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Abstract. G′3 is a recently developed three-valued logic with a sole type
of true value. CG′3 is also a three-valued paraconsistent logic extending
G′3 with two true values. The current state of the art of CG′3 com-
prises Kripke-type semantics. In this work, we further extend studies on
the syntactic-semantic relation of CG′3. More precisely, we developed a
Hilbert-type axiomatization inspired by the Lindenbaum- Los technique
on maximal theories applied to completeness. Furthermore, we also prove
soundness.
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1 Introduction

Many-valued logics are non-classical logics. As in classical logics, many-valued
logics also enjoy of the truth-functionality principle, namely, the truth value of a
compound sentence is determined by the truth values of its component sentences,
it remains the same when one of its component sentences is replaced by another
sentence with the same truth value. However, contrastingly with the classical
case, many-valued logics do not restrict the number of truth values to only two, a
larger set of truth degrees is then the distinctive feature in the many-valued con-
text. In [2], we can find a detailed analysis of many-valued logics. Some systems
of many-valued logics are presented as families of uniformly defined finite-valued
and infinite-valued systems, for example,  Lukasiewicz logic, Gödel logic, t-Norm
based systems, three-valued system, Dunn-Belnap’s 4-valued system, Product
systems. The main types of logical calculus for systems of Many-valued logics
are Hilbert type calculus, Gentzen type sequent calculus or Tableaux [2]. The
art for a wide class of infinitely valued logics is presented in [9].

In 1954, F. Asenjo in his Ph.D. dissertation proposes for the first time to
use Many-valued logics to generate paraconsistent logics (logics whose semantic
or proof-theoretic logical consequence relation is not explosive [7]). The many-
valued approach is to drop this classical assumption and allow more than two
truth values. The most common strategy is to use three truth values: true, false,
and both (true and false) for the evaluations of formulas [7].

The CG′3 logic is a three-valued paraconsistent logic of recently developed
by [5] with a many-valued semantics. Both CG′3 and G′3 are defined in terms of
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three-valued matrices, the unique difference among these logics is on their sets
of designated values. In this paper, we further extend studies on the syntactic-
semantic relation of CG′3. Our main contributions are briefly summarized as
follows:

· A formal axiomatic theory CG′3h. This theory has four primitive connectives,
twelve axioms, and Modus Ponens as the only inference rule.
· It is shown that the formal axiomatic theory CG′3h is sound and complete

with respect to CG′3, see Theorems 2 and Corollary 1. To prove complete-
ness theorem for CG′3h, we use the Lindenbaum- Los technique on maximal
theories.

2 Background

We first introduce the syntax of the logical formulas considered in this paper. We
follow common notation and basic definitions as W. Carnielli and M. Coniglio
in [1].

Definition 1 (Propositional signatures). A propositional signature is a set
Θ of symbols called connectives, together with the information concerning to the
arity of each connective.

The following symbols will be used for logical connectives: ∧ (conjunction,
binary); ∨ (disjunction, binary); → (implication, binary); ¬ (weak negation,
unary); • (inconsistency operator, unary);∼ (strong negation, unary);⊥ (bottom
formula, 0-ary).

Definition 2 (Propositional language). Let V ar = {p1, p2, . . .} be a denu-
merable set of propositional variables, and let Θ be any propositional signature.
The propositional language generated by Θ from V ar will be denoted by LΘ.

Definition 3 (Tarskian logic). A logic L defined over a language L which has
a consequence relation `, is Tarskian if it satisfies the following three properties,
for every Γ ∪∆ ∪ {α} ⊆ L:

(i) if α ∈ Γ then Γ ` α;
(ii) if Γ ` α and Γ ⊆ ∆ then ∆ ` α;

(iii) if ∆ ` α and Γ ` β for every β ∈ ∆ then Γ ` α.
A logic satisfying item (ii) above is called monotonic. Moreover, a logic L
is said to be finitary if it satisfies the following:

(iv) if Γ ` α then there exists a finite subset Γ0 of Γ such that Γ0 ` α.
A logic L defined over a propositional language L generated by a signature
from a set of propositional variables is called structural if it satisfies the
following property:

(v) if Γ ` α then σ[Γ ] ` σ[α], for every substitution σ of formulas for variables.
A propositional logic is standard if it is Tarskian, finitary, and structural.
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From now on, a logic L will be represented by a pair L = 〈L,`〉, where L
and ` denote the language and the consequence relation of L, respectively. If L
is generated by a propositional signature Θ from V ar, this is L = LΘ then we
will write L = 〈Θ,`〉.

Let L = 〈L,`〉 be a logic, α be a formula in L and X1 . . . Xn be a finite
sequence (for n ≥ 1) such that each Xi is either a set for formulas in L or a
formula in L. Then, as usual, X1, . . . , Xn ` α will stand for X ′1 ∪ · · · ∪X ′n ` α,
where, for each i, X ′i is Xi, if Xi is a set of formulas, or X ′i is {Xi}, if Xi is a
formula.

Definition 4 (Paraconsistent logic). A Tarskian logic L is paraconsistent
if it has a (primitive or defined) negation ¬ such that α,¬α 6`L β for some
formulas α and β in the language of L .

The most adequate manner to define the many-valued semantics of logic
is through a matrix. We introduce the definition of the deterministic matrix,
also known as the logical matrix or simply as a matrix. In [4], we can find an
exhaustive discussion about many-valued logic and some examples.

Definition 5 (Matrix). Given a logic L in the language L, the matrix of L
is a structure M = 〈D,D∗, F 〉, where:

(i) D is a non-empty set of truth values (domain).
(ii) D∗ is a subset of D (set of designated values).

(iii) F = {fc|c ∈ C} is a set of truth functions, with one function for each logical
connective c of L.

Definition 6 (Interpretation). Given a logic L in the language L, an in-
terpretation t, is a function t : V ar → D that maps propositional variables to
elements in the domain.

Any interpretation t can be extended to a function on all formulas in LΣ as
usual, i.e. applying recursively the truth functions of logical connectives in F . If t
is a valuation in the logic L , we will say that t is an L -valuation. Interpretations
allow us to define the notion of validity in this type of semantics as follows:

Definition 7 (Valid formula). Given a formula ϕ and an interpretation t in
a logic L , we say that the formula ϕ is valid under t in L , if t(ϕ) ∈ D∗, and
we denote it as t |=L ϕ.

Let us note that validity depends on the interpretation, but if we want to
talk about “logical truths” in the system, then the validity should be absolute,
as stated in the next definition:

Definition 8 (Tautology). Given a formula ϕ in the language of a logic L ,
we say ϕ is a tautology in L , if for every possible interpretation, the formula ϕ
is valid, and we denote it as |=L ϕ.

If ϕ is a tautology in the logic L , we say that ϕ is an L -tautology. When logic
is defined via a many-valued semantics, it is usual to define the set of theorems
of L as the set of tautologies obtained from the many-valued semantics, i.e. ϕ ∈
L if and only if |=L ϕ.
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3 The logic CG′
3

In this section, we present a summary of the state of the art of logic CG’3.
Starting with the many-valued semantics defined by Osorio et al. and ending with
Kripke semantics of the CG′3 logic as well as some important results proposed
by Borja and Pérez-Gaspar.

Many-valued semantic of CG′
3

The logic CG′3 was introduced in [5] the authors, defined it as a three-valued logic
where the matrix is given by the structureM = 〈D,D∗, F 〉, where D = {0, 1, 2},
the set D∗ of designated values is {1, 2}, and F is the set of truth functions
defined in Table 3.

Table 1. Truth functions for the connectives ∨,∧,→, and ¬ in CG′3.

f∨ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

f∧ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

f→ 0 1 2

0 2 2 2

1 0 2 2

2 0 1 2

f¬

0 2

1 2

1 0

Kripke-type semantic for CG′
3

In [3] Borja and Pérez-Gaspar proposed Kripke-type semantics for CG′3. This
semantics is defined in two different ways. The first one is based on the semantics
of G′3 as follows:

Definition 9. Let M = 〈W,R, v〉 be a Kripke model for G′3, w ∈ W and ϕ a
formula. We define the modeling relation (denoted as |=CG′

3
) as follows:

(M, w) |=∗CG′
3
ϕ if and only if there is wRw′ such that (M, w′) |=∗G′

3
ϕ. 1

Theorem 1. Let ϕ be a formula in the language of CG′3, then:
|=CG′

3
ϕ iff for any Kripke model M for CG′3 it holds that M |=∗CG′

3
ϕ.

The second Kripke-type semantics is given by redefining the modeling rela-
tion for CG′3 considering that the Kripke models for CG′3 are those for G′3 but
changing the definition by the following one.

Definition 10. A formula ϕ is said to be e-valid on a model M for logic CG′3
if exists a point x in M such that (M, x) |=G′

3
ϕ.

Lemma 1. Let ϕ be a formula in the language of CG′3, then: |=CG′
3
ϕ if and

only if for any Kripke model M for CG′3 it holds that ϕ is e-valid.
1 We use the symbol |=∗ to define the modeling relation and avoid confusion with the

symbol |= that is used for tautologies.
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4 Axiomatization of CG′
3

In this section, we present an axiomatization for the CG′3 logic. We begin by
defining a formal axiomatic theory whose language has four connective, bottom
formula, conjunction, disjunction, and implication. Note that the connective dis-
junction is determined by the primitive connective.

Let CG′3h be a formal axiomatic theory for CG′3 logic defined over the signa-
ture Σ = {⊥,∧,→,¬}, we define some other connectives, that can be considered
as abbreviations as follows:

∼ϕ := ϕ→ ⊥ (Strong negation)
•ϕ := ∼∼ϕ ∧ ¬ϕ (Inconsistency operator)

ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ) (Disjunction logic)
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ) (Equivalence logic)

The set of well-formed formulas is constructed as usual, it is denoted as LΣ .

Definition 11 (CG′3h). The logic CG′3h is defined over the language LΣ by
the Hilbert calculus:
Axiom schemas:

α→ (β → α) Ax1
(α→ (β → γ))→ ((α→ β)→ (α→ γ)) Ax2

(α ∧ β)→ α Ax3
(α ∧ β)→ β Ax4

α→ (β → (α ∧ β)) Ax5
α→ (α ∨ β) Ax6
β → (α ∨ β) Ax7

(α→ γ)→ ((β → γ)→ (α ∨ β)→ γ) Ax8
(α→ β) ∨ α Ax9
α ∨ ¬α Ax10

¬ϕ→ (¬¬ϕ→ ψ) Ax11
•α→ α Ax12

Inference rule:
α α→ β

β
MP

Definition 12 (Derivation). Let Γ ∪{ϕ} ⊆ LΣ be a set of formulas. A deriva-
tion of ϕ from Γ in CG′3h is a finite sequence ϕ1, . . . , ϕn of formulas in LΣ such
that ϕn is ϕ and, for every 1 ≤ i ≤ n, the following holds:

1. ϕi is a instance of an axiom schema of CG′3h, or
2. ϕi ∈ Γ , or
3. there exist j, k such that ϕk = ϕj → ϕi (and so ϕi follows from ϕj and ϕk

by MP).

We say that ϕ is derivable from Γ in CG′3h, denoted by Γ `CG′
3h
ϕ, if there

exists a derivation of ϕ from Γ in CG′3h.
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The following meta-theorems of CG′3h will prove to be quite useful, their
demonstrations are straightforward.

Proposition 1. The calculus CG′3h satisfies the following properties:

(i) Γ, α `CG′
3h
β iff Γ `CG′

3h
α→ β (Deduction meta-theorem, DMT).

(ii) If Γ, α `CG′
3h
ϕ and Γ, β `CG′

3h
ϕ then Γ, α ∨ β `CG′

3h
ϕ.

(iii) If Γ, α `CG′
3h
ϕ and Γ,¬α `CG′

3h
ϕ then Γ `CG′

3h
ϕ (Proof-by-cases).

Proof.

(i) To prove that a Hilbert calculus satisfies DMT, it suffices to derive axioms
Ax1 and Ax2, while MP must be the unique inference rule.

(ii) The demonstration is straightforward by applying axiom Ax8 and MP
twice.

(iii) It is a direct consequence of item (ii) and axiom Ax10.

Definition 13 (Valuations for CG′3). A function v : LΣ → {0, 1, 2} is a
valuation for CG′3, or a CG′3-valuation, if it satisfies the following clauses:

−v(¬α) = 0 when v(α) = 2
−v(α ∧ β) ∈ {1, 2} iff v(α) ∈ {1, 2} and v(β) ∈ {1, 2}
−v(α→ β) ∈ {1, 2} iff v(α) = 0 or v(β) = 2 or

v(α) = v(β) = 1 or v(α) = 2, v(β) = 1

The set of all such valuations will be designated by V CG′
3 .

For every Γ∪{ϕ} ⊆ LΣ , the following semantical consequences relation w.r.t.
the set V CG′

3 of CG′3-valuations can be defined:

Γ |=CG′
3
ϕ if and only if, for every v ∈ V CG′

3 ,

if v(γ) ∈ {1, 2} for every γ ∈ Γ then v(ϕ) ∈ {1, 2}.

Theorem 2 (Soundness). For every Γ ∪ {ϕ} ⊆ LΣ:

If Γ `CG′
3h
ϕ then Γ |=CG′

3
ϕ.

Proof. It suffices to verify that each axiom schema is a tautology in CG′3 and if
α and β are formulas such that v(α), v(α → β) ∈ {1, 2} then v(β) ∈ {1, 2} i.e.
MP preserves tautologies.

The proof of completeness needs some definitions and results related to
Tarskian Logic, see definition 3.

Definition 14 (Maximal set). For a given Tarskian logic L over the language
L, let Γ ∪ {ϕ} ⊆ L. The set Γ is maximal non-trivial with respect to ϕ in L if
Γ 6`L ϕ but Γ, ψ ` ϕ for any ψ /∈ Γ .
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Definition 15 (Closed theory). Let L be a Tarskian logic, A be a set of
formulas Γ is closed in L , or a closed theory of L , if the following holds for
every formula ψ; Γ `L ψ if and only if ψ ∈ Γ .

Lemma 2. Any set of formulas maximal non-trivial with respect to ϕ in L is
closed, provided that L is Tarskian.

Proof. Straightforward from Definition 3 and Definition 14.

Theorem 3 (Lindenbaum- Los). Let L be a Tarskian and finitary logic over
the language L. Let Γ ∪ {ϕ} ⊆ L be such that Γ 6`L ϕ. There exists then a set
∆ such that Γ ⊆ ∆ ⊆ L with ∆ maximal non-trivial with respect to ϕ in L .

Proof. The demonstration can be found in [10, Theorem 22.2] and [1, Theorem
2.2.6].

CG′3h is a Tarskian and finitary because CG′3h is defined by a Hilbert cal-
culus, so Theorem 3 holds. On the other hand, the following properties it holds:

Lemma 3. If ∆ is a maximal non-trivial set with respect to ϕ ∈ CG′3h, then
for every formulas ψ and γ, ∆ satisfies the following properties:

(i) ∆ `CG′
3h
ψ if and only if ψ ∈ ∆.

(ii) (ψ ∨ γ) ∈ ∆ if and only if ψ ∈ ∆ or γ ∈ ∆.
(iii) (ψ ∧ γ) ∈ ∆ if and only if ψ ∈ ∆ and γ ∈ ∆.
(iv) ψ ∈ ∆ if and only if ¬ψ 6∈ ∆ if and only if ¬¬ψ ∈ ∆.

Proof. The proof of each item can be seen in [1].

Proposition 2. The following formulas are theorems in CG′3h.

(i) ϕ ∧ ¬ϕ↔ ⊥
(ii) ¬ • ϕ→ ¬ • ¬ϕ

(iii) (¬¬ϕ ∧ ¬γ)→ ¬(ϕ→ γ)
(iv) (•ϕ ∧ ¬ • ψ)→ ¬ • (ϕ→ ψ)
(v) (¬ • ϕ ∧ ¬ • ψ)→ ¬ • (ϕ→ ψ)

(vi) (ϕ ∧ ψ)→ (ϕ→ ψ)
(vii) (ϕ ∧ •ψ)→ •(ϕ→ ψ)

(viii) (¬ϕ ∧ ¬ • ϕ)→ (ϕ→ ψ)
(ix) ¬ϕ→ ¬ • (ϕ→ ψ)
(x) ¬ • ψ → ¬ • (ϕ→ ψ)

(xi) (•ϕ ∧ •ψ)→ ¬ • (ϕ→ ψ)
(xii) ¬ϕ→ ¬(ϕ ∧ ψ)

(xiii) (¬ϕ ∧ ¬ • ϕ)→ ¬ • (ϕ ∧ ψ)
(xiv) ¬ψ → ¬(ϕ ∧ ψ)
(xv) (¬ψ ∧ ¬ • ψ)→ ¬ • (ϕ ∧ ψ)

(xvi) (•ϕ ∧ •ψ)→ •(ϕ ∧ ψ)
(xvii) (•ϕ ∧ ψ ∧ ¬ • ψ)→ •(ϕ ∧ ψ)

(xviii) (ϕ ∧ ¬ • ϕ ∧ •ψ)→ •(ϕ ∧ ψ)
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(xix) (¬ • ϕ ∧ ¬ • ψ)→ ¬ • (ϕ ∧ ψ)

The proofs of each item in the Proposition 2 can be demonstrated using the
axiom schemas and Modus Ponens.

Lemma 4 (The truth lemma). Let h : V ar → D be a homomorphism from
V ar in D such that for every propositional variable p

h(p) =

0 iff p 6∈ ∆, •p 6∈ ∆
1 iff p ∈ ∆, •p ∈ ∆
2 iff p ∈ ∆, •p 6∈ ∆

where ∆ is a maximal non-trivial set with respect to ϕ ∈ CG′3h. Then for all
α ∈ LΣ is verified:

h(α) =

0 iff α 6∈ ∆, •α 6∈ ∆
1 iff α ∈ ∆, •α ∈ ∆
2 iff α ∈ ∆, •α 6∈ ∆

Proof. Let α be a formula and let v be a valuation in CG′3h. The proof is done
by induction on the complexity of α.

Base case. If α = p, where p is a propositional variable, then affirmation holds
by definition.

Induction hypothesis. Assume that the statement is verified for each formula
of complexity less than α; that is, if β is a formula that is less complex than α,
then it is true that:

h(β) = 0 if and only if β 6∈ ∆, •β 6∈ ∆
h(β) = 1 if and only if β ∈ ∆, •β ∈ ∆
h(β) = 2 if and only if β ∈ ∆, •β 6∈ ∆

Note that it is sufficient to prove the “only if” part of the statement, since
the three conditions on the right side are incompatible in pairs, also h(β) can
only take one of the following values 0, 1, 2. For example, if the first condition
on the right side of the statement holds for a β formula, then the other two
conditions are false and therefore h(β) /∈ {1, 2}. Thus, h(β) must be 0.

Case1 negation. Let α = ¬β, for some formula β. We analyze three cases.

I. Assume that h(α) = 0. Given that h(α) = h(¬β) = ¬h(β), we have that
¬h(β) = 0. By the table of negation, h(β) = 2. Note that β has less
complexity than α, then by induction hypothesis β ∈ ∆ and •β 6∈ ∆.
Given that β ∈ ∆ by Lemma 3, ¬β 6∈ ∆. So α 6∈ ∆. On the other hand, we
have that •β 6∈ ∆ by Lemma 3, ¬ • β ∈ ∆. By Proposition 2(ii) and MP,
we conclude ¬ • ¬β ∈ ∆.
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II. Assume that h(α) = 1. Note that, this case is not verified, there is no
formula whose negation takes the value of 1.

III. Assume that h(α) = 2. Given that h(α) = h(¬β) = ¬h(β), we have that
¬h(β) = 2. By the table of negation, h(β) = 0. Note that β has less
complexity than α, then by induction hypothesis β 6∈ ∆ and •β 6∈ ∆.
Given that β 6∈ ∆ by Lemma 3, ¬β ∈ ∆. So α ∈ ∆. On the other hand, we
have that •β 6∈ ∆ by Lemma 3, ¬ • β ∈ ∆. By Proposition 2(ii) and MP,
we conclude ¬ • ¬β ∈ ∆.

Case2 implication. Let α = β → γ, for some formulas β, γ. We analyze three
cases.

I. Assume that h(α) = 0. Given that h(α) = h(β → γ) = h(β) → h(γ), we
have that h(β) → h(γ) = 0. By the table of implication, we analyze two
cases.
(a) h(β) = 1, h(γ) = 0. Note that β and γ has less complexity than α, then

by induction hypothesis β ∈ ∆, •β ∈ ∆ and γ 6∈ ∆, •γ 6∈ ∆. Given
that β ∈ ∆ and γ 6∈ ∆ by Lemma 3, ¬¬β ∧ ¬γ ∈ ∆, applying the
Proposition 2(iii) and MP we get ¬(β → γ) ∈ ∆. On the other hand,
we have •β ∈ ∆ and •γ 6∈ ∆ by Lemma 3 we have •β ∧ ¬ • γ ∈ ∆
applying the Proposition 2(iv) and MP we get ¬ • (β → γ) ∈ ∆, i.e.
•(β → γ) 6∈ ∆.

(b) h(β) = 2, h(γ) = 0. Note that β and γ has less complexity than α, then
by induction hypothesis β ∈ ∆, •β 6∈ ∆ and γ 6∈ ∆, •γ 6∈ ∆. This case
is similar to the previous one applying the Proposition 2(v).

II. Assume that h(α) = 1. Given that h(α) = h(β → γ) = h(β) → h(γ), we
have that h(β) → h(γ) = 1. By the table of implication, we analyze one
case.
(a) h(β) = 2, h(γ) = 1. Note that β and γ has less complexity than α, then

by induction hypothesis β ∈ ∆, •β 6∈ ∆ and γ ∈ ∆, •γ ∈ ∆. Given that
β ∈ ∆ and γ ∈ ∆ then by Lemma 3, β ∧ γ ∈ ∆, applying Proposition
2(vi) and MP we conclude that β → γ ∈ ∆. On the other hand, we
have that β ∈ ∆ and •γ ∈ ∆ then β ∧ •γ ∈ ∆ by Lemma 3. Then
applying Proposition 2(vii) and MP we obtain, •(β → γ) ∈ ∆.

III. Assume that h(α) = 2. Given that h(α) = h(β → γ) = h(β) → h(γ), we
have that h(β) → h(γ) = 2. By the table of implication, we analyze three
cases.
(a) h(β) = 0. Note that β has less complexity than α, then by induction

hypothesis β 6∈ ∆ and •β 6∈ ∆. Then ¬β ∧ ¬ • β ∈ ∆. Then applying
Proposition 2(viii) and MP we obtain, (β → γ) ∈ ∆, On the other
hand, we have that ¬β ∈ ∆, then applying Proposition 2(ix) and MP
we obtain, ¬ • (β → γ) ∈ ∆ i.e. •(β → γ) 6∈ ∆.

(b) h(γ) = 2. Note that γ has less complexity than α, then by induction
hypothesis γ ∈ ∆, •γ 6∈ ∆. Note that γ ∈ ∆, applying Ax1 and MP
we obtain, ¬(β → γ) ∈ ∆. On the other hand, ¬ • γ ∈ ∆, applying
Proposition 2(x) and MP we obtain, ¬•(β → γ) ∈ ∆ i.e. •(β → γ) 6∈ ∆.
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(c) h(β) = 1, h(γ) = 1. Note that β and γ has less complexity than α, then
by induction hypothesis β ∈ ∆, •β ∈ ∆ and γ ∈ ∆, •γ ∈ ∆. Given
that β ∈ ∆ and γ ∈ ∆, then β ∧ γ ∈ ∆. Applying Proposition 2(vi)
and MP we obtain, (β → γ) ∈ ∆. On the other hand, (•β ∧ •γ) ∈ ∆
and applying Proposition 2(xi) and MP we obtain, ¬ • (β → γ) ∈ ∆
i.e. •(β → γ) 6∈ ∆.

Case3 conjunction. Let α = β ∧ γ, for some formulas β, γ. We analyze three
cases.

I. Assume that h(α) = 0. Given that h(α) = h(β ∧ γ) = h(β) ∧ (γ), we have
that h(β) ∧ h(γ) = 0. By the table of conjunction, we analyze two cases.
(a) h(β) = 0. Note that β has less complexity than α, then by induction

hypothesis β 6∈ ∆ and •β 6∈ ∆. Given that β 6∈ ∆, then ¬β ∈ ∆,
applying Proposition 2(xii) and MP we obtain, ¬(β ∧ γ) ∈ ∆. There-
fore, (β ∧ γ) 6∈ ∆. On the other hand, given that β 6∈ ∆ and •β 6∈ ∆,
then ¬β ∧ ¬ • β ∈ ∆, applying Proposition 2(xiii) and MP we obtain,
¬ • (β ∧ γ) ∈ ∆

(b) h(γ) = 0. Note that γ has less complexity than α, then by induction
hypothesis γ 6∈ ∆ and •γ 6∈ ∆. Given that γ 6∈ ∆, then ¬γ ∈ ∆.
Applying Proposition 2(xiv) and MP we obtain, ¬(β ∧ γ) ∈ ∆, so
(β∧γ) ∈ ∆. On the other hand, ¬γ ∈ ∆ and •γ 6∈ ∆, then ¬γ∧¬•γ ∈
∆, applying Proposition 2(xv) and MP we obtain, ¬ • (β ∧ γ) ∈ ∆.
Therefore, •(β ∧ γ) 6∈ ∆.

II. Assume that h(α) = 1. Given that h(α) = h(β ∧ γ) = h(β)∧ h(γ), we have
that h(β) ∧ h(γ) = 1. By the table of conjunction, we analyze three cases.
(a) h(β) = 1, h(γ) = 1. Note that β and γ has less complexity than α, then

by induction hypothesis β ∈ ∆, •β ∈ ∆ and γ ∈ ∆, •γ ∈ ∆. Given
that β ∈ ∆ and γ ∈ ∆ then β ∧ γ ∈ ∆. On the other hand •β ∈ ∆ and
•γ ∈ ∆, then •β ∧ •γ ∈ ∆. Applying Proposition 2(xvi) and MP we
obtain, •(β ∧ γ) ∈ ∆.

(b) h(β) = 1, h(γ) = 2. Note that β and γ has less complexity than α, then
by induction hypothesis β ∈ ∆, •β ∈ ∆ and γ ∈ ∆, •γ 6∈ ∆. Given
that β ∈ ∆ and γ ∈ ∆ then β ∧ γ ∈ ∆. On the other hand, given that
•β ∈ ∆, γ ∈ ∆ and ¬ • γ ∈ ∆ then •β ∧ γ ∧ ¬ • γ ∈ ∆. Applying
Proposition 2(xvii) and MP we obtain, •(β ∧ γ) ∈ ∆.

(c) h(β) = 2, h(γ) = 1. Note that β and γ has less complexity than α, then
by induction hypothesis β ∈ ∆, •β 6∈ ∆ and γ ∈ ∆, •γ ∈ ∆. This case
is similar to the previous one applying the Proposition 2(xviii).

III. Assume that h(α) = 2. Given that h(α) = h(β ∧ γ) = h(β)∧ h(γ), we have
that h(β) ∧ h(γ) = 2. By the table of conjunction, we analyze one case.
(a) h(β) = 2, h(γ) = 2. Note that β and γ has less complexity than α, then

by induction hypothesis β ∈ ∆, •β 6∈ ∆ and γ ∈ ∆, •γ 6∈ ∆. Given
that β ∈ ∆ and γ ∈ ∆ then β ∧ γ ∈ ∆. On the other hand, ¬ • β ∈ ∆
and ¬ • γ ∈ ∆ then ¬ • β ∧¬ • γ ∈ ∆. Applying Proposition 2(xix) and
MP we obtain, ¬ • (β ∧ γ) ∈ ∆. Hence •(β ∧ γ) 6∈ ∆.
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Theorem 4. Let Γ ∪ {ϕ} ⊆ LΣ, with Γ maximal non-trivial with respect to ϕ
in CG′3. The mapping v : LΣ → {0, 1, 2} defined by:

v(ψ) ∈ {1, 2} if and only if ψ ∈ Γ

for all ψ ∈ LΣ, is a valuation for CG′3.

Proof. The demonstration is straightforward. It suffices prove that v satisfies all
the clauses of Definition 13

The completeness of CG′3h is then an immediate consequence of Theorem 4
and Theorem 3.

Corollary 1 (Completeness of CG′3h). For every Γ ∪ {ϕ} ⊆ LΣ:

If Γ |=CG′
3
ϕ then Γ `CG′

3h
ϕ.

Proof. Assume that Γ 6`CG′
3
ϕ by Theorem 3, let ∆ be a maximal non-trivial

set with respect to ϕ in CG′3 extending Γ . By Theorem 4, there is an CG′3-
valuation v, such that v[Γ ] ⊆ {1, 2} as Γ ⊆ ∆, but v(ϕ) = 0 as ϕ 6∈ ∆. Therefore,
Γ 6|=CG′

3
ϕ and the theorem follows by contraposition.

5 Conclusions

The logic CG′3 was first developed by Osorio et al., in 2014 [5]. CG′3 is defined by
its many-valued semantics the matrix of CG′3 logic is given by M = 〈D,D∗, F 〉;
where the domain is D = {0, 1, 2} and the set of designated values is D∗ = {1, 2}.
This logic is a paraconsistent logic that can be viewed as an extension of the well-
known logic G′3 also introduced by Osorio, in 2008 [6]. A Kripke-type semantics
for CG′3 was later developed, by Borja et al., in 2016 [3]. Recently in 2019,
Pérez-Gaspar et al. gave an axiomatization Hilbert type for CG′3 using the
Kalmár technique [8]. In this paper, we extend studies on this logic by presenting
some results relating deductive notions with its model-theoretic counterparts. We
summarize results in this paper as follows.

– We developed a Hilbert-type axiomatization inspired by the Lindenbaum-
 Los technique.

– Soundness is also proved.
– The main result of the paper is a completeness proof. Contrastingly with

the proof using Kalmár’s technique, this proof is based on maximal theories
concerning a sentence.
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