
Toward Visual Interactive Exploration of Heterogeneous
Graphs

Irène Burger

irene.burger@polytechnique.edu

Institut Polytechnique de Paris, Inria

Palaiseau, France

Ioana Manolescu

ioana.manolescu@inria.fr

Inria, Institut Polytechnique de Paris

Palaiseau, France

Emmanuel Pietriga

emmanuel.pietriga@inria.fr

Univ. Paris-Saclay, CNRS, Inria

Orsay, France

Fabian Suchanek

suchanek@telecom-paris.fr

Télécom Paris, Institut Polytechnique de Paris

Palaiseau, France

ABSTRACT
An interesting class of heterogeneous datasets, encountered for

instance in data journalism applications, results from the inter-

connection of data sources of different data models, ranging from

very structured (e.g., relational or graphs) to semistructured (e.g.,

JSON, HTML, XML) to completely unstructured (text). Such het-

erogeneous graphs can be exploited e.g., by keyword search, to

uncover connection between search keywords [1].

In this paper, we present a vision toward making such graphs

easily comprehensible by human users, such as journalists seek-

ing to understand and explore them. Our proposal is twofold:

(i) abstracting the graph by recognizing structured entities; this

simplifies the graph without information loss; (ii) relying on

data visualization techniques to help users grasp the graph con-

tents. Our work in this area continues; we present preliminary

encouraging results.

1 INTRODUCTION
Data journalists often have to handle sets of different data struc-

tures, which they obtain from official organizations or from their

sources, extract from social media, receive via email or create

themselves (typically Excel or Word-style) etc. For instance, jour-

nalists from the LeMonde newspaper want to retrieve connections
between elected people at Assemblée Nationale and companies that
have outposts outside of France; such a query can be answered cur-

rently at a high human effort cost, by inspecting e.g. a JSON list

of Assemblée elected officials (available from NosDeputes.fr) and

manually connecting the names with those found in a national

registry of companies. This huge effort may still miss connections

that could be found if one added information about politicians’

and business people’s spouses, information sometimes available

in public knowledge bases such as DBpedia, or in a journalists’

personal notes.

ConnectionLensheterogeneous graphs.TheConnectionLens
project [1] aims to enable journalists to work with data sources as
they come, and quickly due to the speed of the news cycle. This

precludes the time to understand, analyze, and extract the data

into a single unified data model. Instead, in ConnectionLens we

consider that the data model of a given dataset is “an accident”
related to its creation history, and should not be a barrier toward
exploiting it.

© 2020 Copyright for this paper by its author(s). Published in theWorkshop Proceed-

ings of the EDBT/ICDT 2020 Joint Conference (March 30-April 2, 2020, Copenhagen,

Denmark) on CEUR-WS.org. Use permitted under Creative Commons License At-

tribution 4.0 International (CC BY 4.0)

Figure 1: Sample screen shot of ConnectionLens GUI [1]
showing an answer to a three-keyword query.

As no single query language can be used on such heteroge-

neous data, ConnectionLens supports keyword queries, asking for
all the connections that exist, in one or across several data sources,

between these keywords. This problem has been raised by our col-

laboration with Les Décodeurs, Le Monde’s fact-checking team,

with whom we collaborate within the ContentCheck research

project. The novelty of ConnectionLens search wrt the literature

on keyword search in databases is to seek answers which may

span over several datasets of different data models, with very dif-

ferent or even absent internal structure (the latter is true for text

data).

For instance, Figure 1 shows an answer to the three-keyword

query: {“Macron”, “Kohler”, “Costa”}. Different colors indicate

nodes from data sources of different data models (JSON, RDF and

text, respectively); the nodes filled with solid color are those that

match the query keywords. Nodes are either derived from the

original dataset, e.g., a node for each tuple and attribute from a

relational dataset, a node for each map or list in JSON, for each

node in an RDF graph etc., or they may be entity occurrences,
identified by a Named Entity Recognition module capable for

now to identify People, Organizations and Locations. We extract

entity occurrences from any text, whether a document or a phrase

or a name appearing in a JSON node. The dataset interconnection

is materialized by the two red edges labeled same-as between

pairs of entity occurrences.

The problem: ConnectionLens graph exploration. While

such a raw node-link diagram visualization allows users to find

some results in heterogeneous ConnectionLens graphs, the sup-

port they provide for exploring and understanding the graph to

non-expert users, such as journalists, is quite limited.

(1.) The visualization only shows the answer tree; the full

graph is much larger, and a simple node-link diagram as this one

https://nosdeputes.fr
http://www.lemonde.fr/les-decodeurs/
https://team.inria.fr/cedar/contentcheck/

does not scale beyond a dozen edges, as illustrated on a Con-

nectionLens graph
1
of barely more than 200 edges. This problem

is common to any large data graph (not specific to Connection-

Lens) [6]. Many techniques have been developed to address this

issue, going from a simple navigable node-centric GUI
2
for a

large RDF knowledge base [7], to more elaborate visualization

techniques, e.g., [4].

(2.) While some ConnectionLens nodes are meaningful for

human users, e.g., the entity occurrences recognized in Figure 1,

others are not, as they merely correspond to internal containers,
such as JSON maps or arrays, relational tuples etc., which do

not carry human-understandable significance; examples are the

nodes labeled 2|1 and 2|1.3 in the figure. Showing these nodes at

the same level, therefore, is not appropriate. This problem is spe-
cific to ConnectionLens: it originates in its very goal of connecting

information, no matter what format it comes from.

In this paper, we outline a vision for dramatically increasing

the usability of ConnectionLens graphs, in particular through

novel interactive visualizations based on recent advances in the

area of expressive node-link diagram authoring [5] for multi-

variate networks [3]. We identified two steps toward realizing

that vision: graph abstraction (Section 2), and graph visualization

(Section 3).We present some preliminary results, and perspectives

for our work.

2 ABSTRACTING CONNECTIONLENS
GRAPHS

We present our analysis of the ways in which ConnectionLens

graphs can be simplified, or abstracted, based on a set of obser-

vations made by journalists (from Le Monde and TF1) and data

journalists / data visualization professionals (from WeDoData, a

French company) with whom we shared them.

2.1 Abstraction Principles
We present a set of guiding principles, which we identify by a

capital letter to be able to refer to them in the paper.

(A) Entities are interesting. Users want to know who, or what,

a given dataset, or multi-dataset graph, is about. It is natural to

be interested in people (e.g., a politician or a businessperson),

organizations (e.g., an army or a company), or a place (e.g., the

city where one lives, or a country such as Panama). Depending on

the dataset and the application, of course, other kinds of entities

may be considered, e.g., aWeb site, a Facebook or Twitter account,

a specific kind of organization (e.g., companies from Panama)

etc.

(B) Datasets may or may not be interesting. Conceptually, we
like to think of “data” as an abstract set of information, say, a

large graph. From a practical viewpoint, however, data comes

in datasets, which delimit “original subsets” of the global graph.

The contours of a dataset are sometimes clear, e.g., a tweet, a Web

page, or a speech; in other cases, they aremore fuzzy. For instance,

if a relational database holds three tables, should we view this as

one or three datasets? From a user perspective, one can choose to

ignore the datasets (make their boundaries invisible); this may be

appropriate, for instance, if in a social network graph, we want

to focus just on connections between users and/or hash tags. Al-

ternatively, datasets can play a very significant role: (i) if entities
co-occurring in a dataset denote an interesting association, e.g.,

two recipients of the same email; or (ii) if we identify connections

1
http://pages.saclay.inria.fr/ioana.manolescu/DOT-obtained-image.pdf

2
https://gate.d5.mpi-inf.mpg.de/webyago3spotlx/SvgBrowser

between users and datasets, e.g., user Alice hasAuthored dataset
article1, on which user Bob commented etc.

(C)Containers are rather uninteresting.Here, containers denote:
a table (or set of tuples) if the data is relational, or a JSON array.

Intuitively, containers serve to group together several more-or-

less comparable “things”, such as albums of a singer, or members

of a committee. The container node itself is less useful.

(D) Rich entity nodes are desirable for data exploration. Here,
an entity node (EN, in short) denotes an instance of an Entity, in

the traditional Entity-Relationship sense known from conceptual

design. For instance, “the person François Ruffin, having the

birthplace Amiens and the twitter handle @François_Ruffin” is

an EN. Observe that an EN is a larger and more complex notion
than an entity occurrence currently identified by the extraction;
in particular, an entity occurrence is always a leaf (added as a

child of the text node where the extractor found it), and has no

attributes.

As customary in the Entity-Relationship model, we assume

that some of the nodes surrounding an ENn, and reachable fromn,
e.g., the twitter handle above, only serve to describe n and are not

standalone nodes. However, we depart from the classical notion

of an Entity used in relational database design, by allowing ENs

of a given type to have different sets of attributes, and/or to have

more than one value for a given attribute. Note also that in some

datasets, Amiens may also be an EN, e.g., if the dataset specifies

things about it such as its population, geographical coordinates

etc.; in other datasets, e.g., one centered around individuals, or

around shops distributed across a country, Amiens may be just a

dimension characterizing the ENs (people, respectively, shops).

We believe ENs are useful paradigms for exploring the dataset

because:

• They correspond to a natural paradigm of “things” character-

ized by their properties (attributes);

• They group together pieces of information related to a common

resource, e.g., the twitter and Facebook handles of a given

person;

• They lay the foundation for many interesting visualizations,

where attributes can be used e.g. to place shops on a map

according to their location, or events on a timeline etc.

(E) Relationships between ENs are interesting. Here, we extend the
intuition that just like ENs, relationships are intuitive constructs

that allow to structure and analyze a CL graph. For instance, it

is interesting to find that Alice (an EN) supervised Bob (another
EN).

Based on the above principles, below we describe an algorith-

mic approach which, starting from a ConnectionLens graph, (1)

identifies Entity Nodes, (2) assigns them attributes among the

nodes in their neighborhood, and (3) connects them through

relationships.

2.2 Abstraction Algorithm
As an example, Figure 2 shows a ConnectionLens graph resulting

from a JSON document describing Nobel laureates. The red node

is the dataset; blue nodes are maps or arrays, while green nodes

correspond to values (literals). Further, named entity occurrences

identified by the extraction are outlined by a black contour, e.g.,

Jean S., Inria, CNRS etc. These form the basis of the entity nodes

we want to identify. The figure also shows that ConnectionLens

creates a single node for all the nodes with the same label found

on the same root-to-leaf path in a dataset: thus, there is a single

http://pages.saclay.inria.fr/ioana.manolescu/DOT-obtained-image.pdf
https://gate.d5.mpi-inf.mpg.de/webyago3spotlx/SvgBrowser

Figure 2: Input graph G(d) from a JSON document.

Figure 3: Modified graph G(d) after extracting entities
from the graph in Figure 2.
node labeled “Researcher”. This decision materializes the con-

nection which exists between Jean S. and Maria M.: both are

researchers.

Given a graphG(d) such as shown in the figure, corresponding
to a dataset d , a graph EG(d) consisting of entity nodes and

relationships between them can be built as follows.

(1) Following (A) and (D), we seek to create ENs starting from the

entity occurrences. To that purpose, we use a priority queue

Q in which we push all pairs (entity occurrence, its parent

node) from G(d); the priority is computed as the length of the

path from the occurrence to the parent until the dataset root

(the longer the path, the higher the pair’s priority). If an entity

occurrence has several parents, it is pushed inQ once for each

parent.

(2) WhileQ is not empty: Pop fromQ the pair (o,p) with the high-

est priority. The type of o, denoted τ (o), is available in the graph
G(d); the set of entity occurrence types currently supported

is T = {Person, Location, Organization}. We need to create

a rich entity node EN (o) out of o. As o is a leaf node (created
by ConnectionLens extraction), to find possible attributes of

EN (o), we need to climb up from o one or a few levels, then

go down to find o’s attributes in the vicinity.

(a) If p is an array (list), e.g., in the case when o is the entity oc-

currence "Mathilde B.", we conclude that o has no attributes

among its siblings, as one does not expect to find, in an

array, entities and attributes of the same (or comparable)

entities.

(b) If p is a map, e.g., when o is the entity occurrence "Jean S.",

we find the first edge with a non-empty label λ on the path

from p to the dataset node; in our example, λ is "Laureate".

We make the assumption that λ carries useful information

about the content (meaning) of the map p.
Next, we need to understand how p relates to the entity

node EN (o) we are trying to build. For each type τ ∈ T ,

we compare λ, using Embedded Word Distances [2], to a

manually chosen set of keywordsWτ , and select the type

τλ to which λ is closest. When λ is “Laureates”, τλ is Person.

Then:

• If τλ , τ (o), the parent p comprising o is “not about o”; p
likely describes something else. In our example, where

τ (o) is Person, if τλ is Organization, p may describe, e.g.,

an organization in which o plays some role, but not o
itself, therefore the siblings of o are not its attributes. In
this case, from o, we can find no more attributes of EN (o).

• On the contrary, if τλ = τ (o), we consider that the p
may be about o, and try to find p children (siblings of

o) to attach to EN (o) as attributes. For that purpose, we
examine all the entity children c of p with type τ (c) =
τλ . If o is the only one, as is "Jean S.", then its siblings

that are leaf children of p and are not entities themselves

are considered as attributes of EN (o). Otherwise, e.g.,
"Maria M." has a sibling "Matthieu L." which is also of

type τ = PERSON, then for each edge p
a
−→ c , where c is

the child ofp with type τλ and a is the label of the edge, we
compare a to a manually chosen set of keywords whose

meaning is similar to "key", e.g., “ID”, “name” etc. The

label a with the smallest distance to this set determines

the “winner” entity occurrence (child ofp) which captures
its siblings as attributes. In our example, "Name" is closer

inmeaning to "key" than "Mentor", so "MariaM." is chosen.

In application of our principle (C), when EN (o) captures
an attribute, EN (o) replaces its container parent p inG(d),
and is pushed back in Q paired with p’s parent.

(c) If p is a JSON value from which several entities occur-

rences were extracted (e.g., p is a long text, say, a politician’s

speech), no attribute of EN (o) is extracted from p.

This algorithm creates a set of ENs, each encompassing several in-

terconnected nodes from the original graphG(d). It also modifies

the structure of G(d) as shown in Figure 3.

Finally, to satisfy principle (E), we look for relationships (links)
to be added to EG, based on paths found in the modified graph

G as shown above. For now we consider two simple approaches;

• If the shortest path between two ENs inG has a length below a

fixed threshold, we create an edge between them in EG , labeled
with the concatenation of labels on this path. For example we

create the edge "Co-workers" between "Maria M." and "Joseph

L."

• If two ENs have identically labeled paths to their nearest com-

mon ancestor nca, we create an edge between them, whose

label is "co-" concatenated with the sequence of labels on this

path. If nca happens to be an array, we add to this the first

label encountered on the path from nca to the datasource.

Finally, to avoid overloading EG with edges, we do not create

an edge between two entities if the shortest path between them in

G goes through another EN. Figure 4 shows the resulting graph.

The above algorithm handles one dataset, a JSON one. It di-

rectly applies to relational data (where a tuple plays the role

of a map and a relation that of an array), (X)HTML documents,

and text documents which we view as shallow trees (one dataset

node with entity occurrence children). Further, two ENs e1, e2
extracted from datasets d1,d2 such that the originating entity oc-

currences o1,o2 were connected by same-As in G(D) are unified
in the final graph.

Figure 4: Graph of extracted entities EG from example

3 VISUALIZING ENTITY GRAPHS
Asmentioned earlier, node-link diagram representations of graphs

do not scale beyond a few dozen nodes and edges. Alternative

representations of graphs exist, such as adjacency matrices, but

are much less familiar to users and require some training to in-

terpret. Furthermore, adjacency matrices complicate tasks that

involve following paths in graphs, which is an essential aspect of

analysis in ConnectionLens. Thus, we explore ways to support the
visual exploration of ConnectionLens graphs by improving the more
familiar node-link diagram representation, addressing problems

of scalability both in terms of number of nodes and links, and in

terms of attributes of the multivariate network.

The abstraction strategy we explored so far (Section 2) can be

seen as a pre-processing before generating a visual representa-

tion of the graph. Another strategy would consist in converting

some links in the graph that point to leaf nodes (literal values)

into attributes of the source node. Conceptually similar to what

GSS [4] does for RDF graphs, applying such a strategy means

that the node attributes that have been preprocessed this way can

then be visually conveyed by encoding their value using visual

variables of the nodes themselves, as is typically done in mul-

tivariate network visualization [3]. Then, expressive node-link

diagram authoring environments such as Graphies [5], which

feature a rich palette of visual mapping options, will let users

create elaborate visual representations in which nominal, or-

dered and quantitative attributes can be conveyed using different

properties of the graphical nodes: shape (predefined shapes or

sketches), size, fill and stroke color hue/saturation/brightness,

label font properties, even position depending on the choice of

layout strategy.

The second strategy consists in incrementally building the

graph based on one or a few named entities of interest, iteratively

adding subsets of nodes and relationships based on their type

or other criterion (e.g., a threshold value for a given attribute),

specified interactively by the user in the visualization environ-

ment. Thus, users populate the initially-empty canvas with nodes

and links of particular interest, adding/removing elements by

direct manipulation. Combined with a history mechanism that

enables backtracking and forking to explore different subsets of

the original ConnectionLens graph, this bottom-up approach to

building the visual representation makes it possible to explore

graphs that would not be amenable to visualization considered

in their entirety. Here again, we rely on Graphies [5] to enable

such an incremental construction of the graph. While Graphies

is fully functional, we are still in the early stages of integrating it

with ConnectionLens. Preliminary results, that rely on a manual

processing pipeline for now, are encouraging.

4 PRELIMINARY EXPERIMENTS
We implemented in Python the algorithm outlined previously. We

present some quantitative results based on tests made over four

heterogeneous datasets denoted DS1, DS2, DS3 and DS4. DS1
is composed of four datasets : two JSON documents describing

Figure 5: Impact of the graph abstraction algorithms.

National Assembly member and a tweet from F. Ruffin respec-

tively, as well as two texts. The resulting ConnectionLens graph

(the one in
1
) is not easy to understand; it has many structural

nodes and also uninteresting metadata part of the Tweet content.

DS2 is a large dataset representing a list of Nobel Laureates. This
comprises many Person and Location entity occurrences, as well

as many attributes: birth dates, professions etc. DS3 is a RDF

graph describing French politicians. DS4 describes the career of
one politician, most nodes describe him, while other entities are

cities where he was elected.

Figure 5 shows, for each dataset, the number of edges and

nodes inG(d), respectively, EG(d). We see that graph abstraction

brings about an order of magnitude reduction in the number

of nodes and edges. The “deleted nodes” are neither recognized

ENs nor attributes of one. A text with no entity occurrence, or

children of a map or array which does not contain entities, is not

present in EG, nor in the visualization.

5 PERSPECTIVES
Attribute assignment needs to be refined: we currently assume

a map refers to at most one EN. However, a map can describe

several ENs, or a link between several ENs, in which case the

attributes should be added to the link instead of the ENs. For

example, if we consider a contract, the id of the contract should be

an attribute of the edge link the ENs that are part of this contract.

We aim to improve our work in order to take these occurences

into account.

To improve the visualization, we also seek to simplify the

labels of the edges between entities. Indeed, in large graphs, con-

catenating labels found on a path will lead to long and unintelli-

gible labels. One idea is to simplify these labels by recognizing

a more general type of link such as "worksIn", "writesAbout",

"worksWith", etc.

Acknowledgements. This work was partially supported by

ANR-15-CE23-0025 (ContentCheck) and ANR-16-CE23-0007 (DI-

COS).

REFERENCES
[1] Camille Chanial, Rédouane Dziri, Helena Galhardas, Julien Leblay,

Minh Huong Le Nguyen, and Ioana Manolescu. 2018. ConnectionLens:

Finding Connections Across Heterogeneous Data Sources (demonstration).

VLDB (2018).

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. arXiv (2013).

[3] C. Nobre, M. Meyer, M. Streit, and A. Lex. 2019. The State of the Art in

Visualizing Multivariate Networks. Computer Graphics Forum 38, 3 (2019).

[4] E. Pietriga. 2006. Semantic Web Data Visualization with Graph Style Sheets. In

SoftVis.
[5] Hugo Romat, Caroline Appert, and Emmanuel Pietriga. 2019. Expressive Au-

thoring of Node-Link Diagrams with Graphies. TVCG (2019).

[6] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J.J. van Wijk, J.-D.

Fekete, and D.W. Fellner. 2011. Visual Analysis of Large Graphs: State-of-the-Art

and Future Research Challenges. Computer Graphics Forum 30, 6 (2011).

[7] Gerhard Weikum, Johannes Hoffart, and Fabian M. Suchanek. 2016. Ten

Years of Knowledge Harvesting: Lessons and Challenges . In Data Engineering
Bulletin .

	Abstract
	1 Introduction
	2 Abstracting ConnectionLens Graphs
	2.1 Abstraction Principles
	2.2 Abstraction Algorithm

	3 Visualizing Entity Graphs
	4 Preliminary Experiments
	5 Perspectives
	References

