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ABSTRACT

Spreadsheets are mainly the most successful content generation
tools, used in almost every enterprise to create a plethora of semi-
structured data. However, this information is often intermingled
with various formatting, layout, and textual metadata, making
it hard to identify and extract the actual tabularly structured
payload. For this reason, automated information extraction from
spreadsheets is a challenging task. Previous papers proposed cell
classification as a first step of the table extraction process, which,
however, requires a substantial amount of labeled training data,
that is expensive to obtain. Therefore, in this paper we inves-
tigate a semi-supervised approach called Active Learning (AL),
that can be used to train classification models by selecting only
the most informative examples from an unlabeled dataset. In
detail, we implement an AL cycle for spreadsheet cell classifica-
tion by investigating different selection strategies and stopping
criteria. We compare the performance of various AL strategies
and derive guidelines for semi-supervised cell classification. Our
experiments show, that by implementing AL for cell classifica-
tion, we are able to reduce the amount of training data by 90%
without any accuracy losses compared to a passive classifier.
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1 INTRODUCTION

Spreadsheets are powerful content generation tools, assisting
novices and professionals alike. They contain data that are roughly
relational, but accompanied by various formatting, layout, and
textual metadata. Thus, the generated content is primarily de-
signed for human consumption and carries a lot of implicit in-
formation. Due to these reasons, automatic table extraction and
recognition [2, 5, 17] for spreadsheets is a very difficult task.
The most crucial step for all table recognition approaches is cell
classification, determining for each non-empty cell its role (data,
header, metadata etc.) within the spreadsheet. However, the train-
ing of classification models relies on human-labeled training data,
which involves extensive human effort. In this paper, we there-
fore propose a semi-supervised approach for cell classification.
In detail, we propose an active learning (AL) cycle that is able to
determine the optimal amount of training data, needed to train a
cell classification model.

Figure 1 sketches the AL cycle and its main steps. The AL process
starts with two sets of data: the unlabeled sample set U and the
already labeled dataset L, with |L| << |U|. Initially, the learner
is trained on the small labeled dataset L. The main task of the
AL cycle is to iteratively increase the set of labeled data L by
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Figure 1: Active Learning Cycle for Cell Classification

identifying the most promising cells in U. The cycle should stop
as soon as the trained classifier reaches the best accuracy. The AL
cycle is performed by two main actors: a learner and an oracle.
In our case, a learner is a cell classifier which is continuously
retrained on the newly labeled data L4. The oracle maintains the
label-providing entity, i.e. a human annotator providing the gold
standard. Based on the utilized query strategy (see Section 3.1) an
unlabeled sample Uy is chosen from the unlabeled pool U. The
purpose of this task is to identify such cells that contribute most
to the classifier to be trained. All other cells remain unlabeled,
potentially saving a lot of human effort. The cells proposed by
the query strategy Uy are then given to the oracle resulting in Lg.
The newly labeled data Ly is added to L and the process starts
again by retraining the classifier on the extended dataset. The
AL cycle proceeds until a stopping criteria (see Section 3.2) is met
or until U is out of queries.

Our results show, that the classification models trained on the
data determined by the AL cycle outperform the passive classifier
and reduce the amount of training data by 90%.

Outline. The remainder of this paper is organized as follows:
In Section 2, we shortly review the task of cell classification for
spreadsheets. The individual parts of the AL cycle for cell classifi-
cation are introduced in Section 3. In detail, we discuss different
query strategies, stopping criteria and batch sizes, evaluated in
Section 4. We additionally evaluate varying start set sizes and
give a recommendation on how to implement the AL cycle for
cell classification. Finally, we present related work in Section 5
and conclude in Section 6.

2 CELL CLASSIFICATION FOR
SPREADSHEETS

The objective of capturing the tabular data embedded in spread-
sheets can be treated as a classification problem where the specific
structures of a table have to be identified. Given a spreadsheet
the goal is to classify each non-empty cell with a given set of
labels. The set of labels we use in this work is described in Sec-
tion 2.1. Section 2.2 briefly presents the cell features used to train
a classifier.

2.1 Cell Labels

The research literature [2, 5, 33] basically defines seven roles for
non-empty cells: Data, Header, Derived, GroupHeader, Title, Note,
and Other. However, for the specific task of table identification not



all of these roles are equally important and most approaches just
rely on the main table building blocks: header, data, and metadata
cells. Header cells give names to columns, describing the values
below them. They can be nested occupying several consecutive
rows. Data cells follow the structure defined by header cells and
contain the table’s payload. Metadata cells provide additional
information about the sheet as a whole, or about a subset of its
values. Some typical examples are footnotes and table titles.

2.2 Cell Features

The label of a cell is determined by a classifier, which makes
use of cell features such as formatting, content types, formula
references, and additional context from nearby cells [2, 5]. In total,
we consider 159 available features to train our cell classifiers. A
detailed explanation of all cell features can be found in [19].

2.3 Training Dataset

For our experiments we used the DECO dataset [18], an existing
corpus of labeled spreadsheets, that can be used to train clas-
sification models and additionally, in context of our work, to
simulate an oracle (for more information see the Section 3) in
the AL cycle. DECO contains 1,165 labeled spreadsheets which
have been derived from the Enron corpus [13]. The time to an-
notate a sheet within a spreadsheet has been logged during the
creation of DECO. In average the annotation takes 4.3 minutes
per spreadsheet with a max value of 284.4 minutes. This shows
the complexity of the cumbersome manual labeling task. It is
clear, that a reduction of to-be-labeled spreadsheets will drasti-
cally improve the cell classification approach and thus the overall
table extraction process.

3 ACTIVE LEARNING FOR SPREADSHEET
CELL CLASSIFICATION

To implement an AL cycle (shown in Figure 1) for a given super-
vised machine learning task, such as cell classification, one has
to decide for a query strategy, a stopping criteria and a certain
batch size. The query strategy selects the samples which should
be labeled next by the oracle. In Section 3.1, we give an overview
of some popular query strategies which are later considered in
our evaluation. To achieve our goal of reducing the human effort
in labeling spreadsheet cells, we have to find the optimal point for
stopping the AL cycle. Therefore, different stopping criteria are
discussed in Section 3.2. Another issue that impacts the labeling
effort is the batch size, i.e. the number of samples or cells labeled
within each iteration of the AL cycle, discussed in Section 3.3.

3.1 Query Strategies

In this section, we shortly introduce the different strategies for
choosing the most informative queries. Each strategy approx-
imates the contained informativeness of unlabeled data for a
potential classifier.

Random Sampling. Random sampling is a common AL query
strategy and found application in [3, 7, 27]. Unlike the other
methods, random sampling chooses queries at random and fully
independently of their informativeness. However, even with this
strategy a rise in prediction accuracy is possible, since the amount
of training data is steadily increased. We use random sampling
as a baseline to compare the other strategies, too.

Uncertainty Sampling. Uncertainty sampling chooses queries
which are the most uncertain to predict. Hence, learning these

queries should result in more certain predictions of the classifier.
We compare three uncertainty metrics: least confident, margin
sampling and entropy [28]. Least confidence [20] tries to capture
the probability, that the classifier is mislabeling the data using
the posterior probability P where § is the most likely prediction:

UgLc = arg)rcnax 1-P(glx),x e U (1)

Information about other classes next to the most probable one is
not taken into account by this strategy. Margin sampling [25] in
contrast uses the posteriors for the first and second most probable
classes and samples the instances with the smallest margin:

Ugm = argmin P(§1|x) — P(§2|x) (2)
X

Entropy uncertainty [30] uses all possible classes and captures
the entropy of a given distribution:

Uy = argmax = > P(ylx) log P(yilx) 3)
i

Query-by-Committee. In contrast to the other strategies the
Query-by-Committee [29] approach maintains multiple models
in parallel, called committee members. They are all being trained
on the same current labeled set L and then vote on the query can-
didates. The vote is conducted by letting all committee members
predict all unlabeled samples and measuring the controversial
score for each sample. The most controversial query is consid-
ered the most informative. For the measurement of disagreement
various methods exist. In this paper, we choose vote entropy as
proposed by [9]:

Uq,VE = arg;nax — Z @ log @ 4)

A

Whereby C denotes the committee size, y; ranges over all possible
labels and V(y;) is the number of times a label was predicted by
a classifier. This scoring method scores dissenting votes as the
highest and concurring votes as the lowest. Our applied commit-
tee consisted of three Random Forest Classifiers with different
random initializations, one Naive Bayes, and one Support Vector
Machine.

3.2 Stopping Criteria

So far, the AL cycle would stop only, if the set of unlabeled data
U is out of cells. Obviously this leads to no reduction in labeling
effort. Therefore, we introduce a stopping criteria, that is able to
detect whether proceeding the AL cycle is not resulting in any
accuracy gain. Additionally, it can be shown, that by reducing
the amount of training data, we prevent overfitting and the test
accuracy is increased (Section 4.6). In this paper, we investigate
three different stopping criteria (SC) from [34].

Maximum Uncertainty. Maximum Uncertainty uses the same
measurement as the Uncertainty Sampling Least Confident strat-
egy in Section 3.1. The basic idea is, that by passing multiple
learning cycles the classifier’s uncertainty should decrease as the
classifier has more knowledge over its data. Therefore, the stop-
ping criteria uses the uncertainty of the most uncertain sample in
U as measure. If the uncertainty value drops below a user-defined
threshold, the stopping criteria will end the AL cycle:

1 ,UgelU and UM(Uq) < Ovu

0 , otherwise

SCpmu = { (5

UM(x") is the method retrieving the uncertainty of a sample
Ug and Oy the predefined threshold. For batches we used the



smallest uncertainty of the batch, other common strategies are
the mean or the median.

Selected Accuracy Method. This method focuses on the classi-
fication accuracy of the chosen queries Uy. It assumes, that the
classifier always chooses the most difficult queries for labeling.
Hence the model’s predictions on the most uncertain queries
should reflect the classifier’s certainty. The AL process stops,
if the classifier successfully predicts the labels of those most
difficult queries.

1, acey, |(C) > Osa
SCsa = { ! (6)

0 , otherwise
accpy (C) determines with the help of the oracle the accuracy of
the classifier’s predictions on the queries, m denotes the iteration
of the AL cycle of the query. 854 is the threshold. For batches
the mean accuracy for each cell is used.

Standard Deviation-based Stopping. In contrast to other ap-
proaches, Standard Deviation-based Stopping [6] assesses mul-
tiple cycles for trend detection. Two criteria have to be met for
stopping: first, the standard deviation of the accuracies for the
last five Uy has to be lower than a predefined threshold 6; and
secondly, the accuracy of the current Uy has to be larger than
the threshold ;. The first criteria identifies plateaus in the query
accuracy and the second one prevents local optima.

™

1 ,o(accn—s..n) < 01 A acc, = 02, whenn > 5
SCy = .
0 , otherwise

The current cycle under inspection is denoted with n.

Since the stopping criteria described above all return Boolean
values, they can be used in combination in form of logical expres-
sions.

3.3 Batch Sizes

It is common practice in machine learning to train a model on
batches of samples instead of single data points. In the later evalu-
ation (Section 4.4) we compare simple top-k batches and so-called
spreadsheet batches: A top-k batch consists of the top-k cells be-
ing selected by the query strategy (Section 3.1). However, this
strategy has the disadvantage, that the selected cells potentially
belong to a large number of spreadsheets which leads to higher
efforts for the oracle, i.e. the human annotator. As reported in
Section 2.3 it takes several minutes to label a spreadsheet, while
most of the time is needed to understand the spreadsheet content
and structure. For this reason, we propose to provide just one
spreadsheet to the human annotator within an AL cycle, i.e. a
batch consists of all cells from this single spreadsheet. To select
the best spreadsheet within an AL cycle we have to adapt our de-
fined query strategy metrics QS (see Section 3.1) for spreadsheet
batches, where U; denotes the set of unlabeled cells of spread-
sheet i as follows and SB denotes the spreadsheet to be used as
Uq:

SB = argmax L Z 0S(x) 8)

Ui =0

4 EVALUATION

To evaluate our semi-supervised approach for spreadsheet cell
classification, we performed a set of experiments on DECO dataset
(Section 2.3). To use this dataset for cell classification three changes
have been made: 1) As described already in Section 2.1 the seven

layout roles have to be merged into the three broader categories
data, header, metadata. 2) Due to the very high amount of data
cells (94%) in DECO, the data class would get an increased prior
probability. Therefore, we decided to limit the number of data
cells to 100 per spreadsheet, chosen randomly. 3) Cells with the
label other were not included in our experiments, since they
are too ambiguous and not helpful for table identification. The
original dataset contains 98.68% data cells, 1.18% Header cells
and 0.14% metadata cells, with a total of 1,393, 398 cells. After
performing the aforementioned steps, the distribution is 83.27%
data cells, 14.99% header cells and 1.74% metadata cells.

We implemented the AL cycle sketched in Figure 1 in Python in
the following way: the learner consists of several classification
models such as Decision Trees, Random Forest, Naive Bayes and
SVMs, using their Scikit-learn [22] implementation. To perform
AL on the DECO dataset we split it into 80% used for L and U as
well as 20% for testing. Within the experiments, we usually set
|L| to 1% and |U| to 99% (of the overall 80%). Since our dataset is
already completely annotated, our implemented oracle can auto-
matically provide the requested label, i.e. for a given Uy provide
Lg. While this setup is perfect to test the different configurations
of the AL cycle it is important to note, that in a real-word setting
the oracle will always be a human annotator.

In Section 4.1, we first propose a metric to measure the perfor-
mance of an AL cycle in terms of accuracy improvement and
sample size reduction. Before looking at the AL strategies, we
report in Section 4.2 on the accuracy of passive learners, i.e. clas-
sifiers using the whole DECO dataset for training. In Section 4.3,
we study the impact of different start set sizes on the learning
curves. Varying batch sizes, sampling strategies and stopping
criteria are investigated in Section 4.4, Section 4.5 and Section 4.6.

4.1 Slope Calculation

There does not exist a standardized numeric measure to report
on AL performances. A common method in AL research is to
compare smoothed accuracy graphs. However, to compare differ-
ent settings in a faster way, many papers also rate the classifier
performance by looking at the start and end point of the learning
curve. To take into account also the reduction of the human effort
in labeling data, we additionally divide the gained accuracy by
the numbers of queries, that have been used to achieve this result.
The measurement is denoted as slope.

ACCend — ACCstart
|queries|

slope = 9)

The accsars is the classifier’s accuracy before any AL cycle passes.
The acc,p,q is determined by the stopping criteria (see Section 3.2)
or in the worst case corresponds to the point when the unlabeled
sample set U is out of data.

4.2 Passive Learning

In a first experiment, we compared the performance of different
classifiers trained on the whole dataset L, without applying the
AL cycle. In detail, we investigated Decision Trees (DT), Random
Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM),
and Multi-Layer-Perceptron (MLP) using a standard random
search over the hyperparameter and five-fold cross-validation.
Table 1 lists the achieved classification results. The data has been
downsampled and the data points of the underrepresented classes
have been used as weights for the accuracies for the header and
metadata cells, as the F1-Sores without would be significantly
lower compared to the F1-Scores of the data class. Even though



Decision Naive Random SVM MLP
Tree Bayes  Forest
Data 0.95 0.91 0.95 0.95 0.95
Header 0.75 0.69 0.76 0.78 0.78
Metadata 0.23 0.35 0.46 0.47 0.52
Weighted Avg. 0.90 0.87 0.91 0.92 0.92
F1-Score
Avg. training 0.15 0.09 0.33 112.52  490.91

time (sec)

Table 1: F1-Scores of the Passive Classifiers Problem
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Figure 2: Comparison of different start sizes and the pas-
sive classifier as baseline

MLP and SVM achieved the best average F1-score we used the
close second best option RF for the remaining AL experiments,
since its training time is significantly lower. In the following
experiments the shown baseline is the accuracy of a passive clas-
sifier trained on the whole dataset L. Table 1 lists the achieved
classification results.

4.3 Start Set Size

We compare three different start set sizes L: 1%, 5% and 10%,
the batch size is 1 spreadsheet at a time, and the query strategy
entropy based uncertainty. Figure 2 shows, that a smaller start set
size leads to higher increase in accuracy at the beginning of the
AL cycle. Nevertheless, after around 100 queried sheets for all
different start sizes the graphs have almost the same shape. In
terms of reducing human effort, we can therefore state, that a
small start size is more beneficial and leads to the same or even
higher accuracies.

4.4 Batch Size

Instead of querying the oracle for just one new labeled data point
during a single AL cycle, the classifier is being refitted on a whole
batch of new labeled cell sheets. Different batch sizes, respectively
50, 150, 250 and all cells of a single spreadsheet are selected for
comparison. The start set size for this experiment is 1% and
entropy based uncertainty query strategy is used (Section 3.1).
Figure 3 shows, that the best results can be achieved with a batch
size of 50. However, the difference between cell-based batches and
the batches consisting of cells, that belong to a single spreadsheet
is very small. Therefore, we advise to use a batch size of one
single spreadsheet per AL cycle in order to reduce the effort for
the human annotator.
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Figure 3: Comparison of different batch sizes and the pas-
sive classifier as baseline
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Figure 4: Accuracies for different sampling strategies and
passive classifier as baseline

4.5 Sampling Strategies

Figure 4 shows the classification accuracies for the different sam-
pling strategies, all with the same start size of 1% and spreadsheet-
wise batches. One can see a clear difference between the random
strategy and the other strategies: For the random strategy the
accuracy goes down after a few queried sheets. Entropy based
uncertainty sampling, uncertainty margin sampling and committee
sampling show the highest increase while the latter achieved the
best results and is therefore the recommended strategy.

4.6 Stopping Criteria

For evaluating the stopping criteria, we use a start size of 1%
and committee sampling. Figure 5 shows the values of the three
stopping metrics proposed in Section 3.2. The markers indicate
the stopping points resulting from these stopping metrics. The
vertical dashed line denotes the optimal stopping point derived
from the peak of the learning curve for the test data. It should
be noted again, that the learning curve is just available in our
experimental setting. In practice the stopping point has to be
determined by the stopping criteria, that just rely on the output
of the classifier.

For sheet-based batches, the maximum uncertainty stopping val-
ues are quite consistent, only for the last queries a drop is no-
ticeable. The reason is probably an overall consistent average
uncertainty over all unlabeled sheets. The selected accuracy met-
ric fluctuates quite a lot and depends heavily on the sheet, but an
upward trend is nevertheless noticeable the more labeled train-
ing data becomes available. The standard deviation of the last
five classification accuracies of the queried spreadsheets is quite
stable, having some valleys. This stopping criterion provides a
robust categorization of the accuracies, but cannot be used to
distinguish between plateaus and valleys. Even though in our
case the minimum of the standard deviation is almost exactly at
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Figure 5: Comparison of stopping strategies Max Uncer-
tainty, Standard Deviation and Selected Accuracy together
with the test accuracy of committee sampling (mauve)
and the optimal stopping point (marked using a vertical
dashed line)

accpa%  |queries| slope
No Stopping 3.00 671  4.474e-03
Maximum Uncertainty Stopping 3.40 661  5.144e-03
Standard Deviation Stopping  11.19 70  1.599e-01
Selected Accuracy Stopping 10.88 43 2.530e-01

Table 2: Comparison of different learning slopes (spread-
sheet batches, committee sampling, 1% start size)

the optimum stopping point for a general case we recommend
to use standard deviation as a necessary criterion and selected
accuracy as a sufficient criterion to detect a continuous peak.
To see the amount of effort which can be reduced by AL we
calculated the slopes for the stopping points as listed in Table 2.
The best results were achieved with standard deviation stopping,
resulting in an increase of the accuracy by +11.19% using a start
set of just 6 spreadsheets and a training set of 70 spreadsheets
compared to 671 spreadsheets of the passive classifier.

4.7 Discussion

The following insights can be derived from our experiments: As
a first step we recommend a comparison of different classifiers.
For our scenario of cell classification, we decide on a Random
Forest classifier providing high accuracy and fast training time.
Compared to weak-supervised approach (see Section 5) active
learning requires a start set of already labeled data. However, our
experiments showed, that even a very small start set consisting
of 6 spreadsheets only is totally sufficient. For cell classifica-
tion, we decide to use one spreadsheet per batch to reduce the
annotator effort. Regarding the sampling strategies, we can con-
clude, that except the random approach all strategies worked
well. The best slope was achieved using the committee strategy
which is therefore our recommended one. It is however notewor-
thy, that this strategy requires the highest amount of computing
resources, since several classifiers have to be trained in parallel.
We could not identify a single stopping criterion which suffices
for identifying nearly optimal stopping points. Therefore, our
recommendation is a combination of a high selected accuracy and
a low standard deviation of the query accuracies.

5 RELATED WORK

Unlabeled Spreadsheet Corpora We find multiple, unlabeled
spreadsheet corpora in the literature: Euses [12] has served the

spreadsheet community for a while. It was created with the help
of search engines, issuing queries containing keywords such as “fi-
nancial" and “inventory", and file type “xls”. Overall, it comprises
4,498 unique spreadsheets, organized into categories (folders)
based on the used keywords. The more recent Enron corpus [13]
contains 15,770 spreadsheets, extracted from the Enron email
archive!. This corpus is unique regarding its exclusive view on
the use of spreadsheets in enterprise settings. Another recent
corpus is Fuse [4], which comprises 249, 376 unique spreadsheets,
extracted from Common Crawl?. Each spreadsheet is accompa-
nied by a JSON file, which includes NLP token extraction and
metrics related to the use of formulas.

So far, these three corpora have been used by researchers viewing
spreadsheets from a software engineering perspective. Formula
error detection and debugging [15, 26], but also usage, life-cycle,
modeling, and governance of spreadsheets [1, 8, 14] are important
research subjects within this community. Table Recognition In
the literature we find various approaches with regards to layout
inference and table recognition in spreadsheets as prerequisites
for information extraction. These approaches can be classified
as rule-based, heuristics-based, and ML-based ones. Here, we
consider those, that are ML-based, like [11, 19]. More recent
publications apply to some extent machine learning techniques
[2, 5, 6, 19]. Other works make use of domain specific languages,
such as [16], [31], and [14].

Active Learning The existing AL approaches can be grouped
in three categories: Membership Query Synthesis, Stream-Based
Selective Sampling, and Pool-Based Sampling [28]. Membership
Query Synthesis assumes, that new data points can arbitrarily be
created and the learner can request any data point from the prob-
lem space. For Stream-Based Selective Sampling a data point is
being sampled from the problem space and the learner can decide,
if the generated sample should be labeled or discarded. Both ap-
proaches are based on the assumption, that arbitrary real-world
data points can be produced in an inexpensive way which is not
the case in our scenario. Pool-Based Sampling instead assumes
a fixed pool of labeled data L and a large pool of unlabeled data
U from the problem space, which holds true for our spreadsheet
dataset. Therefore, in this paper we implemented a pool-based
sampling approach. In the context of spreadsheets, [6] proposed
a rule-assisted AL approach to detect certain properties. The au-
thors introduce a hybrid approach, that combines active learning
with crude easy-to-write user-provided rules.

Weak Supervision The common notion behind weak super-
vision techniques is, that it is much easier to generate a large
amount of so-called weakly-labeled data than a small amount
of good-labeled data and that more data always leads to better
results. Under this assumption multiple approaches have been
proposed: In Snorkel [24] user defined labeling functions (LF) are
used to label given data points. Writing LFs however, requires
experts with domain knowledge, in contrast to spreadsheet cell
labeling which can be done by non-experts also. Additionally,
Snorkel users often have to provide a development set of labeled
data providing quick approximate signals on the accuracies of the
LFs. Hence, the human effort is not necessarily lower compared
to AL.

As successor of Snorkel Snuba [32] was created, where the noisy
LFs are automatically derived from a small labeled dataset. How-
ever, our experiments with the open-source code base of Snuba

!http://info.nuix.com/Enron.html
2http://commoncrawl.org/



have shown some limitations. In the current state it is not easily
applicable to problems of more than two labels and it seems to
be only working well for certain types of problems, to which the
task of classifying spreadsheet cells does not belong to: First, our
dataset is quite unbalanced, which results in LFs, that are only fo-
cusing on the majority class and second, with a growing number
of labeling classes the LFs again tend to focus only on the most
common label. While investigating this we discovered multiple
issues in the current implementation of Snuba which prevent
the overall sound concept from working well in a generalized
setting.

Other methods include assigning a label per feature instead of
assigning a label per data point [10], which is suitable in a setting
of textual data, where it is easy to specify distinctive terms per
label class, but not in the case of classifying spreadsheet cells.
Another approach [21, 23] first clusters the input data and as-
signs then a label per cluster based on a fraction of labeled data
points per cluster. Our problem space has a dimension of 159
features and early experiments showed, that it is not easy to
identify appropriate clusters in such a high-dimensional space.

6 CONCLUSIONS

In this paper, we proposed a semi-supervised approach for cell
classification, that drastically reduces the amount of training data,
without any losses in accuracy. In detail, we investigated different
query strategies, start set sizes, stopping criteria, and batch sizes
to implement the AL cycle. With the DECO corpus, consisting of
1,165 labeled spreadsheets, we tested all these configurations and
derived good settings for them. Using committee sampling, a start
set size of 1% and the selected accuracy stopping criterion we are
able to reduce the size of the training dataset by 90%. In absolute
numbers, our AL cell classification approach obtains the same
accuracies using just 76 labeled spreadsheets (6 sheets in the start
set and 70 selected by the AL approach) compared to the passive
classifier trained on 1,165 spreadsheets. Therefore, the effort for
the human annotators was reduced from 3,029 to 197 minutes.
Given this reduction of annotation work and consequently in
annotation costs, it now becomes feasible to apply ML-driven
cell classification and table identification in practice.
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