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Abstract 
We present a physics-informed machine learning (PIML) 
workflow for real-time unconventional reservoir manage-
ment. Reduced-order physics and high-fidelity physics model 
simulations, lab-scale and sparse field-scale data, and ma-
chine learning (ML) models are developed and combined for 
real-time forecasting through this PIML workflow. These 
forecasts include total cumulative production (e.g., gas, wa-
ter), production rate, stage-specific production, and spatial 
evolution of quantities of interest (e.g., residual gas, reservoir 
pressure, temperature, stress fields). The proposed PIML 
workflow consists of three key ingredients: (1) site behavior 
libraries based on fast and accurate physics, (2) ML-based 
inverse models to refine key site parameters, and (3) a fast 
forward model that combines physical models and ML to 
forecast production and reservoir conditions. First, synthetic 
production data from multi-fidelity physics models are inte-
grated to develop the site behavior library. Second, ML-based 
inverse models are developed to infer site conditions and en-
able the forecasting of production behavior. Our preliminary 
results show that the ML-models developed based on PIML 
workflow have good quantitative predictions (>90% based on 
R2-score). In terms of computational cost, the proposed ML-
models are 𝒪𝒪(104) to 𝒪𝒪(107) times faster than running a 
high-fidelity physics model simulation for evaluating the 
quantities of interest (e.g., gas production). This low compu-
tational cost makes the proposed ML-models attractive for 
real-time history matching and forecasting at shale-gas sites 
(e.g., MSEEL – Marcellus Shale Energy and Environmental 
Laboratory) as they are significantly faster yet provide accu-
rate predictions. 

1. Introduction   
Energy extraction from conventional resources involves 
producing crude oil, natural gas, and its condensates from 
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rock formations that have high porosity and permeability 
(Bahadori, 2017). These rock formations are found below an 
impermeable rock. However, energy extraction from uncon-
ventional hydrocarbon resources (Ahmmed and Meehan, 
2016) involves using advanced drilling and stimulation 
techniques (e.g., long horizontal laterals and multi-stage hy-
draulic fracturing) to extract crude oil and natural gas that 
are trapped in the pores of relatively impermeable sediment-
ary rocks (e.g., shale, tight sandstones).  
 Typically, unconventional reservoirs have porosity in the 
range of 0.04-0.08 and matrix permeability on the order of 
nanodarcies (10-16-10-20 m2) (Rezaee, 2015; Belyadi et al., 
2019). Instead of the porous flow that dominates conven-
tional reservoirs, fracture flow dominates unconventional 
reservoirs, with natural fractures dissecting the matrix and 
intersecting with the hydraulic fractures.  As result, energy 
extraction is more difficult than conventional reservoirs. 
Model-based optimization of unconventional reservoirs is 
also challenging because due to the long horizontal laterals 
there is insufficient site data to inform high-fidelity physics 
models (Mohaghegn, 2017; Belyadi et al., 2019). Despite 
these challenges and due to the abundance of unconven-
tional resources, with reserves projected to last for many 
decades, energy extraction from these resources have gained 
prominence in recent years (Briefing, 2013 and Weijermars, 
2014). Current extraction efficiency from unconventional 
reservoir is very low (~5-10%) for tight oil and ~20% for 
shale gas (Sandrea, 2007; Muggeridge et al., 2014) com-
pared to conventional reservoirs (~20-40%) (Zitha et al., 
2008). This is because the impact of resource development 
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processes (e.g., slow drawdown or fast drawdown) and un-
derlying physics that determine the energy extraction from 
the impervious rocks are poorly understood (Rezaee, 2015; 
Belyadi et. Al., 2019). State-of-the-art workflows for uncon-
ventional reservoir management are data-driven, which per-
form poorly beyond their training regimes. Hence, innova-
tive extraction strategies (e.g., pressure-drawdown manage-
ment) coupled with advanced workflows (e.g., physics-in-
formed machine learning) are needed to improve the hydro-
carbon recovery efficiency (Seales et al., 2017; Lougheed et 
al., 2017; Mirani et al., 2018). In this paper, we present a 
physics-informed machine learning (PIML) workflow 
(Fig.1) to address unconventional production for real-time 
reservoir management. One of the goals of this PIML work-
flow (Fig.2) is to develop fast and accurate ML-models 
grounded in physics for real-time history matching and pro-
duction forecasting in a fracture shale gas reservoir.  

1.1 State-of-the-art Workflows and Key Gaps 
Current workflows for unconventional reservoirs are pre-
dominantly based on production decline curve analysis and 
its extensions (Wu et al., 2013; Sun 2015), data-driven ma-
chine learning (ML) approaches (Holdaway 2014; Chaki 
2015; Puyang  et al., 2015; Carvajal et al. 2017; Mohaghegn, 
2017), and/or extension of physics-based conventional res-
ervoir workflows (Rezaee, 2015; Rajput and Thakur, 2016; 
Belyadi et al., 2019). Decline curve analysis provides em-
pirical models to forecast production data based on the past 
production history. This type of approach lacks physics and 
in-depth knowledge of the site behavior is not included in 
the forecasting models. The data-driven ML approaches per-
form poorly when faced with uncertain, missing, and sparse 
data – common problems with existing datasets related to 
unconventional reservoirs. Moreover, the data-driven ML 
analyses perform poorly in making forecasts outside of their 

training regimes, and the exploration of novel production 
strategies fundamentally requires extrapolation (where ML 
struggles) as opposed to interpolation (where ML excels). 
The physics-based workflows adopted for modeling con-
ventional reservoirs use extensively available site-character-
ization data (which is acquired over months or years) for 
history-matching. Even though large unconventional reser-
voir data (e.g, fiber-optics) are sampled at sparse locations, 
simply combining all the data together would not improve 
the accuracy of real-time forecasting. This is because reser-
voir conditions change considerably from one basin to an-
other basin. Therefore, physical constraints need to be incor-
porated in workflows. Existing workflows employ high-fi-
delity physics models to perform simulations, which are ex-
pensive to run. For example, it takes several days to months 
to run reservoir-scale model simulations (Rezaee, 2015; 
Rajput and Thakur, 2016; Belyadi et al., 2019) with degrees-
of-freedom in the 𝒪𝒪(108) on state-of-the-art HPC machines. 
As a result, these conventional reservoir workflows are not 
ideal for usage in comprehensive uncertainty quantification 
studies, which require 1000s of forward model runs. To 
overcome the key gaps associated with existing workflows, 
we propose a PIML workflow (Fig.1 and Fig.2) to accelerate 
the development of ML-models while constraining it with 
physics. The aim is (1) to develop a library from a combina-
tion of site observations and physics-based models that is 
representative of unconventional reservoir site behavior, 
and (2) to develop fast and accurate ML-models for real-
time history matching to refine key site parameters and fore-
cast production quantities of interest (QoIs) with uncertainty 
estimates. Key production QoIs include, total cumulative 
production of hydrocarbons, gas and water production rates, 
stage-specific production, and spatial evolution of residual 
gas, reservoir pressure, temperature, and stress fields based 
on a user-defined pressure-drawdown strategy.

Figure-1: Physics-informed machine learning (PIML) workflow for reservoir management.



 

2. Physics-informed Machine Learning 
2.1 Innovation and proposed approach 
The proposed approach to develop the PIML workflow 
consists of three key steps: (Step-1) Development of site 
behavior libraries based on fast and accurate physics, 
(Step-2) Development of ML-based inverse models to in-
fer key site parameters, and (Step-3) Development of fast 
forward models that combine physical models with ML 
to forecast production and reservoir conditions. 
 PIML Workflow Step-1: Development of a site be-
havior library involves generating synthetic data for a 
range of possible site characteristics. This includes a large 
number of runs from a fast physics-based reduced-order 
model and a smaller number of runs from a high-fidelity, 
full physics model. The fast physics models (e.g., Patzek 
models) allow us to quickly model and build a site library 
on the evolving reservoir data. These models allow us to 
efficiently explore the parameter space. Moreover, com-
bining fast physics models with ML allows us to identify 
the important physical processes or dominant mecha-
nisms that must be represented during full physics simu-
lations. The dominant mechanisms at different stages of 
production include 
• Early stages of production (<1 year): Primary frac-

ture creation, geometry, and network connectivity, 
primary fracture behavior, propped fracture behavior, 
anisotropic permeability of fractures. 

• Middle stages of production (~1-5 years): Second-
ary fractures and their permeabilities, shear fracture 
geometries, and geochemical impacts of hydraulic flu-
ids and formation water. 

• Late stages of production (~5-10 years): Matrix po-
rosity and transport properties, water imbibition im-
pacts, adsorbed gas properties, pore structure distribu-
tion. 

These mechanisms are not accounted for in the fast phys-
ics models but are needed to describe the reservoir behav-
ior at different stages of gas and water production. How-
ever, simulating these mechanisms using full physics 
models for entire parameter space is computationally in-
tractable. As a result, a fast physics model library along 
with ML are used to guide and improve the development 
of the full physics model library (which consist of complex 
3D simulations of matrix-fracture interactions) for char-
acterizing site behavior. 
 PIML Workflow Step-2: The ML-inverse model is 
developed on this site behavior library using a transfer 
learning approach (Pan et al., 2009; Goodfellow et al., 
2016; Yamada et al., 2018) where the numerous runs 
from the reduced order model are used to train an initial 

inverse model, then the smaller number of runs from the 
high-fidelity model are used to fine-tune the inverse 
model. This effectively represents a multi-fidelity ap-
proach to training the ML inverse model.  This ML-in-
verse model provides capabilities for real-time history 
matching to update the key parameters (e.g., rock perme-
ability, rock porosity, gas transport properties). Sensitiv-
ity analysis (e.g., Sobel indices, Random Forests) is per-
formed to provide quantitative information on the key 
sensitive parameters (e.g, matrix permeability and poros-
ity, fracture network parameters) that influence shale gas 
production rates. 
 PIML Workflow Step-3: The physics-based reduced 
order forward model uses these calibrated parameters for 
real-time forecasting. This model is trained on the site li-
braries along with evolving production data. Moreover, it 
allows for various operational decisions (e.g, slow draw-
down vs. fast drawdown) to be evaluated relative to future 
outcomes. The ML-inverse and physics-based reduced 
order forward model can be combined to provide uncer-
tainty estimates on the production quantities of interest 
(e.g., remaining hydrocarbon-in-place, spatial evolution 
of pressure and temperature, shale gas and water produc-
tion as a function of time). 

2.2 Key Challenges 
The key challenges to accelerate the proposed PIML work-
flow include: 
1Q. How do we enhance the information content and fill the 

gaps in the limited unconventional site-data for PIML 
analyses? Specifically, how to use the short-time gas pro-
duction data (e.g., 30-120 days) to forecast the long-term 
performance (e.g., 1-5 years) of an unconventional shale 
gas well?  

2Q. What is the minimum number of high-fidelity physics 
model simulations (e.g., PFLOTRAN, FEHM, dfnWorks) 
needed to develop a gas production library that is repre-
sentative of shale gas sites behavior? How do we improve 
the full physics models to accurately represent the site be-
havior? 

3Q. How can we use the information learned from reduced-
order physics models (e.g., Patzek model, graph-based 
models) to inform high-fidelity physics model simula-
tions? 

4Q. What are the key sensitive parameters (e.g., matrix and 
fracture properties) in high-fidelity physics models that 
influence short-term and long-term gas production rates? 

5Q. What are the key operational parameters (e.g., pressure 
drawdown strategies) that can be used to inform decisions 
in real-time, leading to optimized production? 

2.3 Our Hypothesis 
Our hypotheses/approaches to address the key challenges 
include: 



1A. Augment limited unconventional reservoir data (e.g., 
short-term production data, well logs) with lab-scale ex-
perimental data, reduced-order physics simulation data, 
and high-fidelity physics simulation data. Short-term pro-
duction data (e.g., 30-120 days) contains statistical infor-
mation (e.g., matrix and fracture network properties) that 
can help us predict the long-term production data (e.g., 1-
5 years). 

2A. Reduced-order physics models provide information on 
the key sensitive parameters needed to inform high-fidel-
ity physics model simulations. As we obtain more produc-
tion data and/or site data, a ML-based active-feedback 
loop is used to improve full physics models. In this active 
feedback loop, ML-inverse model is used to update and 
constrain the key parameters based on newly available 
reservoir data. Based on these updated key parameters, 
site-behavior libraries are also updated to account for new 
production data. 

3A. Transfer learning can be used to provide link and trans-
fer information from reduced-order physics to high-fidel-
ity physics. 

4A. Sensitivity analysis (e.g., Sobel indices, Random For-
ests) can provide quantitative information on the key sen-
sitive parameters (e.g, matrix permeability, matrix lithol-
ogy, fracture length and orientation, stage spacing, hydro-
carbon-in-place) that influence short-term and long-term 
gas production rates through feature importance. 

5A. Maximizing early production may not maximize total 
recovery efficiency. Optimal pressure management strat-
egies are needed to enhance recovery efficiency. One of 
our hypotheses is that slower drawdown rates can lead to 
improved recovery efficiency in long-term shale gas pro-
duction (e.g., 5-10 years). 

2.4 Details of the Proposed Approach 
 Fig.1 shows the overall PIML workflow for reservoir 
management. Short-time production data is fed to ML-in-
verse model to perform history-matching and infer key site 
parameters. These key parameters are then fed to ML-for-
ward model to forecast long-term production QoIs. Fig.2 
and Fig.3 provide more details on our PIML workflow. 
These figures show how the site behavior library is con-
structed and used to develop ML-models for history match-
ing and real-time forecasting. Physically-realistic synthetic 
data is generated for a range of possible site characteristics 
using multi-fidelity physics models. This synthetic data pro-
vides insights on relevant features on poorly constrained site 
parameters and production scenarios that are not-yet ob-
served. The site behavior library can be updated actively as 
the field-scale data becomes available overtime. This allows 
us to update or prune parameter combinations that are in-
consistent with site characteristics. Note that any simulation 
platform (e.g., ECLIPSE, INTERSECT, tNavigator, CMG 
suite, Landmark Nexus, MRST, BOAST, OPM) (see ref. 

PetroMehras) can be used to generate synthetic data for the 
site behavior library.  
 The reduced-order physics models (Patzek et al., 2013) to 
generate synthetic data are given by  
 
                           (1) 
 
where 𝑡̃𝑡 is the dimensionless time, 𝑥𝑥� is the dimensionless 
distance, and 𝑚𝑚�  is the real gas pseudopressure. Eq.(1) cor-
responds to reduced-order physics of gas flow in fractured 
porous rock. These are given as follows 
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where 𝜏𝜏 is the characteristic inference time, 𝑑𝑑 is the half-
distance between the hydrofractures, 𝛼𝛼𝑖𝑖 is the initial hydrau-
lic diffusivity, 𝑘𝑘 is the fractured rock effective permeability 
dependent on reservoir pressure, 𝜙𝜙 is the fractured rock ef-
fective porosity, 𝑠𝑠𝑔𝑔 is the fraction of pore space occupied by 
the gas, 𝜇𝜇𝑔𝑔 is the gas viscosity, 𝑐𝑐𝑔𝑔 is the isothermal com-
pressibility of gas, 𝒦𝒦𝑎𝑎 is the differential equilibrium parti-
tioning coefficient of gas, and 𝑍𝑍𝑔𝑔 is the compressibility fac-
tor of gas. These gas properties are dependent on evolving 
reservoir pressure and temperature. Eq. (1) is a nonlinear 
pressure diffusion equation, which is solved numerically. 
The cumulative production of gas mass is given as follows 
 
                        (3) 
  
where ℳ is the initial hydrocarbon-in-place.  
 The expensive full physics models to simulate gas flow 
and transport in fractured porous media (Rezaee, 2015; 
Salama et al., 2017; Belyadi et al., 2019) are given by 
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where 𝜌𝜌𝑔𝑔 is the density of the gas which is dependent on the 
reservoir pressure, 𝒒𝒒 is the Darcy flux, 𝑐𝑐 is the gas concen-
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tration, 𝜆𝜆 is the tortuosity, and 𝐷𝐷 is the fracture rock effec-
tive diffusivity. Eq.(4) and Eq.(5) model the gas flow under 
varying reservoir and bottom hole pressures. The underlying 
assumptions include Darcy’s flow and Fick’s law. Adsorp-
tion and non-pore refinement effects on phase behavior are 
ignored. Eq.(6) models the gas transport from fractured 
stage to horizontal well based on the initial hydrocarbon-in-
place. The amount of gas extracted from the pair of hydro-
fractures at a given section of the well is equal to 𝑐𝑐𝒒𝒒. Differ-
ent types of equation of state (EOS) models are used to eval-
uate the gas density. These include ideal gas law, exponen-
tial pressure-dependent model, and Redlich-Kwong-Soave 
model. The corresponding EOS model expressions are given 
by 
 
 
 
  
 
                        (7) 
 
Note that it is possible to incorporate nanopore confinement 
effects (e.g,shifts in bubble or dew points) into EOS models 
to account for density changes. For example, see ref. Islam 
et al., 2015, Tan and Piri, 2015, and Liu and Zhang, 2019.  
 Through these multi-fidelity physics models, the reser-
voir physical behavior is captured accurately. Gas flow and 
transport mechanisms are accounted through conservation 
of mass and equation of state for real gases. State-of-the-art 
simulators (e.g., PFLOTRAN, dfnWorks) are used to de-
velop high-fidelity simulation data. These simulators use fi-
nite volume methods and Newton-Raphson method to solve 
the discretized system of nonlinear equations given by 
Eq.(4)-(7). Moreover, these simulators account for accurate 
meshing of fractures, matrix, and upscaling of fracture net-
work properties for reservoir-scale high-fidelity physics 
simulations.  
 Fig.3 shows the PIML workflow to create efficient in-
verse models to infer key site parameters from production 
information. First, we sample the relevant regions in param-
eter space. Two site behavior libraries are developed based 
on this sampling. One comes from running the reduced-or-
der physics model with a large set of samples and the other 
comes from running the full physics model with a smaller 
set of samples. The first library (based on the reduced-order 
physics model) is used to train an initial ML-inverse model. 
The ML-inverse model is then fine-tuned with the library 
from the high-fidelity physics model using transfer learning, 
producing a final ML-inverse model. During this fine-tuning 
process the weights of the neural network are fine-tuned. 
The ML-inverse model takes past production as input and 
produces physical parameters as output. These physical pa-
rameters can then be fed into the reduced-order physics 

model. The loss function for this ML-inverse model is de-
fined in terms of how well it works in combination with the 
reduced-order physics model at predicting future produc-
tion. Note that the second library can also be augmented 
with field production data to improve the realism of the ML-
inverse model. This fine-tuning represents a multi-fidelity 
approach to machine learning where a large dataset is gen-
erated with a reduced-order physics model and a smaller da-
taset is generated with a high-fidelity, expensive full physics 
model. This multi-fidelity approach allows us to perform 
real-time history matching on new production data to deter-
mine critical site parameters that can be used to accurately 
predict future production. 

3. Results 
Fig.4 shows a DFN model of a single stage based on field 
data from the Marcellus Shale Energy and Environment La-
boratory (MSEEL) shale gas site. This model was built us-
ing dfnWorks, which is a computationally expensive full 
physics software suite used to generate high-resolution rep-
resentations of DFNs (Hyman et al., 2015). This high-fidel-
ity meshing of the fracture network is critical to accurately 
capture the physical processes in a fractured shale gas reser-
voir. To capture the matrix effects, we generate an octree-
refined continuum mesh (grey color in Fig.4) based on the 
DFN. The original DFN model in Fig.4 consists of three hy-
draulic fractures and a swarm of natural fractures that are 
connected to hydraulic fractures. While generating the con-
tinuum mesh, the DFN model is simultaneously upscaled to 
account for matrix-fracture interactions, which results in ac-
curate permeability and porosity values that are needed to 
simulate gas flow and transport in fractured shale. The final 
mesh contains approximately 500,000 mesh cells. 
 Fig.5 shows the flow and transport simulation using 
PFLOTRAN with a Barton-Bandis stress relationship (Bar-
ton and Bandis, 1990). This figure shows the drainage over 
a period of 10 years. For gas flow simulations (left), the well 
is maintained at 12MPa and the reservoir initial pressure is 
at 21MPa. For gas transport simulations (right), the initial 
hydrocarbon-in-place is assumed to spread in the entire frac-
ture stage and the figure shows the transport of hydrocarbon 
to the well over time at two different vertical heights. The 
main inference from these simulations is that the character-
istic behavior of drainage is tied to hydraulic fractures. Our 
future work involves accounting for heterogeneity of hydro-
carbon distribution in the matrix for production forecasts. 
 Fig.6 shows encouraging results of long-term production 
forecasts using ML-forward models. The red color repre-
sents the short-term production, which is used along with 
the site behavior library built on reduced-order physics mod-
els to infer key site parameters (e.g., initial hydrocarbon-in-
place, hydraulic diffusivity). History-matching is performed 
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on the short-term production data. That is, the ML-inverse 
model is trained on 90 days of production data (red color). 
Then, the resulting ML-model with site behavior library 
based on reduced-order physics is used to predict future pro-
duction (green color). The markers represent the long-term 
production data and the solid green color line represents the 
ML-model forecasts. Quantitatively, the prediction accu-
racy based on R2-score is > 90%. From this figure, it is clear 
that ML-model predictions, which are combined with phys-
ics are able to accurately represent the long-term production 
data. 

3.1 Discussion 
We note that if another site/formation (e.g., Woodford, 
Haynesville, Fayetteville, Barnett, Utica, EagleFord) has a 
similar parameter range, we can use a set of ML techniques 
derived from transfer learning to model this site/formation. 
Transfer learning helps us to transfer knowledge gained 
from one site (e.g., Marcellus) to another site (e.g., Wood-
ford, Barnett). But the developed ML-models for one site 
(e.g., MSEEL) need fine-tuning (or minimal retraining the 
neural networks) to transfer knowledge across shale 
sites/formations. This is not burdensome when compared to 
developing a new site behavior library and ML-model for a 
different site altogether. The transfer learning approach is 
attractive for tasks where reusability of ML-models for sim-
ilar types is of great importance. 
 If the production curve contains high frequency content 
or oscillations, which might need addressing, there are vari-
ous ways to incorporate this in the ML analyses and physics-
based models. For example, from the production curve and 
bottom hole pressure, we can extract dominant frequencies 
or a range of frequencies we are interested in modeling 
through Fast Fourier Transformation (FFT). This FFT trans-
formation of bottom hole pressure and production curve vs. 
time provides in-depth information on quantitative aspects 
of high-frequency oscillations to be incorporated in physics 
models (e.g., 𝑝𝑝𝑏𝑏ℎ𝑝𝑝 =  𝑎𝑎1sin𝜔𝜔1𝑡𝑡 +  𝑎𝑎2sin𝜔𝜔2𝑡𝑡 +
 … + 𝑎𝑎𝑛𝑛−1sin𝜔𝜔𝑛𝑛−1𝑡𝑡 +  𝑎𝑎𝑛𝑛sin𝜔𝜔𝑛𝑛𝑡𝑡 ) when developing the 
site behavior library and pressure management strategies 
(e.g., drawdown frequencies). 

4. Conclusions 
In this paper, we have presented a PIML workflow for real-
time history matching and forecasting of gas production 
QoIs. The workflow coupled the strengths of machine learn-
ing with the predictability of physics-based models for real-
time history-matching and forecasting. The PIML workflow 
used short-term production data and site behavior libraries 
to perform real-time history matching. Site behavior librar-
ies are developed based on many runs of a reduced-order 
physics models and a smaller number of runs of expensive 

full physics models. The initial ML-inverse model trained 
on the reduced physics site library and short-term produc-
tion data provided us key site parameters, which are hydrau-
lic diffusivity and initial hydrocarbon-in-place. This initial 
ML-inverse model is then fine-tuned with the library from 
the expensive full physics models using transfer learning. 
The expensive full physics model simulations were devel-
oped using dfnWorks and PFLOTRAN simulators. These 
high-fidelity simulations account for matrix-fracture inter-
action, which is needed to accurately simulate gas flow and 
transport in fractured shale reservoirs. Moreover, from these 
simulations we inferred that the characteristic behavior of 
drainage is tied to hydraulic fractures. This high-fidelity 
simulation library was used to fine-tune the ML-inverse 
model. Our ongoing work seeks to advance and test the 
PIML workflow, site behavior libraries, and ML-models for 
pressure management (e.g., slow drawdown vs. fast draw-
down) to optimize recovery at MSEEL. Our preliminary re-
sults shown in this paper are encouraging for use of site be-
havior libraries with ML-inverse model to address this prob-
lem. 
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Figure-2: Details of PIML workflow. The workflow utilizes a library of data on site behavior to inform forecasting models. The 
scale of physical parameters used in the development of site behavior libraries are stage spacing (~100-200m), hydraulic fracture 

length (~100-150m), a stage may contain 3-4 hydraulic fractures and a swarm of natural fractures that are connected to hydraulic 
fractures, fracture rock reservoir permeability (~0.1-0.9mD), fractured rock porosity (~0.04-0.08), reservoir pressures (~20-

30MPa), well flowing pressures (~5-15MPa), and gas properties (e.g., density, saturation, viscosity, compressibility). 

 

 



 

 

 

 

 

 

 

 

Figure-3: PIML workflow to create an efficient set of ML-inverse models for real-time history-matching. 

 

 

 

 

 

 

 

 

 

 

Figure-4: Discrete fracture network (DFN) and upscaled DFN models to simulate the physical behavior of the fractured reservoir. 



 

 

Figure-5: Gas flow and transport in upscaled DFN model using PFLOTRAN simulator with Barton-Bandis stress relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6: Long-term production forecasts using ML-forward model trained on reduced-order physics models. 
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