
Igniting the OWL 1.1 Touch Paper:
The OWL API

Matthew Horridge1, Sean Bechhofer1, and Olaf Noppens2

1 The University of Manchester
2 Ulm University

Abstract. This paper describes the design and implementation of an
OWL 1.1 API, herein referred to as the OWL API . The API is designed
to facilitate the manipulation of OWL 1.1 ontologies at a high level of
abstraction for use by editors, reasoners and other tools. The API is
based on the OWL 1.1 specification and influenced by the experience of
designing and using the WonderWeb API and OWL-based applications.
An overview of the basis for the design of the API is discussed along
with major API functionality. The API is available from Source Forge:
http://sourceforge.net/projects/owlapi

1 Motivation

The broad acceptance of the forthcoming OWL 1.1 ontology language will largely
depend on the availability of editors, reasoners and numerous other tools that
support the use of OWL 1.1 from a high-level/application perspective. Building
such tools usually requires an easy to use API so that developers are divorced
from the issues of parsing and serialising particular syntaxes, which allows them
to concentrate on manipulation of ontologies at a high level of abstraction.

Looking at the wider picture, a common application infrastructure can pave
the way for easy access to and integration of ontology management services. For
example from versioning and diffing services, through to reasoning and inference
services such as explanation and debugging. This was illustrated in [1] where
the development of real-world applications essentially highlighted the need for a
common underlying infrastructure.

For the past three years, since the emergence of OWL 1.0, the WonderWeb
API [2] has met needs of application and tools developers. It has been used as
the foundation for popular editing tools such as Protégé-4 [3], Swoop [4] and
OntoTrack [5], and for various patching, reasoning and validation services
such as the ever popular WonderWeb validator3. With over 2000 downloads per
release, the demand for such an API has been proven.

With this in mind, and the experience of developing a raft of the afore men-
tioned tools, we have created an API for manipulating OWL 1.1 ontologies. The
core API provides functionality for creating, examining and modifying OWL 1.1
ontologies. It also ships with a selection of parsers, renderers, and interfaces to
3 http:://phoebus.cs.man.ac.uk:9999/OWL/Validator



various state of the art reasoners. Moreover, in a bid to improve the experience
of application development and to obviate the need for re-implemention of com-
mon functionality, the API had been augmented with additional components.
Amongst other things, fine-grained access to ABox query results, black-box de-
bugging, publish-subscribe mechanism for TBox changes, and validators and
detectors for the official OWL 1.1 fragments4 have been provided. Although the
OWL API has stemmed from the well known WonderWeb API, there have been
significant changes to the interfaces. In order to get a feel for compatibility is-
sues, the next section describes the differences between the WonderWeb API
and the OWL API .

2 From the WonderWeb API to an OWL 1.1 API

The WonderWeb API was developed as part of the WonderWeb project5 in order
to “help realise the vision of the Semantic Web”. The primary goals of the API
were to push OWL and provide a highly reusable component for the construction
of different applications. The API has several noteworthy features:

– Close correspondence with the OWL 1.0 Abstract Syntax6 – incorporating
both a frame style and an axiom oriented approach (or even a combination
of both).

– Syntax neutrality – the API is not biased towards a particular concrete
syntax.

– Support for multiple ontologies – all queries and changes are made with
respect to an ontology or a set of ontologies.

– First class support for changes – ontology changes are applied through change
objects which allows clear and easy change tracking.

The first point in the above list is worth more than mentioning in passing:
A feature of the OWL 1.0 Abstract Syntax specification is that it allows class
descriptions to be specified in a frame style syntax or in an axiom oriented
syntax. For instance, the class definition ClsA v ClsB u ClsC can be written
as either Class(ClsA partial ClsB ClsC) (using a frame style syntax), or as
SubClassOf(ClsA ClsB), SubClassOf(ClsA ClsC) (using an axiom-oriented
syntax). A fundamental design philosphy of the WonderWeb API was that the
abstract syntax was closely parallelled by the API interfaces. To this end, the
distinction between a frame based and axiom based modelling style is preseved at
the API level. Like the Abstract Syntax, the API tends to bias the user towards
a frame style of modelling.

In October 2006, motivated by the DIG 2.0 working group7, a revised OWL
1.1 specification was released. A major change from initial drafts was that the

4 http://owl1 1.cs.manchester.ac.uk/tractable.html
5 http://wonderweb.semanticweb.org/
6 http://www.w3.org/TR/owl-semantics/
7 http://dig.cs.manchester.ac.uk/



frame style syntax was dropped in favour of a completely axiom oriented syntax.
In addition, the use of UML presented a clear structural definition of what it
meant to be an OWL 1.1 ontology. Since much of the WonderWeb API was
based around the OWL 1.0 frame style syntax, it became clear that whole API
would have to be migrated to an entirely axiom oriented representation. In other
words, it was no longer feasible to make simple extensions to the API in order to
provide OWL 1.1 support. In practice this meant taking the best design aspects
of the WonderWeb API, refactoring the interfaces and providing a completely
new reference implementation. With interface changes and the move towards
axioms, porting an existing WonderWeb API application to the new OWL 1.1
API may seem like an unecessary burden. However, it is hoped that this will be
ameliorated by the design and structure of the API closely following the OWL
1.1 specification so that the translation from specification to API is a simple
one.

3 Design decisions and API features

When developing OWL 1.0 APIs there are a number of ways in which develop-
ers can take the specification and produce a set of interfaces for manipulating
OWL 1.0 ontologies. The OWL 1.0 documentation does not make any strong
suggestions about what an OWL 1.0 implementation should look like. In con-
trast, the OWL 1.1 documentation is much more clear about what a “standard”
OWL 1.1 implementation should look like. In fact, there is very little ambiguity
with regards to how ontology constructs should be translated into API inter-
faces. While this does not close the door to alternative designs, the effect is that
implementors are steered towards the same end point.

In essence the specification is well presented, clear and concise and this makes
designing an OWL 1.1 API a relatively straight forward and easy process. Be-
cause of this, the OWL API interfaces are more or less a carbon copy of the
interface descriptions found in the OWL 1.1 specification. The following sections
detail some of the more important aspects of the design of the API.

3.1 Axioms everywhere

The OWL 1.1 specification views an OWL ontology as a set of axioms. In the
API, an OWLOntology interface provides access to the axioms in an ontology.
Not only does this include logical axioms, which encompass traditional OWL-
DL axioms and also rule axioms, but it also includes annotations which are
themselves represented as axioms.

In practice, the benefits of having an axiom based representation cannot
be overstated. Direct experience of developing tools such as expressivity check-
ers, species validators and translators for reasoners suggest implementations are
much cleaner when dealing with axioms. Consider the task of comparing two
different versions of OWL ontologies using an axiom based approach when com-
pared to a frame based approach or even RDF – when using axioms a simple



comparison boils down to a set difference operation. As further evidence, expe-
rience of the development of debugging tools, which use black box debugging
algorithms developed by Kalyanpur [6], suggests that an implementation using
anything other than direct manipulation of axioms would have been painfully
messy and verbose.

The API provides methods for the filtering and grouping of axioms in an
ontology in an attempt to support as many different types of applications as
possible. Axioms may be retrieved by entities that the axioms describe/define,
entities that reference them, and the type of axiom amongst others. For example,
given a class, it is easy to obtain the subclass, equivalent and disjoint class axioms
that define the class. It is also easy to obtain the axioms that merely reference
the class, such as domain and range axioms or class assertions. Such filtering and
indexing makes it particularly easy to obtain the context of usage for a given
entity. Additionally, graphical ontology editors such as Protégé and Swoop tend
to use frame based presentations. In these situations, the provision of axiom
filtering and grouping methods, which can be used to compose frame based views
for any entity is vital. For example, consider the presentation of the description of
a class in an editing environment. Imagine that the display contains information
relating to the selected class, for example annotations, superclasses, subclasses,
equvialent classes, disjoint classes, instances and so on. The editing tool must
have some method of selecting the required axioms from the entire set of axioms
in the ontology in order to compose such a view. Not only does the provision
of a suite of methods that allow such frame based views to be composed reduce
the implementation burnden for tools developers, it also gives them hope that
such views can be composed in an efficient manner.

3.2 Concrete Representations

OWL has a variety of concrete representations, the most widely used being
RDF. In fact one could be forgiven for thinking that RDF was the only possible
representation for an OWL ontology. In part this is due to APIs and popular
tools such as Jena8, Protégé 3.X [7] and more recently TopBraid composer9

whose ‘data models’ for representing OWL are entirely based on RDF. Such
tools may give the impression that editing an OWL ontology necessarily involves
editing an RDF graph. However, this is generally not the case and is reflected
in the original design of the WonderWeb API, which was not biased towards
any particular concrete representation. This has been carried though to the new
OWL API .

In general, mapping to API interfaces and implementation objects is carried
out at load time by parsers which conform to an OWLOntologyParser interface.
A parser registry design makes it particularly easy to add parsers for new or
custom syntaxes. At the time of writing, parsers for the OWL 1.1 Functional
Syntax, OWL 1.1 XML, RDF/XML, KRSS, The Manchester OWL Syntax [8]

8 http://jena.sourceforge.net
9 http://www.topbraidcomposer.com



and the OBO flat file format10 are bundled with the API. Parsers are selected
automatically at runtime, which means it is possible to mix and match different
concrete representations within a set of ontologies, for example within an imports
closure.

Loading ontologies from documents is only one possible method of obtaining
a concrete representation of an ontology. The design of the API makes is possible
to provide mix and match implementations of the OWLOntology interface. For
example, it is envisaged that an implementation could wrap some kind of triple
store, custom database back end or remote ontology server. As far as possible,
the API intefaces have been designed to support such implementations. For
example, the API has been designed so that immutable axioms are the basic
unit of currency. In order to manipulate an ontology, axioms are either added
to, or removed from the ontology. While ontologies contain axioms, axioms don’t
belong to a particular ontology. The fact that axioms, and many other objects
such as class descriptions, are immutable, and the fact that they do not hold
references to ontologies, means that it is easy to make these objects, and therefore
an ontology, persistent using a storage mechanism such as a database.

3.3 Support for modularity and multiple ontologies

One of the basic premises of the semantic web is that anyone can make any
statement about any resource. This is reflected in OWL, where statements about
entities/resources may be spread thoughout multiple ontologies. A key feature of
the WonderWeb API, which was built in from the very beginning, was support
for the manipulating and management of multiple ontologies. The new OWL API
inherits the same design, making it possible to determine if an axiom belongs to
a particular ontology. It is also possible to examine axioms that define an entity
which reside in a particular ontology. For example, for a given class it is possible
to obtain the super classes which have been asserted in a particular ontology,
filtering out all other subclass axioms that relate to that class which have been
asserted in other ontologies.

Ontology Imports A thorny issue in the development of many OWL tools is
that of owl:imports – i.e. ontology inclusion. The original OWL 1.0 specifica-
tion was incredibly unclear in this area. The notion of what should be at the end
of an owl:imports triple – the object of the triple – is particularly fuzzy. Some
developers have interpreted this to simply be a URL which points to a concrete
representation of an ontology contained within some document. The approach
taken by the OWL API is that an imports statement points to an ontology that
has a name (URI) which corresponds to the object of the imports statement.
In common with other APIs the OWL API uses a mapping mechanism, which
takes an ontology URI and maps this to a physcial URI. This physical URI is
finally resolved to point to some concrete representation of an ontology. From a
10 http://www.geneontology.org/GO.format.shtml – note that a mapping define at

http://www.cs.man.ac.uk/ horrocks/obo/syntax.html is used.



conceptual point of view it should be noted that this is not merely a redirection
mechansim in the traditional sense of the web – i.e. from one physical location
to another. The OWL API simply views ontology URIs as ontology names which
don’t contain any information about the physical location of the ontology. An
analogy is that of imports in Java. When a programmer uses an imports state-
ment in Java they are not specifying a physical location of a class file, they are
specifying the name of a class. While it is typically the case that the physical
location of a class file is related to the package name11, this need not be the
case - a class could originate from other sources such as a network, or may even
be constructed dynamically. In other words, the particular implementation of
a class loader determines how a class is loaded at runtime. In the case of the
OWL API the equivalent of a Java class loader is the combination of an ‘ontology
URI mapper’ and an ‘ontology factory’.

In addition to the entire loading of all ontologies in an imports closure, the
API supports the possibility of loading imported ontologies on demand and is
tolerant towards missing imports12. In such a situation any reasoning will most
likely be incomplete and possibly incorrect. However, import on demand can
be incredibly useful in the context of making local changes and incrementally
exploring ontologies in editing environments.

3.4 Reasoning

Reasoning tends to be one of the key features of ontology-based applications
and tools. In common with the WonderWeb API, the OWL API provides gen-
eral reasoner interfaces to describe different reasoner functionality, ranging from
consistency checkers through to class based reasoning. At the time that the
WonderWeb API was published, an emphasis on TBox reasoning was reflected
in the design of the reasoner interfaces. However, with the development of mod-
ern reasoners such as Pellet and experience of developing applications as in [9]
(exploring social networks), the ability to perform, and requirement for, ABox
reasoning has come to the fore. Therefore, the OWL API has enhanced the rea-
soner interfaces for querying individuals. For example, to retrieve all individuals
which are related via a given property, all property fillers for a given individual
and property, most specific (or all) classes a given individual is instance of, etc.
While the core API does not incorporate a complete query language, it tries to
make a compromise between common query tasks and a pure query language,
taking inspiration from the DIG 2.0 interface and various reasoners such as Pel-
let [10], FaCT++ [11] and Racer [12].

The general reasoner interfaces that the API provides make it possible for
implementors to wrap their reasoners and provide OWL 1.1 API compatible im-
plementations, thereby making them available for use by other OWL API tools
or services such as black-box debugging as described later in section 3.6. No

11 i.e. class path plus package
12 Imports that cannot be loaded because a concrete representation cannot be obtained

for example.



assumptions are made about the nature of the communication that takes place
between the API and a reasoner implementation. However, when communicating
with an external reasoner, for example via HTTP (in the case of DIG 1.1) or TCP,
the reasoning process frequently takes less time than the serialisation, parsing
and transport of messages involved in communication. In reasoner intensive ap-
plications this is usually unacceptable and it is perhaps for this reason that there
has been a trend towards direct in-memory reasoner implementations. To date,
such implementations have been provided by Pellet and FaCT++. These im-
plementations are available directly from the Pellet website13 and the FaCT++
website14.

3.5 Support for change

The API uses the well known Command design pattern - all ontology changes
are applied through change objects. Amongst other benefits this makes it pos-
sible to log/store changes, provide undo/redo support and transmit changes in
client/server applications. The WonderWeb API used this approach with great
success. In total there were around fifty different types of change objects. With
moving to an axiom oriented API this has essentially been reduced to two change
objects – AddAxiom and RemoveAxiom. The axiom that a change encapsulates
provides the context for the type of change. All changes are now applied through
an OWLOntologyManager, which has built in support for change history, change
set annotation and undo/rollback.

3.6 Tools support

In the same way that the original WonderWeb API distribution bundled together
several tools such as an OWL Validator and a DIG client implementation, the
OWL API also bundles together several useful tools. Not only do these tools
offer examples of API usage, they also provide ‘out of the box’ tools support for
use in editors and similar applications. This section gives a brief example of such
tools, for further examples and implementations please see the OWL API pages
on Source Forge.

A Black Box OWL Debugger One of the most exciting tools bundled with
the API is an implementation of a Black Box OWL Debugger. The implemen-
tation is based on the algorithms developed by Kalyanpur [6]. The debugger is
capable of detemining the axioms responsible for an entailment in an ontology.
For example the axioms that cause a class to be inconsistent, or the axioms
which are responsible for a subsumption relationship between classes. The de-
bugger is black-box in that it can be used with any sound and complete DL
reasoner without any modification or tuning of the reasoner.

13 pellet.owldl.com
14 owl.man.ac.uk/factplusplus



Fragment detector and expressivity checker As part of the OWL 1.1
specification several tractable fragments have been identified. The API includes
a fragment detector to determine if an ontology, or indeed a set of axioms, belong
to one of these fragments. Additionally, a DL expressivity checker is provided,
which determines the particular Description Logic that an ontology corresponds
to.

4 Conclusions

An OWL API that supports OWL 1.1 is available for use in applications and
tools that require OWL 1.1. The API closely follows the OWL 1.1 specification.
In particular, the API subscribes to the axiom centric view of an ontology. The
API is immediately available for download from the Source Forge Web Site:
http://sourceforge.net/projects/owlapi.

Acknowledgements

This work was completed as part of the CO-ODE project funded by the UK
Joint Information Services Committee (JISC). The authors would like to thank
Evren Sirin from Clarke and Parsia for his valuable input and feedback during
the development of the the new OWL API .

References

1. Liebig, T., Luther, M., Noppens, O., Paolucci, M., Wagner, M.: Building Applica-
tions and Tools for OWL – Experiences and Suggestions . In: Proc. of the OWL
Experiences and Directions Workshop (OWLED’05) at the ISWC’05. (2005)

2. Bechhofer, S., Lord, P., Volz, R.: Cooking the Semantic Web with the OWL API.
In: Proc. of the 2th International Semantic Web Conference (ISWC 2003). (2003)

3. Horridge, M., Tsarkov, D., Redmond, T.: Supporting Early Adoption of OWL
1.1 with Protege-OWL and FaCT++ . In: Proc. of the OWL Experiences and
Directions Workshop (OWLED’06) at the ISWC’06. (2006)

4. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: A Web
Ontology Editing Browser. Journal of Web Semantics 4(2) (2006)

5. Liebig, T., Noppens, O.: OntoTrack: A semantic approach for ontology author-
ing. Journal of Web Semantics 3(2) (2005) 116 – 131

6. Aditya Kalyanpur, Bijan Parsia, E.S.: Black box techniques for debugging un-
satisfiable concepts. In: International Workshop on Description Logics - DL2005.
(2005)

7. Knublauch, H., Musen, M.A., Rector, A.L.: Editing Description Logic Ontologies
with the Protégé-OWL Plugin. In: International Workshop on Description Logics
- DL2004, Whistler, BC, Canada (2004) (2004)

8. Horridge, M., Drummond, N., Goodwin, J., Rector, A., Stevens, R., Wang, H.H.:
The Manchester OWL Syntax . In: Proc. of the OWL Experiences and Directions
Workshop (OWLED’06) at the ISWC’06. (2006)



9. Noppens, O., Liebig, T.: Interactive Visualization of Large OWL Instance Sets. In:
Proc. of the Third Int. Semantic Web User Interaction Workshop (SWUI 2006),
Athens, GA, USA (2006)

10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL Reasoner. Journal of Web Semantics (2006)

11. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006). Volume
4130 of Lecture Notes in Artificial Intelligence., Springer (2006) 292–297

12. Haarslev, V., Möller, R.: Racer: A Core Inference Engine for the Semantic Web.
(2003) 27–36


