
Tailoring and Evaluating Non-Functional Interests
Towards Task-Oriented Functional Requirements

Philipp Haindl
Department of Business Informatics

Johannes Kepler University Linz
Linz, Austria

philipp.haindl@jku.at

Reinhold Plösch
Department of Business Informatics

Johannes Kepler University Linz
Linz, Austria

reinhold.ploesch@jku.at

Christian Körner
Corporate Technology

Siemens AG
Munich, Germany

christian.koerner@siemens.com

Abstract—Without a specific functional context, non-functional
requirements can only be approached as cross-cutting concerns
and treated uniformly across all features of an enterprise system.
This neglects, however, the heterogeneity of non-functional re-
quirements that arises from the domains of stakeholders and the
distinct functional scopes these systems, which mutually influence
how these non-functional requirements have to be satisfied.
Earlier studies showed that the different types and objectives of
non-functional requirements result in either vague or unbalanced
specification of non-functional requirements. We propose a task
analytic method for eliciting and modeling user tasks and the
stakeholders’ pursued interests towards the enterprise system.
Stakeholder interests are structurally related to user tasks and
each interest is specified individually as a quantitative constraint
for a specific user task. These constraints can automatically
be evaluated throughout the system’s lifecycle to assure that
the respective stakeholder interest is fulfilled. Eventually, this
allows to proactively counteract violations of constraints and
thus stakeholder interests. We propose a structured method,
intertwining task-oriented functional requirements with non-
functional stakeholder interests to specify constraints on the level
of user tasks. We also present results of an exploratory case
study with domain experts, which reveals that our task modeling
and interest-tailoring method facilitates shared understanding of
stakeholder interests, clarity and quality of software constraints,
prioritization of engineering efforts, and the impact of stake-
holder interests on functional requirements.

Index Terms—Non-Functional Stakeholder Interests; Require-
ments Negotiation; Task Modeling; Constraint Specification;
Requirements Evaluation.

I. INTRODUCTION

Balancing functional and non-functional requirements
(NFRs) articulated from stakeholders is a challenging endeavor
in software projects of any scale. Also, due to the primarily
engineering-oriented scope of NFRs, the practical relevance of
business, strategic, operational, legal, and privacy interests is
often neglected during requirements specification. As a result,
these types of requirements are neither monitored nor evaluated
in the software lifecycle.

We define the term stakeholder interest to emphasize a
broader understanding of NFRs and to also capture relevant
non-engineering related qualities of software, that must be
addressed. In industrial settings, these stakeholder interests
are typically elicited and defined on a high level as cross-
cutting concerns. This however does not take into account the
relevance, applicability, and characteristic of a specific interest

for a certain software feature. As the efforts required to satisfy
stakeholder interests differ between features, this vagueness in
requirements specification results in undetected non-functional
dependencies between components and features in development,
as well as increased efforts during software operation [1].
Functional units of works can be better elicited through taking
a user perspective and focusing on the most relevant tasks that
will be performed with the software. Contrarily to isolated
features, tasks can be seen as functional units that support the
users’ goals and also show the required interactions between
software features. During requirements elicitation, this also
makes the individual relevance of competing NFRs for a single
user task more tangible for all stakeholders. In our work, we
understand constraints as refinements of NFRs. By specifying
these constraints for a user task using quantitative measures,
constraints can be automatically validated for fulfillment.
Monitoring the fulfillment of stakeholder interests facilitates
requirements negotiation [2] and assessment of tradeoffs
in satisfying constraints [3]. Also, this allows buyers of
customized individual software products and enterprise systems
(ES) to evaluate if non-functional requirements are implemented
by vendors as contractual agreed.

This paper presents the TAICOS (Task-Interest-Constraint
Satisfycing) method as a modification of hierarchical task
analysis [4] for eliciting functional and non-functional require-
ments and monitoring the fulfillment of these requirements
for enterprise systems. This facilitates taking appropriate
counteractions throughout the lifecycle to meet the stakeholders’
requirements on a very detailed level. The contributions of the
method are twofold: (a) it provides requirements engineers a
structured sequence for eliciting functional requirements from
user tasks and non-functional requirements from stakeholder
interests towards enterprise systems; (b) it provides a compact
language for refining these interests into quantified constraints.
These constraints can eventually be operationalized through
respective instruments that acquire typical measures for specific
constraints, e.g., the execution time or maintainability char-
acteristics of the task’s software implementation. The prime
objective of these constraints is to satisfice the original interest,
i.e., to satisfy an interest sufficiently and not better than required.
The operationalization and evaluation of these constraints even-
tually gives engineering teams important feedback to practically
handle these constraints in software design, implementation,

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 2

and operation. Also, the TAICOS method is complemented by
a dedicated operational software quality model [5] to facilitate
evaluating the fulfillment of interests in an automated manner
in a DevOps context.

The remainder of this paper is organized as follows. In
Section II we present a motiviating example to stress the
practical importance of our method. An overview of related
work and the demarcation of our method to other approaches
are given in Section III. Following, Section IV describes
our method to eliciting, modeling, and tailoring functional
requirements and stakeholder interests. Subsequently, Section
V presents how our method can be utilized in a DevOps context
for automatically evaluating the fulfillment of stakeholder
interests. Following, Section VI presents selected evaluation
results of a case study with domain experts in which we
examined particular aspects of the method. Following, we
describe the possible threats to validity in Section VII before
we conclude our work and sketch possible directions for future
work in Section VIII.

II. MOTIVATING EXAMPLE

To motivate our method to tailoring stakeholder interests
to user tasks and specifying concrete constraints therefor, let
us consider a simple example. Your company runs a local
book store and you want to provide your customers an online
application. Basically this application shall allow customers to
search books and write reviews about them, update credit card
information and change their shipping address. Your company
and the customers most likely will have diverging expectations
regarding individual characteristics of these tasks.

But how concretely could these expectations differ among the
user tasks? In order to concentrate your software maintainance
efforts you could require higher software quality standards
for functionality that is part of your revenue stream. In this
example this particularly affects tasks where users search for
books or update their credit card information, as both tasks are
part of the core purchase process. On the contrary, the quality
characteristics of the software components allowing the users
to write book reviews might be less important for you. Taking
the customer perspective it most likely will be important that
your application is responsive even if many users concurrently
use it. Particulary the response time of your application will be
relevant when customers search for a book and less important
if they write a book review.

As can be depicted from this example, while there can
be general stakeholder interests that the software shall be
maintainable or responsive, it actually depends on the concrete
user task how an interest concretely manifests itself. Our
method facilitates tailoring qualitative stakeholder interests
towards user tasks and specifying quantitative constraints that
can be evaluated during the lifecycle of an enterprise system.

III. RELATED WORK

Goal- [6], [7] and task-driven elicitation techniques [1], [8]
are effective approaches for functional requirements elicitation.
As such, they do not support stakeholders in specifying suitable

NFRs for enterprise systems. According to Fotrousi et al. [9],
the main limitation of goal models is that they make it difficult
for stakeholders to understand the impact of unmet NFRs
towards a goal during requirements specification.

Riegel et al. [10] present a prioritization method which
categorizes non-engineering related NFRs by project-related, fi-
nancial, customer, operational business performance or business-
strategy related benefits. Their work underline the broader
notion of NFRs to also capture non-technical qualities of
software. Karlsson et al. [11] investigate the applicability
of goal models for market-driven software development and
stressed the advantages of goal-centered feature elicitation.
The authors conclude that these types of models facilitate
stakeholder participation during requirements engineering.

The third stream of research examines the different satisfac-
tion criteria of NFRs in the context of user tasks. Zubcoff et
al. [12] propose to specify soft goals in the context of user
tasks to assist requirements engineers in evaluating trade-offs
between NFRs. The authors also underline that NFRs shall be
specified individually for functional requirements to improve
end-user satisfaction. Ameller et al. [13] present a survey
among practitioners about the practice of NFR specification
in model-driven design. The interviewees argued that NFRs
are not only difficult to specify through models, but even
difficult to discover and explicate in measurable terms. As
a result of this imprecise definition, the fulfillment of NFRs
usually can only be evaluated and counteracted very late in the
software development process. An interview study of Svensson
et al. [14] also shows that NFRs typically have lower priority
than functional requirements in practice and often are not
specified in early stages of development. This lack of integration
between functional and non-functional requirements can result
in prolonged time-to-market and cost overruns in many software
projects [15]–[17].

In summary, recent research had elaborated the importance
of balancing functional and NFRs in understanding technical
qualities. Though, no structured method has yet been presented
that captures stakeholders interests outside the technical domain.
The approach presented in this paper provides a structured
method for eliciting and specifying constraints from NFRs for
individual functional requirements. Also, it is complemented
by a compact constraint language and operationalization
framework that allows to evaluate the fulfillment of the
respective stakeholder interests in an automated manner during
the software lifecycle.

IV. THE TAICOS METHOD

Particularly in the context of enterprise systems, with
users executing tasks as activities of business processes,
it is important to elicit functional requirements from the
goals that users pursue by using the software [18]. Hence,
the TAICOS method hierarchically decomposes functional
blocks of software from the users’ goals into concrete tasks.
In contrast to eliciting isolated features, this gives a more
comprehensive picture about how these different functional
blocks are related to each other so that the user can most

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 3

effectively achieve the pursued goal. To facilitate a shared
understanding among requirement engineers of the users’ tasks
and goals, each step of the method is repeated until a common
understanding has been achieved. Figure 1 illustrates the eight
steps of the method, starting with capturing user tasks and
collecting stakeholder interests.

A. Capturing User Tasks

1 Elicitation: To elicit tasks, we rely on hierarchical task
analysis [4] with some modifications to carve out the functional
scope of the elicited actions. Hierarchical task analysis breaks
down a task into goals, subgoals, plans, and operations, focusing
on the structure and decomposition of the task into a hierarchy
of subtasks in sequential order of tasks so that the goal can
be attained. According to this notion, a task is a sequence of
actions that people perform to attain a goal. The elicitation
of tasks in our method follows a sequential procedure that
provides structured guidance to detail the functional scope and
connections between tasks.

– Step 1: Define task under analysis. Which task should
be analyzed and what is its objective? Scope boundaries
must be clearly defined prior to analysis, typically driven
by the underlying business model.

– Step 2: Collect data for task analysis. This collection
comprises data about task execution, dependencies be-
tween tasks, constraints. It originates from interviewing
subject matter experts or key users.

– Step 3: Determine the overall task goal. This will
become the root goal of the hierarchy, i.e., the starting
point for decomposition.

– Step 4: Determine subtasks. The predecessor task goal
will then be used to derive subtasks necessary for achieving
the superordinate goal.

– Step 5: Identify task details. Derived from the goal of
each subtask, identify the intentions of the user in attaining
the goal and the resulting responsibilities of the system to
support these intentions. We elaborate this step in more
detail below.

– Step 6: Define execution plans. Execution plans organize
how to reach the goal of the task by modeling execution
order and dependencies between the subtasks. The objec-
tive is to define how the subtasks relate to each other so
that the goal of the task can be achieved.

While hierarchical task analysis allows infinite refinement
of tasks to the point that tasks are purely operational for a
user, our method only allows refinement of tasks by means of
task details tables. This forces the development team to define
the granularity of tasks upfront. If the refinement is still too
vague to be operational, a separate model should be created
for refinement. This assures that tasks and constraints can be
properly treated and described at the refined level.

For the structured elicitation of task details, our method
offers two perspectives: (1) user intentions, the user’s
interactions during execution of the task; and (2) system

responsibilities to support these user intentions through the
system. Both perspectives are compared with each other in
tabular form and refined with pre- and postconditions, as
well as information objects, which describe the information
generated or required for task execution. The task detailing step
helps to map the fine-grained intentions of the user to suitable
functional requirements by carving out the minimal and
satisfactory technical solution to execute the task effectively.

2 Modeling: In the next step, the control flow and decision
points between the subtasks are modeled. Figure 2 shows an
exemplary task of searching for a book at an online store. This
example was also used for presenting our method in the expert
interviews.

Each subtask is modeled as a rectangular gray box labeled
with the corresponding user intention and incorporates one or
multiple rounded rectangles (i.e., system responsibilities) that
reflect the required software functionality. Information objects
are denoted by colored rectangles, with the direction of the
arrows indicating whether the information object is generated
or consumed by the respective subtask. The objective of this
modeling is to outline the control flow among the subtasks
for all stakeholders and to facilitate sketching the required
software features. In this work we refer to features as concrete
software implementations [19] which realize the actions that
are required to implement a task. Also, the granularity of the
actions executed within a subtask can be chosen arbitrarily
to foster a common understanding of the scope and goal of
the features among the involved stakeholders. In contrast to
process modeling, this type of modeling primarily focuses
on the flow among the activities and also relates them to the
technical counterparts needed for their execution. For the sake
of simplicity, we abstain to describe conditional loops or
concurrent executions of subtasks in our modeling method.

3 Prioritization: Next, only those user tasks are selected
for the subsequent steps, which are most important (following
the idea of a minimum viable product), bear a competitive
advantage, or have been selected by an agile team for
development in the next program increment. Typically, the
question of importance can only be answered by considering
the underlying business model. Also, the required assessment
of the tasks’ value contribution prevents specifying details or
exhaustive constraints for rarely executed tasks.

B. Collecting Stakeholder Interests

4 Elicitation: Due to their primary technical focus, the
notion of NFRs does not satisfactorily cover non-technical
objectives of stakeholders having an impact on a software
system. This specially comprises all objectives that must be
considered continuously throughout the software lifecycle, from
software development and operation to its decommissioning.
Existing classification schemes [20], [21] for these non-
technical objectives, which we understand as stakeholder
interests, also reflect their relevance for software quality and
need for precise specification. These stakeholder interests are

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 4

Elicitation PrioritizationModeling
1

2

3

4

5

6

7

8

9

Capturing User Tasks

Elicitation

Collecting Stakeholder Interests

Documentation
1 2 3 4 5

Refinement
6

Tailoring Stakeholder Interests
7 8

Specifying Constraints

2 4

35 50

Tailoring Specification

Figure 1: The TAICOS method defines a structured sequence from capturing user tasks to collecting and tailoring stakeholder
interests for specifying task-dependent constraints.

Displaying results (3)

Format list of
matches

Display exact
matching and
similar books

Searching for book (2)Entering title of book (1)

Providing suggestions
for book titles Search by title Search for

similar books

Selecting a book from list (4)

Select book

Displaying book details (5)

Display details

found books?

[yes]

Show hint that no books
match search term

[no]

Search term List of book titles
for auto-completion

List of matches with title,
author, cover and year

Selected book
Customer
logged in

Displayed book
saved in user profile

Search terms saved
in user profile

Subtask

Pre/Post-Condition

System Responsibility

Information Object

Figure 2: Modeling Subtasks, System Responsibilities, Information Objects and Conditional Flows.

still unsatisfactorily covered by existing, solely technically
oriented standards such as ISO/IEC 29148:2011 [22] or
ISO/IEC 25030:2007 [23], which often results in NFRs being
only vaguely elicited.

The objective of this step is to capture all stakeholders’
quality-related, operational, business, legal, and other non-
behavioral interests that influence how the later software
system needs to support the tasks of the users.

5 Documentation: In this step, the elicited stakeholder
interests are documented informally to express the stakeholders’
objectives and expectations towards the software system. It is
important to document each stakeholder interest in a manner
comprehensible for all involved stakeholders to foster shared
understanding and also to later assess its individual relevance.
In this step of the method an interest does not need to be
documented on a quantitative basis. The concrete tailoring
and deriving of constraints for each user tasks is done in a
subsequent step. Stakeholder interests can be documented in
the following ways:

• “The software must be responsive to user inputs.”
• “... handle peaks of concurrent users.”
• “... be deployable automatically.”
• “... recover quickly after outages.”
• “... be operated in the cloud.”
Our method explicitly separates interest elicitation from

documentation. The former being conducted by all stakeholders
in a brainstorming like manner striving to unveil as many
possibly relevant interests that could impact the software
lifecycle; the latter just to document the results from the

elicitation step.

C. Tailoring Stakeholder Interests

6 Refinement: Similar to the refinement of user tasks, also
stakeholder interests are iteratively refined until they show a
delimited and comprehendible scope for the later tailoring.
Refined stakeholder interests again are documented conjointly
with the relevant stakeholders. This is done to cross-check that
there is common understanding about the interest even after its
refinement. Stakeholder interests which are too large in scope
are decomposed down to a suitable level. The overall objective
of this step is to prevent ambiguities about an interest’s scope
among the stakeholders. Uniform comprehension about the
scope of an interest is the prerequiste for its effective tailoring
and the specification of suitable constraints therefore.

7 Tailoring: In this step, the stakeholder interests and
user tasks are analyzed pairwise to evaluate the relevance
of an interest and how it can be satisfied in each narrow
task context. This detailed analysis also assures that for all
elicited stakeholder interests the relevant measures can later
be operationalized in the context of individual user tasks.

Stakeholder interests and user tasks are then related to each
other in a two-dimensional task-interest matrix. Following, each
interest is tailored individually to each user task so that it can
be fulfilled exactly for the respective user task. Resulting from
this tailoring is a qualitative ordering of the cells indicating
the relevance of the interest for the respective user task, e.g.,
through coloring cells darker gradually with relevance. The
tailoring and qualitative ordering of the interests’ relevance is

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 5

shown in the (task-interest matrix, top) in Figure 3. At that
point of the method no quantitative fulfillment criteria for the
stakeholder interests are defined. The focus of this step is
on getting a common understanding about the relevance of
an interest for a particular user task. As a practical example,
the interest that “the software must be responsive to user
inputs” might be subjected to different qualitative expectations
depending on the concrete user task. Responsiveness might be
much more important for a user when searching for a book than
when writing a book review, but less important when changing
the shipping address. As a further example from the perspective
of the software manufacturer, the interest “the software shall be
modularized into separate units.” is important when changing
credit card information or the shipping address of the customer.
These two tasks are part of the billing process and thus the
associated source code need to be better modularized than for
other tasks.

Sea
rch

 fo
r b

oo
k

Upd
ate

 cr
ed

it c
ard

inf
orm

ati
on

Cha
ng

e s
hip

pin
g

ad
dre

ss
W

rite
 bo

ok
 re

vie
w

The software must be
responsive to user inputs.

The software must use
resources effectively.

The software must be
maintainable easily.

The software shall be
modularized into separate units.

The software must be resilient
to external outages.

<2 <3 <3 <4

<100 <100 <50 <70

<1 <2 <2 <3

<10 <4 <4 <10

<1 <1 <5 <10

responseTime (ms)

memoryUsage (mb)

technicalDebt (days)

classFanOut

MTBF (min)

task-interest matrix

task-metric matrix

Figure 3: Deriving quantitative measures for user tasks after
qualitatively evaluating relevance of stakeholder interests.

Analyzing these interests outside the context of individual
user tasks neglects the fact that some tasks are more important
than others and thus need more attention. The fulfillment of
interests typically requires intertwining multiple teams, e.g.,
requirements engineering and DevOps teams. This even more
emphasizes the need to evaluate its relevance conjointly with all
relevant stakeholders in the narrow context of a user task. Also,
stakeholder interests evaluated with little relevance for multiple
user tasks should be revised as this indicates ambiguities
regarding its scope or its actual irrelevance.

D. Specifying Constraints

8 Specification: In the last step of our method, the task-
interest matrix created in the last step serves as input for
eventually specifying concrete constraints. These constraints
are specified individually for each user task based on threshold
values to satisfice the stakeholder interests. Hence, when
specifying concrete constraints the objective is to fulfill the
stakeholder interests satisfactorily and not optimally, so that a
majority of stakeholder interests can be fulfilled.

The previous qualitative evaluation of individual relevance
of an interest for a user task helps to find concrete measures
and criteria for specifying these constraints. To foster a shared
understanding among the stakeholders of the threshold values
used in the constraints, it is important to use a well known unit
of measurement. Ideally, one should start with determining
metrics and threshold values for the most relevant user task for
a specific stakeholder interest. Taking the example illustrated
in Figure 3, the task to search for a book needs to be specially
responsive. Determining the response time as metric and
values below 2 milliseconds as being very responsive, the
other constraints can be derived thereof straightforwardly. This
procedure is repeated until

• for each cell in the matrix there is a concrete constraint
defined, or alternatively

• the stakeholders agree that the interest is of little relevance
for a certain user task and does not need to be specified.

Figure 3 shows the transition from the task-interest matrix
(top) into a task-metric matrix (bottom) defining metrics and
threshold values for each user task and stakeholder interest.
Lastly, using the information of the task-metric matrix we can
specify concrete constraints for each user task. To faciliate
expressing these constraints our method provides a compact
constraint language. The units of measure used in the task-
metric matrix do not necessarily need to be the same as used
for the constraints, but depend on the operationalization of a
measure. As an example, while the technical debt is expressed
in days in the task-metric matrix, constraints use hours as
unit of measure. The same applied to the mean time between
failures (MTBF) which is defined in minutes in the task-metric
matrix and expressed in seconds in the constraints.

search_book: responseTime < 2, memoryUsage < 100,
techDebt < 24, fanOut < 10, mtbf < 60.

update_card: responseTime < 3, memoryUsage < 100,
techDebt < 48, fanOut < 4, mtbf < 60.

change_address: responseTime < 3, memoryUsage < 50,
techDebt < 48, fanOut < 4, mtbf < 300.

write_review: responseTime < 4, memoryUsage < 70,
techDebt < 72, fanOut < 10, mtbf < 600.

Figure 4: Example constraints to evaluate stakeholder interests
using quantitative measures for each user task.

In Figure 4 we illustrate how the information of the task-
metrics matrix can be expressed as concrete constraints for
the elicited user tasks. These constraints allow to evaluate

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 6

the fulfillment of the respective stakeholder interests through
concrete measures, which themselves are operationalized
through dedicated software instruments. For instance, the
interest that “the software must be responsive to user inputs”
is only fulfilled if the response time of the user task’s software
implementation is below the defined thresholds. For the sake
of brevity we skip the details of this constraint language and
refer to our other publications in this context [5].

V. EVALUATING FULFILLMENT OF INTERESTS

When developing software components for enterprise sys-
tems, the TAICOS constraint language can be used to evaluate
whether the explicated requirements are fulfilled. Specially
for software components that concertedly realize business
processes, unfulfilled software quality requirements can lead
to delays and disruptions of the affected business processes.
For the evaluation of the interests in a development context,
the measures used in the respective constraint specification are
acquired from development, operational or other enterprise
systems. Afterwards, the actual value of a measure can
be compared against the threshold value explicated in the
constraint. Our constraint language provides basic comparison
operators as well as time series operations and time filters for
acquiring the measures.

The evaluation results are then displayed on a web applica-
tion (cf. Figure 5) in a tabular form similar to the task-interest
matrix. In the overview (cf. Figure 5a) the colors of the cells
(red, orange, green) give a condensed view about violated
interests for a specific user task. If at least one stakeholder
interest is violated for a single user tasks, the respective interest
is colored in red. As an example, the cell of the maintainability
interest in Figure 5a is highlighted in red, even if it is only
violated for the user task to update the credit card information.

Also, we provide a detailed view of evaluation results
for each constraint. Figure 5b shows an exemplary detailed
view for the maintainability interest and its constraints. If the
constraint is fulfilled, its concrete value and deviation from
the constraint threshold is also shown. This shall give an
early hint that a constraint has only been scarcely fulfilled
and that counteractions should be taken. Our main objective
was on keeping these visualizations comprehendible specially
for non-engineering stakeholders. The combination of visual
cues and quantitative information about constraint fulfillment
shall ease communication between technical and non-technical
stakeholders.

VI. EXPLORATORY CASE STUDY

We conducted an exploratory face-to-face interview study
with 11 domain experts to examine how they rate the TAICOS
method. Particulary we studied the benefits and weaknesses
the experts anticipated from eliciting functional requirements
from the most relevant user tasks of an enterprise system and
specifying concrete non-functional requirements for it. These
domain experts had typical roles in the context of enterprise
systems - from requirements engineering to development,
operation, and product management.

(a) Overview of user tasks and evaluated stakeholder interests.

(b) Detailed evaluation results of the maintainability interest for each
user task, along with the specified constraints.

Figure 5: Visualization of evaluation results of stakeholder
interests for user tasks, (a) overview, (b) detailed view.

Taking the guidelines by Runeson and Höst [24] as a
blueprint we designed a questionnaire covering practices,
challenges, and problems that arise during specifying NFRs
with different stakeholders. Also, we conducted a pilot interview
as suggested by Yin [25] with one highly experienced expert
and included his feedback to improve the questionnaire itself.
Particulary, we refined certain phrases in the questionnaire and
used more common terminology to assure a good understanding
during the interviews among the experts. The questionnaire
comprised 20 open questions and 4 closed questions on a 4-
point Likert scale and was separated into 3 parts: The first
part captured educational and company background, roles in
projects and years of experience with requirements engineering.
In the second part we asked questions to find out how the
companies currently model functional requirements and NFRs,
what challenges they are confronted with, and what types of
stakeholder interests typically need to be taken into account
thereby. Finally, in the third part we presented the experts our
method for tailoring stakeholder interests to concrete constraints
in the context of user tasks. During the interviews we used
Figure 2 to present the method to the experts. In this final
part we asked them to specially reflect about the anticipated
benefits and drawbacks of the method.

Before asking the experts to rate our method, we presented
them a selection of tasks from a well-known online book store
and a list of generally understandable performance, privacy,
and legal interests. Then, we illustrated how these interests can
be used in our method to derive constraints on the level of user
tasks. Finally, we asked the experts 4 questions to evaluate our
method for tailoring these interests in the context of individual

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 7

Easier Detection
of Critical Paths

More Precise Documentation
of Stakeholder Interests

Facilitated Elicitation and
Specification of Constraints

Prioritization of
Engineering Efforts

Premature Analysis
of Project Risks

Increased Clarity and
Quality of Constraints

Shared Understanding of
Stakeholder Objectives

0 20 40 60 80 100

9%

18%

18%

18%

36%

55%

82%

Figure 6: Anticipated benefits of tailoring stakeholder interests to user tasks.

user tasks.

A. Anticipated Benefits and Weaknesses of the Task-Oriented
Modeling Method for Enterprise Systems

In one part of the interview, the experts were asked to
elaborate the anticipated benefits and weaknesses of the method.
They argued that especially due to the granularity and focus
on user tasks, they expect the following main benefits of the
method:

• fostering shared understanding of functional requirements
among stakeholders especially across domains;

• easier and more precise structuring of the functional scope
compared to e.g., user stories or epics;

• additional guidance for eliciting functional requirements
through the structured decomposition of goals into tasks
and subtasks.

Concerning the weaknesses of the method for task-oriented
modeling of functional requirements, 27% of the experts
anticipated no weaknesses for the practical introduction of
the method. We codified the open answers of the 73% experts
naming weaknesses, summarizing their statements as follows.
34% responded that, as with every structured method, our
method requires knowledge of how to use it effectively in
projects. The experts also assumed that the method would
require only little training time for its practical introduction,
due to its simplicity. The additional maintenance effort to
adapt diagrams to changing requirements was expressed as a
weakness by 22% of the experts, and the complexity of the
model elements was also mentioned by 22% of the experts.
Flexibility and additionally introduced complexity were each
mentioned by 11% of the experts.

B. Anticipated Benefits and Weaknesses of the Interest-
Tailoring Method for Enterprise Systems

Finally, we asked the experts 2 open questions to elaborate
the anticipated benefits of our interest tailoring method on
the level of user tasks. We condensed their answers to these
questions into 8 categories, which are illustrated in Figure 6.
Increased comprehensibility of the system was expressed as
a benefit by 82% of the experts, namely by increasing the
clarity of objectives pursued through an interest. In 55% of the

interviews, the experts mentioned the increased specification
quality of constraints derived from interests, and 36% said it
would help them to assess project risks by better understanding
interests and their interdependencies.

In 18% of interviews, experts expressed the prioritization
of interests, the time savings accrued by deriving constraints
from interests, and the ease of documentation as expected
benefits of the method. Only 9% of experts mentioned that our
method could also help them to detect critical paths. Based
on the open answers examining the weaknesses, we codified
the experts’ answers into 3 groups. 45% of experts believed
that the method would introduce an additional specification
effort but also expressed that the expected benefits outweighed
these tradeoffs accompanying any structured method. 27% of
experts mentioned the complexity of the method as a drawback,
and a further 18% anticipated that our method would result in
explicitly specifying standard industry constraints that usually
need no special documentation (e.g., a default availability,
common security requirements).

VII. THREATS TO VALIDITY

In this section we outline the possible threats to the validity
of our method. Particulary this affects the design, execution,
and interpretation of the exploratory interview study.

We see a threat to construct validity in the different
interpretations of the questions by the experts, which is mainly
due to their different roles and experiences. We addressed
this threat by showing each expert concrete definitions of
the terminology used in the interview and discussed any
ambiguities. When summarizing the experts’ answers, we also
considered the background and role of each expert to determine
from what view and with what intention the statement was
given. Also, as the objective of the exploratory case study
was on gathering preliminary feedback for methodological
improvement of the method, a further empirical validation is
necessary after the experts have applied our method.

The foremost threat to internal validity can be seen in
some experts’ trend to answer in confirmation of our theories.
This could have led to confirmation bias, but we regard this
as negligible because in response to this trend to answer
towards confirming our theories, we asked follow-up questions
to capture the experts’ actual experiences.

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 8

We addressed the threat to external validity by selecting
experts who operate in different industry sectors, and we also
selected only one expert per company. However, we see a threat
to the generalizability of the results to other industries due
to the different size and maturity of requirements engineering
practices in the companies.

Particularly, an empirical validation of the overall approach
needs to be conducted to gather empirical evidence about its
applicability and suitability in industrial settings.

VIII. CONCLUSION AND FUTURE WORK

Utilizing the proposed hierarchical task analysis method to
structurally decompose tasks into subtasks seems to offer a
promising approach for clarifying the core functionality needed
to support the users’ goals in enterprise systems. Stakeholder
interests can be conjointly refined into quantitative constraints
within the context of a user task so that their fulfillment can be
automatically evaluated during the software lifecycle. Due to
the specification of stakeholder interests and derived constraints
on the level of user tasks, our method explicitly addresses chal-
lenges arising from the interdependencies between functional
requirements and NFRs in software systems.

We have focused our exploratory case study on the elicitation
practice and the granularity of NFR specification in the
companies. The main objective of this research design was to
effectively address the issues and challenges gathered from the
expert interviews in our method. Together with an industry
partner we are currently planning an empirical validation of
the method to ensure the generalizability and the applicability
of the results in an industrial context. A special emphasis of
this empirical validation will be put on the completeness and
expressiveness of the constraint language.

Future work shall specially concentrate on ensuring scalabil-
ity of the method for large-scale software engineering projects
and particularly for efficiently handling multiple heterogenous
interests being attached to the same task. Also, the existing tool
support for operationalization of measures shall be extended
to also integrate data accruing in ERP systems, such as
data relating to internal business-process and procurement
performance, customer relationship management, and product-
related revenue indicators.

REFERENCES

[1] D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of
Techniques, Approaches, and Tools,” in Engineering and Managing
Software Requirements, A. Aurum and C. Wohlin, Eds. Springer Berlin
Heidelberg, 2005, pp. 19–46.

[2] J. D. Blaine and J. Cleland-Huang, “Software Quality Requirements:
How to Balance Competing Priorities,” IEEE Software, vol. 25, no. 2,
pp. 22–24, Mar. 2008.

[3] P. Berander and A. Andrews, “Requirements Prioritization,” in Engineer-
ing and Managing Software Requirements, A. Aurum and C. Wohlin,
Eds. Berlin, Heidelberg: Springer, 2005, pp. 69–94.

[4] J. Annett, “Hierarchical Task Analysis,” in The Handbook of Task Analysis
for Human-Computer Interaction. London, UK: Taylor & Francis, 2003,
pp. 67–82.

[5] P. Haindl, R. Plösch, and C. Korner, “An Extension of the QUAMOCO
Quality Model to Specify and Evaluate Feature-Dependent Non-
Functional Requirements,” in 2019 45th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). Kallithea-
Chalkidiki, Greece: IEEE, Aug. 2019, pp. 19–28.

[6] A. v. Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in Proceedings Fifth IEEE International Symposium on Require-
ments Engineering, 2001, pp. 249–262.

[7] C. Rolland and C. Salinesi, “Modeling Goals and Reasoning with Them,”
in Engineering and Managing Software Requirements, A. Aurum and
C. Wohlin, Eds. Springer Berlin Heidelberg, 2005, pp. 189–217.

[8] S. Lauesen and M. A. Kuhail, “Task descriptions versus use cases,”
Requirements Engineering, vol. 17, no. 1, pp. 3–18, Mar. 2012.

[9] F. Fotrousi, S. A. Fricker, and M. Fiedler, “Quality requirements elicitation
based on inquiry of quality-impact relationships,” in 2014 IEEE 22nd
International Requirements Engineering Conference (RE), Aug. 2014,
pp. 303–312.

[10] N. Riegel and J. Doerr, “A Systematic Literature Review of Requirements
Prioritization Criteria,” in Requirements Engineering: Foundation for
Software Quality. Springer, Cham, Mar. 2015, pp. 300–317.

[11] L. Karlsson, s. G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson,
“Requirements engineering challenges in market-driven software devel-
opment – An interview study with practitioners,” Qualitative Software
Engineering Research, vol. 49, no. 6, pp. 588–604, Jun. 2007.

[12] J. Zubcoff, I. Garrigós, S. Casteleynb, J.-N. Mazón, and Aguilar, “Evalu-
ating different i*-based approaches for selecting functional requirements
while balancing and optimizing non-functional requirements: A controlled
experiment,” Information and Software Technology, vol. 106, pp. 68–84,
Feb. 2019.

[13] D. Ameller, X. Franch, C. Gómez, S. Martínez-Fernández, J. Araujo,
S. Biffl, J. Cabot, V. Cortellessa, D. Méndez, A. Moreira, H. Muccini,
A. Vallecillo, M. Wimmer, V. Amaral, W. Bühm, H. Bruneliere,
L. Burgueño, M. Goulão, S. Teufl, and L. Berardinelli, “Dealing with
Non-Functional Requirements in Model-Driven Development: A Survey,”
IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[14] R. Berntsson Svensson, T. Gorschek, and B. Regnell, “Quality Require-
ments in Practice: An Interview Study in Requirements Engineering
for Embedded Systems,” in Requirements Engineering: Foundation for
Software Quality, ser. Lecture Notes in Computer Science, M. Glinz and
P. Heymans, Eds. Springer Berlin Heidelberg, 2009, pp. 218–232.

[15] L. Chung and J. C. P. Leite, “On Non-Functional Requirements in
Software Engineering.” Springer, 2009, pp. 363–379.

[16] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, ser. International Series in
Software Engineering. Springer US, 2000, vol. 5.

[17] M. Daneva, L. Buglione, and A. Herrmann, “Software Architects’
Experiences of Quality Requirements: What We Know and What We
Do Not Know?” in Requirements Engineering: Foundation for Software
Quality, ser. Lecture Notes in Computer Science, J. Doerr and A. L.
Opdahl, Eds. Springer Berlin Heidelberg, 2013, pp. 1–17.

[18] E. C. S. Cardoso, J. P. A. Almeida, G. Guizzardi, and R. S. S.
Guizzardi, “Eliciting goals for business process models with non-
functional requirements catalogues,” in Enterprise, Business-Process
and Information Systems Modeling, T. Halpin, J. Krogstie, S. Nurcan,
E. Proper, R. Schmidt, P. Soffer, and R. Ukor, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 33–45.

[19] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of
Knowledge, 3rd ed. Los Alamitos, CA, USA: IEEE Computer Society
Press, 2014.

[20] M. Glinz, “Rethinking the notion of non-functional requirements,” in
Proceedings of the Third World Congress for Software Quality (3WCSQ
2005), vol. 2, Munich, Germany, 2005, pp. 55–64.

[21] M. Broy, “Rethinking Nonfunctional Software Requirements,” Computer,
vol. 48, no. 5, pp. 96–99, May 2015.

[22] “ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Life cycle processes –Requirements engineering,” ISO/IEC/IEEE
29148:2011(E), pp. 1–94, Dec. 2011.

[23] “ISO/IEC/IEEE 25030:2007 International Standard - Software product
Quality Requirements and Evaluation (SQuaRE) - Quality requirements,”
25030:2007, 2018, (accessed 2019/12/04). [Online]. Available: https:
//www.iso.org/standard/35755.html

[24] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineering,
vol. 14, no. 2, pp. 131–164, Apr. 2009.

[25] R. K. Yin, Case Study Research and Applications: Design and Methods,
6th ed. Los Angeles: SAGE Publications, Inc, Nov. 2017.

AESP20: 1st Workshop on Requirement Management in Enterprise Systems Projects @ SE20, Innsbruck, Austria 9

https://www.iso.org/standard/35755.html
https://www.iso.org/standard/35755.html

	Introduction
	Motivating Example
	Related Work
	The TAICOS Method
	Capturing User Tasks
	Collecting Stakeholder Interests
	Tailoring Stakeholder Interests
	Specifying Constraints

	Evaluating Fulfillment of Interests
	Exploratory Case Study
	Anticipated Benefits and Weaknesses of the Task-Oriented Modeling Method for Enterprise Systems
	Anticipated Benefits and Weaknesses of the Interest-Tailoring Method for Enterprise Systems

	Threats To Validity
	Conclusion and Future Work
	References

