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Abstract

Nonlocal models provide an improved predictive capability
thanks to their ability to capture effects that classical par-
tial differential equations fail to capture. Among these effects
we have multiscale behavior and anomalous behavior such as
super- and sub-diffusion. These models have become incred-
ibly popular for a broad range of applications, including me-
chanics, subsurface flow, turbulence, plasma dynamics, heat
conduction and image processing. However, their improved
accuracy comes at a price of many modeling and numerical
challenges. In this work we focus on the estimation of model
parameters, often unknown, or subject to noise. In particular,
we address the problem of model identification in presence
of sparse measurements. Our approach to this inverse prob-
lem is based on the combination of 1. Machine Learning and
Physical Principles and 2. a Unified Nonlocal Vector Calcu-
lus and Versatile Surrogates such as neural networks (NN).
The outcome is a flexible tool that allows us to learn exist-
ing and new nonlocal operators. We refer to our technique as
nPINNs (nonlocal Physics-Informed Neural Networks); here,
we model the nonlocal solution with a NN and we solve an
optimization problem where we minimize the residual of the
nonlocal equation and the misfit with measured data. The re-
sult of the optimization are the weights and biases of the NN
and the set of unknown model parameters.

Challenges of nonlocal modeling
Nonlocal equations are model descriptions for which the
state of a system at any point depends on the state in a neigh-
borhood of points, i.e. every point in a domain interacts with
a neighborhood of points. As such, interactions can occur at
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distance, without contact. These models are such that they
can capture effects that traditional PDEs fail to capture; in
fact, their solutions can be irregular: non-differentiable, sin-
gular, and discontinuous. Among those effects, we mention:
1) Multiscale behaviors and discontinuities such as cracks
and fractures and 2) Anomalous behaviors such as super-
and sub-diffusion. In case 1) we refer to nonlocal truncated
operators where the neighborhood is a ball of radius δ (usu-
ally much smaller than the domain) surrounding any point.
In case 2) refer to fractional operators where the interactions
can be infinite (δ = ∞); a standard representative of this
class is the fractional Laplacian operator (−∆)s.

As a consequence, nonlocal models provide an im-
proved predictive capability for several scientific and en-
gineering applications including fracture mechanics (Ha
and Bobaru 2011; Littlewood 2010; Silling 2000), anoma-
lous subsurface transport (Benson, Wheatcraft, and Meer-
schaert 2000; Schumer et al. 2003; 2001), phase transi-
tions (Bates and Chmaj 1999; Delgoshaie et al. 2015; Fife
2003), image processing (A. Buades, Coll, and Morel 2010;
Gilboa and Osher 2007; 2008; Lou et al. 2010), multiscale
and multiphysics systems (Alali and Lipton 2012; Askari
2008), MHD (Schekochihin, Cowley, and Yousef 2008),
and stochastic processes (Burch, D’Elia, and Lehoucq 2014;
D’Elia et al. 2017; Meerschaert and Sikorskii 2012; Metzler
and Klafter 2000).

In its simplest form, a nonlocal operator can be defined as

Lu(x) =

∫
Bδ(x)

(u(y)− u(x))k(x, y) dy, (1)

where Bδ(x) is the ball of radius δ centered at x and where
k is an application dependent kernel that determines the reg-
ularity properties of the solution. The integral form allows
us to catch long-range forces and reduces the regularity re-
quirements of the solution.

We consider nonlocal diffusion problems of the form{
−Lu = f x ∈ Ω

u = g x ∈ ΩI ,
(2)

where Ω ⊂ Rn is an open bounded domain and ΩI is the
interaction domain, a layer of thickness δ surrounding the



domain where nonlocal boundary conditions must be pre-
scribed for the well-posedness of the problem.

Two very important concerns arise when addressing the
solution of (2).

Q1 Is (1) general enough? How broad is the class of nonlocal
operators that can be described by one single formula and
analyzed through one unified calculus?

Q2 What is the “right” kernel for a given phenomenon? How
can available data help determine the appropriate nonlocal
model and its parameters? Can we design a unified data-
driven tool for model identification and simulation of a
broad class of nonlocal models?

The first concern arises from the fact that in the literature
we have independent definitions, formulations and theory of
nonlocal models. Similarities are evident, but they have not
been rigorously proved. This is addressed in the next section.

A unified nonlocal calculus
The purpose of a unified nonlocal notation and theory is to
• Connect the nonlocal and fractional communities that

would benefit from each other’s research;
• Include as special cases the well-known classical differ-

ential calculus at the limit of vanishing interactions and
the fractional calculus at the limit of infinite interactions;

• Provide the groundwork for new model discovery thanks
to the broad class of operators that it describes;

• Describe intrinsically nonlocal phenomena that have not
been analyzed or used due to the lack of theory.

• Guide algorithm/discretization/solver design.

In this work we introduce a generalized nonlocal operator,
in the spirit of a unified calculus, that bridges local, truncated
nonlocal and fractional diffusion operators:

Lδ,su(x) = Cδ,s

∫
Bδ(x)

u(x)− u(y)

|x− y|n+2s
dy (3)

where Cs,δ is such that the corresponding solutions span a
broad range of nonlocal diffusion processes including local
and fractional diffusion at the limit of vanishing and increas-
ing nonlocality, i.e.

lim
δ→0

Lδ,su = ∆u and lim
δ→∞

−Lδ,su = (−∆)su.

A unified computational framework
The unified nonlocal vector calculus, and more specifically
the operator in (3) provides us with a universal definition
of parametrized nonlocal operators that describe both well-
known nonlocal phenomena and may describe new intrinsi-
cally nonlocal phenomena not yet analyzed and used due to
lack of theory. However, the universal nature of these new
mathematical models and the abundance of data raise im-
portant questions.

Q3 What are the true model parameters δ and s?
Q4 How can we deal with data sparsity and noise (the forcing

term f and the nonlocal boundary condition g in (2) may
be sparse or subject to noise)?

We propose a new approach to model learning that is in
stark contrast with previously developed UQ and PDE-
constrained-like optimization techniques. The game changer
is the combination of 1) Machine Learning and Physical
Principles, and 2) Unified Calculus and Versatile Surro-
gates, such as neural networks. The outcome is a Data-
Driven Physics-Informed tool for learning new complex
nonlocal phenomena.

We refer to our strategy as nPINNs (nonlocal Physics-
Informed Neural Networks); this is an extension of PINNs
(Raissi, Perdikaris, and Karniadakis 2018) and fPINNs
(Pang, Lu, and Karniadakis 2018) designed for PDEs and
fractional operators respectively. More specifically nPINNs
includes the methods above as special instances. In the next
section we describe our strategy and its main properties.

Nonlocal Physics-Informed Neural Networks
The nPINNs algorithm consists of three simple steps.
1 Collect observations of solution and data in training sets:
fm(xi), xi ∈ Tf , and um(xj), xj ∈ Tu;

2 Approximate the solution with a Neural Network:
u(x) = uNN (x);

3 Minimize the loss function
min
u;δ,s
Loss(u; δ, s) = 1

2

∑
xi∈Tf

(Lδ,suNN (xi)− fm(xi))
2+

β

2

∑
xi∈Tu

(uNN (xj)− um(xj))
2,

where the minimization with respect to u must be regarded
as minimization with respect to the weights and biases of
the NN. The two, distinct, training sets in 1 depend only
on data availability and are not necessarily associated with
quadrature points. Note that Loss has a physics-driven and
a data-driven component: the first term controls the residual
of the nonlocal equation, whereas the second the mismatch
between solution and data. The outcome of the optimization
are the weights and biases of the NN and the model param-
eters. This strategy
• Is as accurate as any other discretization method for the

forward problem. As an example, numerical tests show
that it has the same convergence rate, as the number
of training points increases, of fPINNs and of a stan-
dard Finite Difference discretization. However, due to the
increased computation cost, nPINNs is not yet recom-
mended for the solution of forward problems.

• Is not tied to any discretization method.
• Requires minimal implementation effort: available solvers

can be used as black boxes.
• Easily handles sparsity.

We tested this method on one-dimensional forward and
inverse problem (to illustrate our theoretical findings and
learn model parameters) and on two- and three- dimensional
forward problems (to show applicability in higher dimen-
sions). Also, we applied nPINNs to the solution of turbu-
lent Couette flow for the estimation of the dispersion rate
s and the characteristic length δ. Computational results are



  

Figure 1: Trajectories of the optimization algorithm for the
initial guesses (δ1, s1)=(1, 0.5), left, and (δ2, s2)=(10, 0.5),
right. The blue dot indicates the initial guess, the pink dot
the optimal value and the yellow star the true value.

promising and show that the versatility of NN allows one to
describe complex phenomena, to identify model parameters
and to handle data sparsity.

One-dimensional example In Figure 1 we report the out-
come of our algorithm (steps 1–3) for the estimation of δ and
s. For Ω=(0, 1) and Ω ∪ ΩI=(−δ, 1 + δ), we consider the
nonlocal diffusion problem (2) with g=0, f=sin(2πx) and
L defined as in (3). The training data um are generated via
accurate solution of (2) with parameters (δ∗, s∗)=(14, 0.8);
we refer to these values as true values and represent them
with a yellow star in the plot. The training points are 100
uniformly spaced points in Ω∪ΩI . We run the algorithm for
two initial guesses, represented by the blue dots and report
their trajectories. Both of them, see pink dots in both plots,
converge to the true values. The optimal uNN correspond-
ing to the estimated parameters are accurate for both initial
guesses; in fact, their relative errors are of the order of 10−4.
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