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ABSTRACT
Link Prediction (LP) is the task of inferring relations between
entities in a Knowledge Graph (KG). LP is difficult, due to the
sparsity and incompleteness of real-world KGs. Recent advances
in Machine Learning have led to a large and rapidly growing
number of relation learning models, from the seminal work of
Bordes et al. [4] to the recent model in [2]. Despite the flurry of
papers in this area, just a few datasets and evaluation metrics
have emerged as de facto benchmarking criteria. In our work, we
question the effectiveness of these benchmarks in establishing
the state-of-the-art. The use of unreliable benchmarking practices
can have hidden ethical implications, as it may yield distorted
evaluation results and overall lead the research community into
adopting ineffective design choices. To this end, we consider key
desiderata of a benchmark formulated as specific questions rel-
evant to the LP task, and provide empirical evidence to answer
those questions. Our analysis shows that existing datasets and
metrics fall short in capturing a model’s capability of solving
LP. Specifically, we show that a model can score very high by
learning to predict facts about a small fraction of the entities in
the training set. Our study provides a more robust evaluation di-
rection for future research on relation learning models, stressing
that understanding why LP models reach certain performances
is a crucial step towards explaining predicted relations.

1 INTRODUCTION
Knowledge Graphs (KG) are structured representations of facts
in the real world. In a KG, each node represents an entity, e.g. a
person, a place or a concept; each label represents a relationship
usable to link entities; each edge in the form ⟨ subject, predicate,
object ⟩, represents a fact connecting entity subject with entity
object through the relationship predicate. Examples of KGs are
FreeBase [3], WikiData [20], DBPedia [1], Yago [16] and – in
industry – Google KG [15] and Microsoft Satori [12]. Such KGs
can contain even billions of facts, yet only a small subset of all
the facts in the real world.

KG embeddings are a way of representing the components of
a KG as vectors or matrices (embeddings) in a low-dimensional
hyperspace, called latent space. Embeddings are computed by
training a model on the KG data, and thus carry the semantic
meaning of the original KG relations. In other words, given the
embeddings of two elements, it should be possible to identify
their semantic correlations.

Knowledge Graph Completion is the task of identifying miss-
ing edges (facts) in KGs, by either extracting them from external
corpora, or inferring them from the ones already in the KG [11].
The latter approach, called Link Prediction (LP), typically requires
defining a scoring function that estimates the plausibility of any
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fact. With the rise of machine learning techniques, this has natu-
rally combined with the use of KG embeddings: on the one hand,
in training phase, LP models learn entity and relationship em-
beddings that optimize the scores for the facts already contained
in the KG; on the other hand, in prediction phase the scoring
function is applied on the embeddings of subject, predicate and
object of a fact to compute its plausibility.

LP models can be queried by providing a subject (or an ob-
ject), e.g., “Barack Obama”, and a predicate, e.g., “place of birth”,
representing a question of the form “What is Barack Obama’s
place of birth?”. Answering such a query amounts to compute the
score of each potential object with respect to the current subject
and predicate, and to find which one yields the best value. That
is, the answer to a LP query is a ranking of the KG entities by
decreasing plausibility.

This approach for was explored in the seminal work by Bordes
et al., describing the TransE LP model [4]. TransE interprets rela-
tions as translations operating on low-dimensional embeddings
of the entities. In just a few years, TransE has inspired dozens
of new relation-learning systems (see [21] for a survey), and few
datasets and metrics have emerged as a de facto benchmark.

In this paper we critically analyze current benchmarks for LP
models. Our study is motivated by the observation that, in current
datasets, less than 15% of entities cover more than 80% of facts.
Such a skew casts doubts on the suitability of these benchmarks
for evaluating LP models. Indeed, we have empirically observed
that a model can achieve state-of-the-art scores by learning to
predict facts about a tiny fraction of the entities with highest
degree in the training set, which are also the most mentioned
entities in the test set as well. As an informative example, in
FB15k, the most commonly used among the LP datasets, the
entity node with the highest degree is by far “United States”,
with ≈ 2% of all edges; the vast majority of the “nationality”
facts in the test set refer to “United States” as well. Therefore a
model that learns to predict U.S. citizens only can obtain results
comparable or even better than one that attempts to learn the
nationality relation in detail.
Our contribution.We argue that the research community is not
best served by benchmarks that allow for such a discrepancy to
go unnoticed. Therefore, we provide a constructive contribution
towards the definition of more effective benchmarks for LP mod-
els: (𝑖) we formulate some key questions to highlight some of the
most desirable properties for LP benchmarks; (𝑖𝑖) we conduct
an extensive experimental analysis to understand whether the
currently employed benchmarks satisfy such properties or not,
and why. In doing this, we also highlight the ethical implica-
tions potentially connected with the limitations of the current
benchmarks.

2 BENCHMARKS FOR LP
In this section we describe the currently employed LP bench-
marks; analogously to [19], we consider a benchmark as the



whole workload employed to evaluate competing systems, com-
posed of both datasets and metrics.

The most popular datasets for LP benchmarking consist of
facts sampled from the FreeBase [3] and WordNet [13] KGs. Free-
Base is an open KG with billions of facts about millions of real
world entities and thousands of different relationships. WordNet
is a lexical KG whose entities are English words grouped by their
sense, and whose edges describe relations among words. The
main features of such datasets are described in Table 1.

The FB15K dataset has been extracted by the TransE authors
selecting all facts containing the 100 most mentioned entities in
FreeBase also featured in the Wikilinks database1 (thus including
their low-degree neighbors). Defining a full-fledged benchmark-
ing workload was beyond their intentions; nonetheless, most of
the approaches inspired by TransE have been evaluated against
the same dataset and metrics, making them a de facto benchmark.

The FB15K-237 dataset is a FB15K subset built by [17] after
observing that FB15K suffers so much from test leakage that a
simple model based on observable features can reach state-of-
the-art performances on it. The authors only considered facts for
the most occurring 401 relationships in FB15K, and filtered away
those with implicitly same meaning or inverse meaning. In order
to take away trivial facts, they also removed from validation
and test sets any facts linking entities already connected in the
training set. We note that is nonetheless a biased approach, as
we cannot evaluate the ability of a model to learn useful patterns
such as, for instance, ⟨ x, father_of, y ⟩ entails ⟨ y, child_of, x ⟩.

The WN18 dataset, analogously to FB15K, was built by the
authors of TransE. They used the WordNet ontology [13] as
a starting point, and then filtered out over multiple iterations
entities and relationships with too few mentions.

TheWN18-RR dataset was built by [5] applying similar policies
to [17], after performing further investigations on test leakage
in FB15K and WN18.

Entities Relations
Triples

Train Valid Test

FB15K 14951 1345 483142 50000 50971

WN18 40943 18 141442 5000 5000

FB15k-237 14541 237 272115 17535 20466

WN18-RR 40943 11 86835 3034 3134

Table 1: Standard datasets for LP.

Datasets structural analysis.We define the degree of an entity
and the number of mentions of a relationship as, respectively, the
number of times that this entity or relationship is mentioned in
different facts of a dataset.

Both FB15K and WN18 show severe skew in both entity de-
grees and relationship mentions. Figures 1(a) and 1(b) plot their
distributions, showing that the large majority of entities (rela-
tionships) have a very low degree (number of mentions), whereas
a small minority of them can reach massive representation.

2.1 Metrics
Evaluation for LP models is typically performed on the task of
Entity Prediction. Given the number of entities 𝑛, for any test fact
⟨𝑠, 𝑝, 𝑜⟩: (𝑖) s is removed from the triple, obtaining ⟨ ?, p, o ⟩; (𝑖𝑖)
all entities are tested as the triple subject and ranked according to
1https://code.google.com/archive/p/wiki-links/

(a) Distribution of entity degrees in FB15K and WN18.

(b) Distribution of relationship mentions in FB15K. WN18 is
omitted as it only features 18 relationships.

Figure 1: Skew analysis for entity degrees distribution
and relationshipmentions on training, validation and test
facts for FB15K and WN18.

the resulting score: the original subject s should thus rank as low
as possible. An analogous pipeline is used for predicting object o.

These resulting rankings enable the following global metrics:
• Mean Rank (MR), i.e. the average rank of the correct subject
(object) over all predictions.

• Mean Reciprocal Rank (MRR), i.e. the average of the inverse
ranks of the correct subject (object) over all predictions.

• Hits@K, i.e. the fraction of correct subject (object) predic-
tions with rank equal or lesser than K. The most common
choices for K are 10 and 1.

The above described metrics can be computed either in two dif-
ferent settings, dubbed raw scenario and filtered scenario. As a
matter of fact, an incomplete triple ⟨ ?, p, o ⟩might accept multiple
entities as correct answers; an answer is correct if the resulting
fact is already contained in the training, validation or test set. In
raw scenario these entities are still considered “mistakes”, and
therefore, if they outscore the expected answer, they affect the
prediction rank. On the contrary, in filtered scenario they are
considered acceptable, so if they outscore the expected entity
they are just ignored.

3 THE CASE FOR BENCHMARKING
In this section we define key questions that a good LP benchmark
should answer in the affirmative, and investigate whether the
current benchmarks satisfy them or not, providing experimental
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evidence to all our claims.We finally provide an overall discussion
for the potential ethical implications of the defined questions and
their extent in this research field.

In our experiments, we take into account two representative
models, namely TransE [4] and DistMult [23].

TransE is one of the first KG embedding systems, and has
inspired dozens of successors. It represents facts as translations
in the latent space: its scoring function uses the relationship
embedding as a translation vector to move from the embedding
of the subject to the one of the object.

DistMult is very popular due to its simplicity: its scoring
function is a bilinear product among the embedding of the subject,
a diagonal matrix based on the embedding of the relationship,
and the embedding of the object. If properly fine-tuned, it has
been recently shown to surpass most models in the state of the
art [7].

We stress that our goal is not to determine which one, among
TransE and DistMult, is better: our purpose is rather to inves-
tigate the effectiveness of current benchmarks of highlighting
their differences.

FB15K

MR MRR H@1 H@10

TransE 70.6 0.497 33.50% 75.68%
DistMult 156.3 0.469 18.04% 74.03%

FB15K-237

MR MRR H@1 H@10

TransE 353.5 0.272 18.51% 44.29%

DistMult 741.9 0.139 7.81% 26.08%

WN18

MR MRR H@1 H@10

TransE 494.5 0.445 16.00% 81.37%

DistMult 928.9 0.811 70.00% 93.66%

WN18-RR

MR MRR H@1 H@10

TransE 5304.3 0.180 2.39% 40.67%

DistMult 9953.5 0.373 36.05% 39.81%

Table 2: Global performances of models in our experi-
ments (filtered scenario).

Table 2 reports the global values of Hits@1, Hits@10, Mean
Rank and Mean Reciprocal Rank for both models on all datasets.
For our results, we focus on the filtered scenario; we have ob-
served analogous findings in raw scenario as well. We show that
analyzing the behaviour of TransE and DistMult on the cur-
rent benchmarks can lead to surprising (and even contradictory)
conclusions.

3.1 Experimental Setup
Our experiments have been performed on a server environment
with a CPU Intel Core(TM) i7-3820 at 3.60GH, 16GB RAM and
a GPU NVIDIA Quadro M5000. We have employed the Tensor-
flow implementation of TransE and DistMult provided by the
OpenKE toolkit [6]; our Tensorflow version is 1.9. Since com-
paring TransE and DistMult is out of the scope of this paper,
we have not performed a full-fledged hyperparameter tuning,
keeping our setting as similar as possible to the default OpenKE

configuration even across different datasets. For the sake of veri-
fiability and reproducibility we report the resulting combination
in Table 3.

Epochs Batches per	
epoch

Embedding
dimension

Learning	
Rate Optimizer

TransE 1000 100 100 0.001 SGD
DistMult 1000 100 100 0.0005 Adam

Table 3: Hyperparameter configurations.

3.2 Questioning current benchmarks
Our questions on the current LP benchmarks refer to their rele-
vance, fairness and capability to highlight overfitting. For each
question we provide a formulation, an analysis and an overall
answer.

Q1: Does the benchmark measure the ability of the sys-
tem to learn relations?
Analysis. This question is related to the relevance of the bench-
mark. An LP benchmark is relevant if it actually measures how
good the system is at learning relations.

A limitation of current benchmarks lies in their use of global
metrics (Hits@K, Mean Rank, Mean Reciprocal Rank) that relate
to the overall number of accurate predictions rather than their
quality. This practice does not take into account that some facts
may be inherently different than others. In other words, global
metrics do not let the specific strengths and weaknesses of differ-
ent models surface: this does not allow to investigate in which
aspects a model performs better or worse than the others, and
why. Ultimately, we believe that this hinders our understanding
of what our systems are actually learning.

Furthermore, as pointed out by [22], current evaluationmetrics
are based on positive test facts only, and do not check if false or
even nonsensical facts receive low scores in turn.

Finally, it has been recently observed [7] that the extensive
use of the Hits@10 metric might be misleading when compar-
ing different models: many systems achieve similar, very good
Hits@10 values, but they show marked differences with more
selective versions of the same metric, such as Hits@1.

To prove our claim we observe that most datasets display very
skewed degree distributions. Our experiments show that the de-
gree of an entity in training set largely affects the LP prediction
accuracy in testing; nonetheless, this strong correlation is com-
pletely overlooked by the commonly employed global metrics.
We plot in Figure 2 the correlation between the entity degree
and the prediction performances for the entities with that degree.
We measure performances with Hits@10 and MR metrics. Our
results provide strong evidence that a higher degree yields better
predictions; this pattern holds for the vast majority of entities,
up to 1K mentions. We note that despite reaching comparable
Hits@10 overall, DistMult can significantly outperform TransE
on low degree entities, while TransE is better on the few high
degree entities.

We believe that insights like these are vital to understand what
our models are actually learning, and to choose the most suitable
model for a specific setting; nonetheless, they are completely
unobtainable by just relying on current benchmarking metrics.

In order to provide an explanation for the correlation between
degree and LP performances, we have analyzed how the degree
in training facts correlates to the average distance between the



(a) Entity degree in training set and average Hits@10.

(b) Entity degree in training set and average Rank.

Figure 2: Training entity degree vs average performances
when predicting an entity with that degree (FB15K).
Dashed lines have been obtained by fitting a polynomial
function of degree 4 with the least Squares technique.

entities with that degree and their closest neighbor. We report
our findings in Figure 3a; in this chart, in order to yield more
robust results, for each entity we actually consider an average of
the distances from the top three closest neighbors. Interestingly,
higher degrees typically correspond to more “isolated” embed-
dings in the latent space, with greater distances from their closest
neighbors.

We interpret this as illustrated in Figure 3b: a "rich" entity such
as United States has a very isolated embedding, whileWashington
and New York lie in a dense area. On the one hand, due to the lack
of alternatives in the close neighborhood, it is reasonably easy to
operate transformations in the latent space and answer correctly
United States to the question ⟨𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑜 𝑓 , ?⟩. On
the other hand, the inverse question ⟨𝑈𝑛𝑖𝑡𝑒𝑑𝑆𝑡𝑎𝑡𝑒𝑠, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙, ?⟩ is
much more difficult, because it requires to learn a very precise
transformation, in order to disambiguate between Washington
and New York.
Answer. Entities with high degree, like United States, can boost
the ability of a model to predict relations mentioning them (e.g.,
capital_of ). Therefore, it is hard to understand whether a model
has learned a given relation precisely or only its top mentioned
entities, by looking only at global metrics like Hits@10.

Q2: Does the benchmark measure the performances of
models in a fair way?
Analysis. The fairness of a benchmark is the absence of un-
wanted biases in any operation of its workload. Fairness depends
both on the metrics (i.e. what is measured) and on the compo-
sition of the test set (i.e., how the measure is computed). In the
context of LP, fairness is compromised by the the same correla-
tion observed in the previous section between entity degrees and
prediction accuracy. Since both the training set and the test set
are obtained from the same uniform sample of the KG, an entity
with high degree in the training set will be mentioned more than
the others in the test set too. The over-representation of some

(a) Closest neighbours distance by degree (TransE, FB15K).

(b) Stylized example of the high entity degree effect.

Figure 3: Degree in training set vs top 3 closest neighbours
distance, and intuitive interpretation of its effects on pre-
dictions. The dashed line in (a) has been obtained fitting a
polynomial function of degree 4 with least Squares tech-
nique.

entities in the test set, combined to the fact that the same entities
also enable better predictions, leads to an overall unfairness of
the benchmark, favouring “easy” entities with high degrees over
harder ones with medium and low degrees.

We demonstrate this by studying how progressively skipping
test predictions for the top-degree entities affects global perfor-
mances. We show our results in Figure 4: in both Mean Rank
and Hits@10 curves, the more high-degree entities are ignored,
the worse the performances become. At this regard, the Hits@10
graph also confirms the slightly different behaviours of TransE
and DistMult, with the former seemingly more depending on
the degree than the latter.

We have computed the number of entities that contribute the
most to the global Hits@10 metrics. The results are impressive:
in FB15K 80% of the global Hits@10 come from 24.1% entities
in TransE, from 28.5% entities in DistMult. An even more ex-
treme situation is witnessed in WN18, where 80% of the global
Hits@10 come from 9.87% entities in TransE and 11.6% entities
in DistMult.
Answer. High degree entities, in addition to be more easily in-
ferred, are also over-represented in the test set and a model may
obtain significantly good evaluations by just focusing on a small
number of high-degree entities.



(a) Global Hits@10 when progressively skipping tests on top
degree entities (FB15K).

(b) GlobalMeanRankwhen progressively skipping tests on top
degree entities (FB15K).

Figure 4: Effects on global metrics when progressively ig-
noring test predictions on up to 95% of the the entitieswith
highest degree (FB15K).

Q3: Does the benchmark discourage (or at least high-
light) overfitting?
Analysis. Overfitting takes place when a model matches its
dataset too closely, conforming to noise and irrelevant corre-
lations in its samples: an overfitted model fails to generalize, and
will not behave correctly when dealing with unseen data. A good
benchmark can highlight the emerging of overfitting.

In the LP scenario, as already pointed out by [17] and [5],
FB15K and WN18 significantly suffer from test leakage, with
inverse triples from the training occurring in the test set. As a
consequence, even extremely simple systems can reach state-of-
the-art performances on those datasets [7], thus casting doubt
on the generality of reported results.

We have also observed that, when removing from both train-
ing and test sets the top-degree entities and retraining the model,
performances improve instead of worsening as one would expect
from the previous findings (note that in this experiment we are
also retraining, differently from the experiment reported in Fig-
ure 4). This counter-intuitive pattern is steadily visible in Table 4
when removing the top 10, 25 and 100 entities. This phenom-
enon may be partly caused by the fact that, when removing a
high-degree entity, along with all of its facts, a large number of
test “questions” about its low-degree neighbors (on which the
model would perform badly) are removed as well. Nonetheless,

obtaining paradoxically better results when removing training
samples that the system would apparently learn well is a typical
sign of overfitting. In our case, removing from the training set
entities whose embeddings would take very large portions of the
embedding space may allow the other entities to be placed in
better positions; this can be seen as a form of regularization.

MR	 MRR	 H@10	

Complete	 70	 0.49	 75.67%	

Top	10	entities removed 66	 0.49	 76.55%	

Top	25	entities removed 64	 0.50	 78.22%	

Top	100	entities removed 68	 0.53	 80.64%	

Table 4: TransE performances in filtered scenario when re-
moving the top degree entities from FB15K.

Finally, all the currently employed benchmarks display a static
separation between training set, validation set and test set. This
is known to be a bad practice, because in time it may favour
models overfitted on this configuration. Running K-folding cross-
validation for the two models on both FB15K and WN18 we
did not observe significant signs of this form of overfitting yet.
Nonetheless, we advice to employ K-folding whenever possible
as a way to prevent it in the future.
Answer. The counter-intuitive boost of performances when re-
moving high-degree entities from both the training and test set
suggests an undetected form of overfitting towards these entities.

The above mentioned observations on the relevance, fairness
and capability to discourage overfitting of the current bench-
marking practices can have interesting implications within the
ethics of information processing.

Relying on ineffective benchmarks undermines the capability
to assess the quality of the software and of the data it should man-
age. We have highlighted that the current evaluation practices
may not detect, or may even penalize desirable properties in LP
models. For instance, the results currently yielded in evaluation
can not tell whether a model is learning a large set of relations
or, rather, a narrow set of entities. This can lead to systematic
overlooking of underrepresented entities, because systems that
actually reason on the the entire set of entities can be outranked
by models that overfit on few over-represented ones.

We also point out that the opacity of current results, computed
with global metrics over large batches of test facts, makes it
almost impossible to interpret the behaviours of models. This, of
course, has negative effects on their explainability and, ultimately,
on their trustworthiness.

4 RELATEDWORKS
To the best of our knowledge, there are just a few papers inves-
tigating the validity of current LP benchmarks, and providing
interpretation for the performances of relation-learning models.
Works related to ours can be roughly divided into two main cat-
egories, depending on whether they address limitations of the
standard metrics or of the datasets used in this research field. For
instance, the already mentioned work by [7] demonstrates that a
carefully tuned implementation of DistMult can achieve state
of the art performances, surpassing most of its own successors,
raising questions on whether we are developing better LP models
or we are just tuning better hyperparameters.



Limitations of standard metrics. The most similar work to
ours is [22]: they observe that the currently employed metrics
tend to be biased as they are computed using only "positive"
test facts, originally belonging to the KG. For instance, if fact
⟨ Barack Obama, place of birth, Honolulu ⟩ is seen in the test
set, our test questions will be ⟨ ?, place of birth, Honolulu ⟩ and
⟨ Barack Obama, place of birth, ? ⟩. This approach is highly biased
as it just scores triples for which an answer is already known
to exist. It is more akin to Question Answering than to Knowl-
edge Graph Completion, because it never tests the plausibility of
nonsensical facts, such as ⟨ Honolulu, place of birth, ? ⟩, or facts
that have no answer, such as ⟨ Barack Obama, place of death, ? ⟩
They then propose a new testing workload in which all possible
couples of entities are tested for all relationships, in order to
check whether any false or nonsensical triples manage to obtain
high plausibility scores.
Limitations of standard datasets. Some of the current LP
benchmarking workloads have been already put into discussion
by a few previous works, to which we refer in our analysis. In
general, these works do not aim at performing a systematic in-
vestigation of the benchmark properties; on the contrary, they
just highlight a specific issue, often in the context of presenting
a new model or implementation. To the best of our knowledge,
[17] has been the first study to openly discuss the limitations of
FB15K, demonstrating that it heavily suffers from test leakage:
many relationships in this datasets are semantically identical or
inverse to others, allowing even a very simple model based on
observed features to outperform most embedding-based state
of the art ones. The authors have then proceeded to extract a
more challenging subset from FB15K, called FB15K-237, contain-
ing non-trivial facts only. Unfortunately, FB15K-237 has been
only partially used by the research community, with prominent
models such as HolE ([10]), ComplEx ([18]) and ANALOGY ([9])
ignoring it.

Starting from their analysis, [5] have further investigated test
leakage in both FB15K and WN18. They have demonstrated that
a simple rule-based system based on inverse relationships can
reach state of the art performances in WN18; they have then
applied a similar procedure as [17] on WN18 to generate its
challenging subset WN18-RR.
Other tasks. For the sake of completeness we also observe that,
when proposing new models for LP, many papers analyze their
applicability and performances on related tasks too. For instance,
the authors of [8] show the performances of their model in rela-
tional extraction from text using the NYT-FB dataset [14], where
sentences from the New York Times Corpus are annotated with
Stanford NER and linked to Freebase elements. Analyzing the
properties of benchmarks for relation extraction tasks is out of
the scope of our work.

5 CONCLUSIONS
We have analyzed the current LP benchmarks, observing that
the training sets of their datasets display severely skewed dis-
tributions in both the degrees of entities and the mentions of
relationships.

We have experimentally demonstrated that LP models are
deeply affected by these unbalanced conditions; nonetheless,
these effects go completely unnoticed by the current evaluation
workloads, thus casting doubts on their relevance. We have also
displayed that entities and relationships that are highly men-
tioned in training sets tend to be over-represented in test sets too,

affecting the fairness of the evaluation workload. We have finally
reported that, ignoring entities with high degree (and thus high
performances), LP models show a counter-intuitive improvement
in performances, potentially attributable to overfitting.

Overall, our results raise concerns on the effectiveness of these
benchmarks. We demonstrate that relying on global metrics over
heavily skewed distributions hinders our understanding of LP
models; all in all, our results imply that at their current state these
benchmarking practices may not be able to capture and fairly
measure the capability of relation-learning models to effectively
learn relations.
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