2: Average “Mean NDCG scores” for all users, and
reported for the system and globally for 3 distinct settings
with 2, 5 and 10 stakeholders.

to be simple, fast and yet quite accurate. Our experiments aim to
answer 2 main questions:

(1) is the approach presented in Section 5 feasible in the con-
text of multi-stakeholder recommendation algorithms? In
this case, there are possibly 2E contingency sets to evalu-
ate to determine the responsibility of each event of E. For
this reason, we propose to first limit our experiments to
small sets E ranging from 8 to 14 events, where all workers
(resp., services) are pairwise different, resulting in a very
sparse workers services matrix. Computation times are
reported in Figure 3 ;

(2) how is the responsibility distributed and can this measure
be used in the context of recommender system to discrim-
inate between events to explain a recommendation? Are
all events equally discriminant regarding this measure?
This paper answers the question by computing for each
event the minimum size of its contingency set min |Γ | as
defined in Section 5.1. Then for all events, and depending
on the size of |E |, a distribution for min |Γ | is computed.
Results are presented in Figure 4.

Tableau 1

Nb events 8 9 10 11 12 13 14 15
Execution time 
(s) 0,87504697 1,84435916 3,8634882 8,24795723 17,6787393 37,6473985 80,5434651 171,8515375

Training time (s) 0,22704959 0,68398285 1,58830833 3,40311575 7,07547235 14,4389184 29,2762721 59,03683329
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180
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Figure 3: Executions and training times for different size
of the events set |E |
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Figure 4: Distribution of min |Γ | for events set |E | = 8 (left)
and |E | = 14 (right)

The machine configuration for the tests is a Core i7-6500U
CPU @ 2.50GHz, with 8 Gb of RAM, running Ubuntu 18.04.1
LTS. As can be seen from Figure 3, the causal explanation ap-
proach expectedly has an exponential time complexity behavior,
which opens new research direction to avoid the exploration
of all contingency sets and make this approach tractable. Inter-
estingly, when the size of |E | increases, the training time of the
multi-stakeholder recommender system tends to be negligible
when compared to the explanations of the recommendation. This
clearly indicates that causal explanation is even more challenging
in terms of optimization than our quite resource intensive RS.

Then, considering Figure 4 it can be seen that most events in
both scenarios have a majority of (close to) counterfactual events
(|Γ | ≈ 0) that directly impacts the recommendation process and
a minority of sensibly less “responsible” events as shown by the
2-modes distribution. This was expected as the events test sets
have been built in a way making theworkers × services matrix
very sparse.

7 DISCUSSION
This paper introduces an on-going work on explaining recom-
mendations in a multi-stakeholder context. Our immediate future
work includes the optimization of the computation of responsi-
bilities and the evaluation of the approach on the explanation
of σ∗. Our short term goal is mainly a complete validation of
the current framework, including a user study to validate the
usefulness of explanations to the different stakeholders. Our long
term goal is to define a thorough framework for explanation
generation in a multi-stakeholder recommendation context. Such
a framework should cover: (i) The clear distinction of endoge-
nous and exogenous causes. In Halpern and Pearl’s framework,
exogenous variables define a context determined by external,
unconcerned factors, deemed not to be possible causes, while
endogenous variables are the ones judged to affect the outcome
and are thus potential causes. In the present work, we considered
all the events as endogenous causes. (ii) The modeling of different
types of causes. In the present work, we addressed the problem of
modeling why so cause, i.e., explaining why the recommendation
is what it is. Other forms of explanations can be addressed, like
for instance why not so, i.e., why recommendation is not like this.
(iii) The distinction between explanations of profiles and recom-
mendations. In the present work, all explanations are generated
through interventions over the set of events. Recommendation
explanations may be more intuitively understood if we allow in-
terventions directly on the stakeholders’ profile (e.g., permuting
the ranks of two objects). A challenge is then to investigate how
to map such interventions to interventions over the set of objects.

(iv) The modification of the responsibility measure to include
the assessment of the perturbations on the ranking brought by
causes.
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