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Abstract

Nearshore bathymetry, the knowledge of water depth in
coastal zones, has played a vital role in a wide variety of
applications including shipping operations, coastal manage-
ment, and risk assessment. However, direct high resolution
surveys of nearshore bathymetry are relatively difficult to per-
form due to budget constraints and logistical restrictions. One
possible approach to nearshore bathymetry without such lim-
itations is the use of spatial interpolation with sparse mea-
surements of water depth by using, for example, geostatis-
tics. However, it is often difficult for traditional methods
to recognize patterns with a sharp gradient often shown on
coastal sand bars, especially in the case of sparse measure-
ments. In this work, we use a conditional Generative Adver-
sarial Neural Network (¢cGAN) to generate abruptly changing
bathymetry samples while being consistent with our sparse,
multi-scale measurements. We train our neural network based
on synthetic data generated from nearshore surveys provided
by the U.S. Army Corps of Engineer Field Research Facil-
ity (FRF) in Duck, North Carolina. We compare our method
with Kriging on real surveys as well as ones with artificially
added patterns of sharp gradient. Results show that our con-
ditional Generative Adversarial Network provides estimates
with lower root mean squared errors than Kriging in both
cases.

Introduction

Nearshore bathymetry, or the topography of ocean floor in
coastal zones, has been one of the most critical variables in
many areas including geomorphology (Finkl, Benedet, and
Andrews 2005), harbor managements (Grifoll et al. 2011)
and flood risk assessment (Casas et al. 2006). Hence, ac-
curate estimations of nearshore bathymetry with relatively
low cost in area of interest, have become increasingly im-
portant in recent years due to the expansion of coastal activ-
ities and the improvement of sensor technologies. Nearshore
bathymetry typically exhibits time-varying multi-scale fea-
tures such as sand bars due to short-term wave and storm
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forcing as well as long-term climate and sea level changes.
In this work, we focus primarily on the comparisons of spa-
tial interpolation methods (SIMs) for nearshore bathymetry.
In particular, Kriging, which is one of the most widely used
stochastic techniques for environmental data, will be com-
pared with our deep learning methods.

Generative Adversarial Networks

Generative Adversarial Networks are a class of deep gener-
ative models that consists of two types of neural networks
(Goodfellow et al. 2014): a generator GG and a discrimina-
tor D. The generator GG takes some noise vector z, which
is usually from some normal distribution p; (), as input to
generate fake images, and the discriminator takes images as
input and tries to classify them as real or fake. The networks
are trained in an adversarial manner: the generator G tries to
generate as realistic images as possible to fool the discrim-
inator D, while D tries to accurately distinguish between
real images and fake images generated by G. Formally, let x
represent the bathymetric images with some prior distribu-
tion p2(x), then the objective function of GAN will be:

mén max Exnps(x)(10g D(x)) +E;p, (2) (1 —1og D(G(z)))

Conditional Generative Adversarial Networks (cGANSs)
are an extension of GANs (Mirza and Osindero 2014), in
which an extra label y, which represents indirect observa-
tions, is passed as input to both the generator G' and the
discriminator D. The two networks are trained alternatively
using the output of each other, and the generator will suppos-
edly generate sample images consistent with observations at
the end of several training cycles. In this work, two differ-
ent scale data types of 1) point-wise sparse measurements
and 2) averages over each grid are used with labels y for
our cGAN. The overall scheme is shown in Figure 1. The
objective function of cGAN then becomes:

minmax By, x) (10g D(x[y)) +Eznp, () (1-1og D(G(z]y)))



Figure 1: Conditional Generative Adversarial Network

Numerical Experiments

240 surveys are used to generate synthetic training data for
cGAN by adding Gaussian noises with the following covari-

ance matrix:
2
C;j = aexp <xl ;C]” )

r

where « is chosen in (1,2) and r is chosen in (80, 100).
9600 training samples in total are generated to be training
data. We also introduce random sand bar structures as our
topographical understanding in the surf zone and investigate
cGAN’s potential ability to recognize patterns with sharp
gradient. For this, rectangular jumps with random locations
(uniformly in the computational domain) and random sizes
are added to real bathymetry surveys (9600 samples) as well
as profiles with constant values uniformly chosen from 0 to
10 (9600 samples) with Gaussian variations. We also add
Gaussian white noise with a variance of 0.2 to all training
input. In our comparisons below, we consider using only 35
evenly distributed grid points with a grid size of 136 meters
along-shore and 76 meters across-shore for our sparse mea-
surements. For Kriging, we used the method of CoKriging
to incorporate grid cell averages as auxiliary measurements.

Performance on Real Data

In the first case, we compare cGAN with Kriging based on
15 real FRF surveys not included in the training set. For
each prediction, 100 samples are generated by cGAN and
we use the point-wise average over those samples as our
final estimate. Figure 2 shows the root mean squared er-
rors of cGAN and Kriging on those 15 surveys. Our results
show that cGAN produces estimates of bathymetry profiles
with consistently lower root mean squared errors than Krig-
ing. This is because when training data are sampled from
a carefully chosen prior distribution, deep neural networks
are known to provide posterior estimates that minimize the
mean squared error (Adler and Oktem 2018).
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Figure 2: Comparison of Kriging and cGAN on FRF Sur-
veys

Artificially Added Sharp Gradient

In the second case, one FRF survey taken on June 21th,
2017 is chosen for comparisons on performance of cGAN
and Kriging while random rectangular jumps are added (uni-
formly random location and sizes). Similarly, 100 samples
are generated by cGAN to compute the average as its fi-
nal prediction. The result is shown in Figure 3 and Fig-
ure 4. Figure 3 shows predictions of nearshore bathymetry
by cGAN and Kriging with the corresponding mean abso-
lute error (MAE), as well as the variance of samples gen-
erated by cGAN. Figure 4 shows the corresponding cross
section plots near the location of discontinuity. We ob-
serve that cGAN gives estimates with almost vertical jumps,
as well as a lower mean absolute error. This is because
deep neural networks can express highly complex func-
tions in an efficient manner (Poole et al. 2016) while Krig-
ing requires a carefully chosen nonlinear kernel function
to achieve the same performance (Williams 1996). Further-
more, GAN tends to produce sharper samples than other
available methods (Goodfellow 2017), thus is suitable for
general nearshore bathymetry interpolation applications.

Conclusion

In this work, we compare cGAN with Kriging on real
nearshore bathymetry surveys. Results show that cGAN pro-
vides estimates with lower root mean squared errors than
Kriging on real FRF surveys not included in the training set.
We also compared cGAN with Kriging on synthetic surveys
with rectangular jumps. It is shown that cGAN produces
samples with lower mean absolute errors as well as sharper
boundaries.
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