
GMLS-Nets: A machine learning framework for unstructured data
Nathaniel Trask 1, +, Ravi G. Patel1, Ben J. Gross 2, Paul J. Atzberger2,†

1Sandia National Laboratories∗
Center for Computing Research
{natrask,rgpatel}@sandia.gov

2 University of California Santa Barbara
Department of Mathematics and Mechanical Engineering

http://atzberger.org/
atzberg@gmail.com

Abstract

Data fields sampled on irregularly spaced points arise in many
science and engineering applications. For regular grids, Con-
volutional Neural Networks (CNNs) gain benefits from weight
sharing and invariances. We generalize CNNs by introducing
methods for data on unstructured point clouds using Gen-
eralized Moving Least Squares (GMLS). GMLS is a non-
parametric meshfree technique for estimating linear bounded
functionals from scattered data, and has emerged as an effec-
tive technique for solving partial differential equations (PDEs).
By parameterizing the GMLS estimator, we obtain learning
methods for linear and non-linear operators with unstructured
stencils. The requisite calculations are local, embarrassingly
parallelizable, and supported by a rigorous approximation the-
ory. We show how the framework may be used for unstructured
physical data sets to perform operator regression, develop pre-
dictive dynamical models, and obtain feature extractors for en-
gineering quantities of interest. The results show the promise
of these architectures as foundations for data-driven model
development in scientific machine learning applications.

Introduction
Many scientific and engineering applications require process-
ing data sets sampled on irregularly spaced points. Consider
e.g. GIS data associating geospatial locations with measure-
ments, or scientific simulations with unstructured meshes.
This need is amplified by the recent surge of interest in scien-
tific machine learning (SciML) [25] targeting the application
of data-driven techniques to the sciences. In this setting, data
typically takes the form of e.g. synthetic simulation data from
meshes, or from sensors associated with data sites evolving

∗Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering So-
lutions of Sandia, LLC.,a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energys National
Nuclear Security Administration under contract DE-NA-0003525.
This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.
Copyright c© 2020, for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CCBY
4.0).

under partially known dynamics. This data is often scarce or
highly constrained, and it has been proposed that successful
SciML strategies will leverage prior knowledge to enhance
information gained from such data [18, 25]. One may exploit
physical properties such as transformation symmetries, con-
servation structure, or solution regularity [6, 9, 18]. This new
application space necessitates ML architectures capable of
utilizing such knowledge.

For data sampled on regular grids, Convolutional Neural
Networks (CNNs) are widely used to exploit translation in-
variance and hierarchical structure to extract features from
data. Here we generalize this technique to the SciML setting
by introducing GMLS-Nets based on the scattered data ap-
proximation theory underlying GMLS. Similar to how CNNs
learn stencils which benefit from weight-sharing, GMLS-
Nets operate by using local reconstructions to learn operators
between function spaces. The resulting architecture is simi-
larly interpretable and serves as an effective generalization
of CNNs to unstructured data, while providing mechanisms
to incorporate knowledge of underlying physics.

In this work we show how GMLS-Nets may be used in a
SciML setting. Our results show GMLS-Nets are an effective
tool to discover PDEs, which may be used as a foundation
to construct data-driven models while preserving physical
invariants like conservation principles. We also show they
may be used to improve traditional scientific components,
such as time integrators. We show they also can be used
to regress engineering quantities of interest from scientific
simulation data. Finally, we briefly show GMLS-Nets can
perform reasonably relative to convNets on traditional com-
puter vision benchmarks. These results indicate the promise
of GMLS-Nets to support data-driven modeling efforts in
SciML applications. Implementations in TensorFlow and Py-
Torch are available at https://github.com/rgp62/gmls-nets and
https://github.com/atzberg/gmls-nets.

Generalized Moving Least Squares (GMLS)
Generalized Moving Least Squares (GMLS) is a non-
parametric functional regression technique to construct ap-
proximations of linear, bounded functionals from scattered
samples of an underlying field by solving local least-square
problems. On a Banach space V with dual space V∗, we aim

to recover an estimate of a given target functional τx̃[u] ∈ V∗
acting on u = u(x) ∈ V, where x, x̃ denote associated loca-
tions in a compactly supported domain Ω ⊂ Rd. We assume
u is characterized by an unstructured collection of sampling
functionals, Λ(u) := {λj(u)}Nj=1 ⊂ V∗.

To construct this estimate, we consider P ⊂ V and seek an
element p∗ ∈ P which provides an optimal reconstruction of
the samples in the following weighted-`2 sense.

p∗ = argmin
p∈P

N∑
j=1

(λj(u)− λj(p))2
ω(λj , τx̃). (1)

Here ω(λj , τx̃) is a positive, compactly supported kernel
function establishing spatial correlation between the tar-
get functional and sampling set. If one associates locations
Xh := {xj}Nj=1 ⊂ Ω with Λ(u), then one may consider
radial kernels ω = Wε(||xj − x̃||2), with support r < ε.

Assuming the basis P = span{φ1, ..., φdim(P)}, and denot-
ing Φ(x) = {φi(x)}i=1,...,dim(P), the optimal reconstruction
may be written in terms of an optimal coefficient vector a(u)

p∗ = Φ(x)ᵀa(u). (2)

Provided one has knowledge of how the target functional
acts on P, the final GMLS estimate may be obtained by
applying the target functional to the optimal reconstruction

τhx̃ [u] = τx̃(Φ)ᵀa(u). (3)

Sufficient conditions for the existence of solutions to Eqn.
1 depend only upon the unisolvency of Λ over V, the distri-
bution of samples Xh, and mild conditions on the domain
Ω; they are independent of the choice of τx̃. For theoretical
underpinnings and recent applications, we refer readers to [5,
16, 29, 30].

GMLS has primarily been used to obtain point estimates
of differential operators to develop meshfree discretizations
of PDEs. The abstraction of GMLS however provides a math-
ematically rigorous approximation theory framework which
may be applied to a wealth of problems, whereby one may
tailor the choice of τx̃, Λ, P and ω to a given application. In
the current work, we will assume the action of τx̃ on P is
unknown, and introduce a parameterization τx̃,ξ(Φ), where ξ
denote hyperparameters to be inferred from data. Classically,
GMLS is restricted to linear bounded target functionals; we
will also consider a novel nonlinear extension by considering
estimates of the form

τhx̃ [u] = qx̃,ξ(a(u)), (4)

where qx̃,ξ is a family of nonlinear operators parameterized
by ξ acting upon the GMLS reconstruction. Where unam-
biguous, we will drop the x̃ dependence of operators and
simply write e.g. τh[u] = qξ(a(u)). We have recently used
related non-linear variants of GMLS to develop solvers for
PDEs on manifolds in [29].

For simplicity, in this work we specialize as follows. Let:
Λ be point evaluations on Xh; P be πm(Rd), the space of
mth-order polynomials; let Wε(r) = (1− r/ε)p̄+, where f+

denotes the positive part of a function f and p ∈ N. We

stress however that this framework supports a much broader
application. Consider e.g. learning from flux data related to
H(div)-conforming discretizations, where one may select
as sampling functional λi(u) =

∫
fi
u · dA, or consider the

physical constraints that may be imposed by selecting P as
be divergence free or satisfy a differential equation.

We illustrate now the connection between GMLS and con-
volutional networks in the case of a uniform grid, Xh ⊂ Zd.
Consider a sampling functional λj(u) = (u(xj)− u(xi)),
and assume the parameterization τx̃,ξ(Φ) =

〈
ξ1, ..., ξdim(P)

〉
,

xi,j = xi − xj . Then the GMLS estimate is given explicitly
at a point xi by

τhx̃i
[u] =

∑
α,β,j

ξα

(∑
k

φα(xk)W (xi,k)φβ(xk)

)−1

φβ(xj)W (xi,j)(uj − ui).

(5)

Contracting terms involving α, β and k, we may write
τhx̃i

[u] =
∑
j c(τ,Λ)ij(uj − ui). The collection of stencil

coefficients at xi ∈ Xh are {c(τ,Λ)ij}j . Therefore, one
application for GMLS is to build stencils similar to convo-
lutional networks. A major distinction is that GMLS can
handle scattered data sets and a judicious selection of Λ, P
and ω can be used to inject prior information. Alternatively,
one may interpret the regression over P as an encoding in a
low-dimensional space well-suited to characterize common
operators. For continuous functions for example, an opera-
tor’s action on the space of polynomials is often sufficient
to obtain a good approximation. Unlike CNNs there is no
need to handle boundary effects; GMLS-nets instead learns
one-sided stencils.

GMLS-Nets
From an ML perspective, GMLS estimation consists of two
parts: (i) data is encoded via the coefficient vector a(u) pro-
viding a compression of the data in terms of P, (ii) the op-
erator is regressed over P∗; this is equivalent to finding a
function qξ : a(u)→ R. We propose GMLS-Layers encod-
ing this process in Figure 1, parameterizing a(u) = NN (u).

This architecture accepts input channels indexed by α
which consist of components of the data vector-field [u]α

sampled over the scattered points Xh. We allow for different
sampling points for each channel, which may be helpful for
heterogeneous data. Each of these input channels is then used
to obtain an encoding of the input field as the vector a(u)
identifying the optimal representer in P.

We next select our parameterization of the functional
via qξ, which may be any family of functions trainable by
back-propagation. We will consider two cases in this work
appropriate for linear and non-linear operators. In the lin-
ear case we consider qξ(a) = ξTa, which is sufficient to
exactly reproduce differential operators. For the nonlinear
case we parameterize with a multi-layer perceptron (MLP),
qξ(a) = MLP(a). Note that in the case of linear activation
function, the single layer MLP model reduces to the linear
model.

Nonlinearity may thus be handled within a single non-
linear GMLS-Layer, or by stacking multiple linear GMLS-

coefficients

co
e
ffi

ci
e
n
t

ch
a
n

n
e
l

input channel

...

In
p

u
t

C
h
a
n

n
e
ls

Mapping MLP

C

o
e
ffi

ci
e
n
t

C
h
a
n

n
e
ls

O
u
tp

u
t

C
h
a
n

n
e
ls

{

GMLS-Layer

scattered data
processing

GMLS-Nets

Classification

Regression
L[u]

Scattered Data Inputs

SD ...

cl
a
ss

e
s

...

stack layers

a0 a1 a2 a3 a4 aN

SD MP SD

SD SD SD

stack layers

MLP

MLP

Figure 1: GMLS-Nets. Scattered data inputs are processed by
learnable operators τ [u] parameterized via GMLS estimators.
A local reconstruction is built about each data point and en-
coded as a coefficient vector via equation 2. The coefficient
mapping q(a) of equation 4 provides the learnable action of
the operator. GMLS-Layers can be stacked to obtain deeper
architectures and combined with other neural network opera-
tions to perform classification and regression tasks (inset, SD:
scattered data, MP: max-pool, MLP: multi-layer perceptron).

layers with intermediate ReLU’s, the later mapping more
directly onto traditional CNN construction. We next in-
troduce pooling operators applicable to unstructured data,
whereby for each point in a given target point cloud Xtargeth ,
φ(xi) = F ({xj |j ∈ Xh, |xj − xi| < ε}). Here F represents
the pooling operator (e.g. max, average, etc.). With this col-
lection of operators, one may construct architectures similar
to CNNs by stacking GMLS-Layers together with pooling
layers and other NN components. Strided GMLS-layers gen-
eralizing strided CNN stencils may be constructed by choos-
ing target sites on a second, smaller point cloud.

Relation to other work.
Many recent works aim to generalize CNNs away from the
limitations of data on regular grids [8, 12]. This includes work
on handling inputs in the form of directed and un-directed
graphs [7], processing graphical data sets in the form of
meshes and point-clouds [14, 17], and in handling scattered
sub-samplings of images [8, 19]. Broadly, these works: (i) use
the spectral theory of graphs and generalize convolution in the
frequency domain [8], (ii) develop localized notions similar to
convolution operations and kernels in the spatial domain [28].
GMLS-Nets is most closely related to the second approach.

The closest works include SplineCNNs [19], MoNet [10,
11], KP-Conv [28], and SpiderCNN [24]. In each of these
methods a local spatial convolution kernel is approximated
by a parameterized family of functions: open/closed B-

Splines [19], a Gaussian correlation kernel [10, 11], or a
kernel function based on a learnable combination of ra-
dial ReLu’s [28]. The SpiderCNNs share many similarities
with GMLS-Nets using a kernel that is based on a learnable
degree-three Taylor polynomial that is taken in product with
a learnable radial piecewise-constant weight function [24].
A key distinction of GMLS-Nets is that operators are re-
gressed directly over the dual space V∗ without constructing
shape/kernel functions. Both approaches provide ways to ap-
proximate the action of a processing operator that aggregates
over scattered data.

We also mention other meshfree learning frameworks:
PointNet [13, 14] and Deep Sets [17], but these are aimed
primarily at set-based data and geometric processing tasks for
segmentation and classification. Additionally, Radial Basis
Function (RBF) networks are similarly built upon similar
approximation theory [1, 2].

Related work on operator regression in a SciML context in-
clude [4, 9, 15, 21–23, 26, 27]. In PINNs [23, 27], a versatile
framework based on DNNs is developed to regress both linear
and non-linear PDE models while exploiting physics knowl-
edge. In [26] and PDE-Nets [21], CNNs are used to learn
stencils to estimate operators. In [9, 15] dictionary learning
is used along with sparse optimization methods to identify
dynamical systems to infer physical laws associated with
time-series data. In [22], regression is performed over a class
of nonlinear pseudodifferential operators, formed by com-
posing neural network parameterized Fourier multipliers and
pointwise functionals.

GMLS-Nets can be used in conjunction with the above
methods. GMLS-Nets have the distinction of being able to
move beyond reliance on CNNs on regular grids, no longer
need moment conditions to impose accuracy and interpretabil-
ity of filters for estimating differential operators [21], and do
not require as strong assumptions about the particular form of
the PDE or a pre-defined dictionary as in [15, 27]. We expect
that prior knowledge exploited globally in PINNs methods
may be incorporated into the GMLS-Layers. In particular,
the ability to regress natively over solver degrees of freedom
will be particularly useful for SciML applications.

Results
Learning differential operators and identifying
governing equations.
Many data sets arising in the sciences are generated by pro-
cesses for which there are expected governing laws express-
ible in terms of ordinary or partial differential equations.
GMLS-Nets provide natural features to regress such opera-
tors from observed state trajectories or responses to fluctua-
tions. We consider the two settings

∂u

∂t
= L[u(t, x)] and L[u(x)] = −f(x). (6)

The L[u] can be a linear or non-linear operator. When the
data are snapshots of the system state un = u(tn) at discrete
times tn = n∆t, we use estimators based on

un+1 − un

∆t
= L[{uk}k∈K; ξ]. (7)

0.0 0.5 1.0

500

0

500

L[u]: predicted

Laplacian 2D:

u: input L[u]: target

Laplacian 1D:

0.0 0.5 1.0

1

0

1

2

0.0 0.5 1.0
50

25

0

25

Burgers 1D:
50

prediction target op.input

0.0 0.5 1.0

2

0

2

input u
predict

L[u]

Figure 2: Regression of Differential Operators. GMLS-Nets
can accurately learn both linear and non-linear operators,
shown is the case of the 1D/2D Laplacians and Burger’s
equation. In-homogeneous operators can also be learned
by including as one of the input channels the location x.
Training and test data consists of random input functions
in 1d at 102 nodes on [0, 1] and in 2d at 400 nodes in
[0, 1] × [0, 1]. Each random input function follows a Gaus-
sian distribution with u(x) =

∑
k ξk exp (i2πk · x/L) with

ξk ∼ exp(−α1k
2)η(0, 1). Training and test data is generated

with α1 = 0.1 by computed operators with spectral accuracy
for Ntrain = 5× 104 and Ntest = 104.

In the case that K = {n + 1}, this corresponds to using an
Implicit Euler scheme to model the dynamics. Many other
choices are possible, and later we shall discuss estimators
with conservation properties. The learning capabilities of
GMLS-Nets to regress differential operators are shown in
Fig. 2. As we shall discuss in more detail, this can be used
to identify the underlying dynamics and obtain governing
equations.

Long-time integrators: discretization for native
data-driven modeling.
The GMLS framework provides useful ways to target and
sample arbitrary functionals. In a data transfer context, this
has been leveraged to couple heterogeneous codes. For ex-
ample, one may sample the flux degrees of freedom of a
Raviart-Thomas finite element space and target cell integral
degrees of freedom of a finite volume code to perform native
data transfer. This avoids the need to perform intermediate
projections/interpolations [20]. Motivated by this, we demon-
strate that GMLS may be used to learn discretization native
data-driven models, whereby dynamics are learned in the

0 10 20 30 40
x

0

0.2

0.4

0.6

0.8

u

Initial condition
Exact solution
Regressed FDM

Regressed FVM
True operator FDM
True operator FVM

t

20 30
x

0

0.05

0.1

0.15

0.2

u

Exact

Regressed FDM
Regressed FVM
True operator FDM
True operator FVM

Figure 3: Top: Advection-diffusion solution when ∆t =
∆tCFL. The true model solution and regressed solution all
agree with the analytic solution. Bottom: Solution for under-
resolved dynamics with ∆t = 10∆tCFL. The implicit inte-
grator causes FDM/FVM of true operator to be overly dissi-
pative. The regressed operator matches well with the FVM
operator, matching the phase almost exactly.

∆t/∆tCFL LFDM,ex LFDM LFVM,ex LFVM

0.1 0.00093 0.00015 0.00014 0.00010
1 0.0011 0.00093 0.0011 0.00011
10 0.0083 0.0014 0.0083 0.00035

Table 1: The `2-error for data-driven finite difference model
(FDM) and finite volume models (FVM) for advection-
diffusion equation. Comparisons made to classical discretiza-
tions using exact operators. For conservative data-driven fi-
nite volume model, there is an order of magnitude better
accuracy for large timestep integration.

natural degrees of freedom for a given model. This provides
access to structure preserving properties such as conservation,
e.g., conservation of mass in a physical system.

We take as a source of training data the following analytic
solution to the 1D unsteady advection-diffusion equation with
advection and diffusion coefficients a and ν on the interval
Ω = [0, 30].

uex(x, t) =
1

a
√

4πνt
exp

(
−x− (x0 + at)

4νt

)
(8)

To construct a finite difference model (FDM), we assume
a node set N = {x0 = 0, x1, ..., xN−1, xN = 30}. To con-
struct a finite volume model (FVM), we construct the set
of cells C = {[xi, xi+1], xi, xi+1 ∈ N, i ∈ {0, ..., N − 1}},
with associated cell measure µ(ci) = |xi+1 − xi| and set of
oriented boundary faces Fi = ∂ci = {xi+1,−xi}. We then
assume for uniform timestep ∆t = tn+1 − tn the Implicit

Euler update for the FDM given by

un+1
i − uni

∆t
= LFDM [un+1; ξ], (9)

To obtain conservation we use the FVM update

un+1
i − uni

∆t
=

1

µ(ci)

∑
f∈Fi

∫
LFVM [un+1; ξ] · dA. (10)

For the advection-diffusion equation in the limit ∆t → 0,
LFDM,ex = a ·∇u+ν∇2u and LFVM,ex = au+ν∇u. By
construction, for any choice of hyperparameters ξ the FVM
will be locally conservative. In this sense, the physics of mass
conservation are enforced strongly via the discretization, and
we parameterize only an empirical closure for fluxes - GMLS
naturally enables such native flux regression.

We use a single linear GMLS-net layer to parameterize
both LFDM and LFVM , and train over a single timestep by
using Eqn. 8 to evaluate the exact time increment in Eqns. 9-
10 . We perform gradient descent to minimize the RMS of the
residual with respect to ξ. For the FDM and FVM we use a
cubic and quartic polynomial space, respectively. Recall that
to resolve the diffusion and advective timescales one would
select a timestep of roughly ∆tCFL = min

(
1
2
a∆t
∆x ,

1
4
ν∆t
∆x2

)
.

After regressing the operator, we solve the extracted
scheme to advance from

{
u0
i = u(xi, t0)

}
i

to
{
u
tfinal

i

}
i
.

As implicit Euler is unconditionally stable, one may se-
lect ∆t � ∆tCFL at the expense of introducing nu-
merical dissipation, ”smearing” the solution. We consider
∆t ∈ {0.1∆tCFL,∆tCFL, 10∆tCFL} and compare both
the learned FDM/FVM dynamics to those obtained with
a standard discretization (i.e. letting LFDM = LFDM,ex.
From Fig. 3 we observe that for ∆t/∆tCFL ≤ 1 both the
regressed and reference models agree well with the analytic
solution. However, for ∆t = 10∆tCFL, we see that while the
reference models are overly dissipative, the regressed models
match the analytic solution. Inspection of the `2−norm of the
solutions at tfinal in Table 1 indicates that as expected, the
classical solutions corresponding to LFDM,ex and LFVM,ex

converge as O(∆t). The regressed FDM is consistently more
accurate than the exact operator. Most interesting, the re-
gressed FVM is roughly independent of ∆t, providing a 20×
improvement in accuracy over the classical model. This pre-
liminary result suggests that GMLS-Nets offer promise as a
tool to develop non-dissipative implicit data-driven models.
We suggest that this is due to the ability for GMLS-Nets to
regress higher-order differential operator corrections to the
discrete time dynamics, similar to e.g. Lax-Friedrichs/Lax-
Wendroff schemes.

Data-driven modeling from molecular dynamics.
In science and engineering applications, there are often high-
fidelity descriptions of the physics based on molecular dy-
namics. One would like to extract continuum descriptions
to allow for predictions over longer time/length-scales or re-
duce computational costs. Coarse-grained modeling efforts
also have similar aims while retaining molecular degrees
of freedom. Each seek lower-fidelity models that are able

x
(t

)

Brownian Trajectories

t
=
0

t
=
5

0.0 0.2 0.4 0.6 0.8 1.0x

0.0

0.5

1.0

1.5

2.0

ρ t

Particle Distribution

Prediction of Density Evolution

prediction
particle density

ρ

Density Estimation

-10

0

0 10

10

t

x 0 1
0

2

histogram

filtered

0 1 x

t=0

t=5

Figure 4: GMLS-Nets can be trained with molecular-level
data to infer continuum dynamical models. Data are simula-
tions of Brownian motion with periodic boundary conditions
on Ω = [0, 1] and diffusivity D = 1 (top-left, unconstrained
trajectory). Starting with initial density of a heaviside func-
tion, we construct histograms over time to estimate the par-
ticle density (upper-right, solid lines) and perform further
filtering to remove sampling noise (upper-right, dashed lines).
GMLS-Net is trained using FVM estimator of equation 10.
Predictive continuum model is obtained for the density evolu-
tion. Long-term agreement is found between the particle-level
simulation (bottom, solid lines) and the inferred continuum
model (bottom, dashed lines).

to accurately predict important statistical moments of the
high-fidelity model over longer timescales. As an example,
consider a mean-field continuum model derived by coarse-
graining a molecular dynamics simulation. Classically, one
may pursue homogenization analysis to carefully derive such
a continuum model, but such techniques are typically prob-
lem specific and can become technical. We illustrate here how
GMLS-Nets can be used to extract a conservative continuum
PDE model from particle-level simulation data.

Brownian motion has as its infinitesimal generator the
unsteady diffusion equation [3]. As a basic example, we
will extract a 1D diffusion equation to predict the long-
term density of a cloud of particles undergoing pseudo-
1D Brownian motion. We consider the periodic domain
Ω = [0, 1] × [0, 0.1], and generate a collection of Np parti-
cles with initial position xp(t = 0) drawn from the uniform
distribution U [0, 0.5]× U [0, 0.1].

Due to this initialization and domain geometry, the particle
density is statistically one dimensional. We estimate the den-
sity field ρ(x, t) along the first dimension by constructing a

collection C of N uniform width cells and build a histogram,

ρ(x, t) =
∑
c∈C

Np∑
p=1

1xp(t)∈c1x∈c. (11)

The 1x∈A is the indicator function taking unit value for x ∈
A and zero otherwise.

We evolve the particle positions xp(t) under 2D Brownian
motion (the density will remain statistically 1D as the parti-
cles evolve). In the limit Np/N → ∞, the particle density
satisfies a diffusion equation, and we can scale the Brownian
motion increments to obtain a unit diffusion coefficient in
this limit.

As the ratio Np/N is finite, there is substantial noise in the
extracted density field. We obtain a low pass filtered density,
ρ̃(x, t), by convolving ρ(x, t) with a Gaussian kernel of width
twice the histogram bin width.

We use the FVM scheme in the same manner as in the
previous section. In particular, we regress a flux that matches
the increment (ρ̃(x, t = 10)− ρ̃(x, t = 12))/2∆t. This win-
dow was selected, since the regression at t = 0 is ineffective
as the density approximates a heaviside function. Such near
discontinuities are poorly represented with polynomials and
subsequently not expected to train well. Additionally, we
train over a time interval of 2∆t, where in general k∆t steps
can be used to help mollify high-frequency temporal noise.

To show how the GMLS-Nets’ inferred operator can be
used to make predictions, we evolve the regressed FVM
for one hundred timesteps and compare to the density field
obtained from the particle solver. We apply Dirichlet bound-
ary conditions ρ(0, t) = ρ(1, t) = 1 and initial conditions
matching the histogram ρ(x, t = 0). Again, the FVM by
construction is conservative, where it is easily shown for all
t that

∫
Ω
ρdx = Np. A time series summarizing the evolu-

tion of density in both the particle solver and the regressed
continuum model is provided in Fig 4. While this is a ba-
sic example, this illustrates the potential of GMLS-nets in
constructing continuum-level models from molecular data.
These techniques also could have an impact on data-driven
approaches for numerical methods, such as projective inte-
gration schemes.

Image processing: MNIST benchmark.
While image processing is not the primary application area
we intend, GMLS-Nets can be used for tasks such as classifi-
cation. For the common MNIST benchmark task, we compare
use of GMLS-Nets with CNNs in Figure 5. CNNs use kernel
size 5, zero-padding, max-pool reduction 2, channel sizes
16, 32, FC as linear map to soft-max prediction of the cat-
egories. The GMLS-Nets use the same architecture with a
GMLS using polynomial basis of monomials in x, y up to
degree porder = 4.

We find that despite the features extracted by GMLS-Nets
being more restricted than a general CNN, there is only a
modest decrease in the accuracy for the basic MNIST task.
We do expect larger differences on more sophisticated image
tasks. This basic test illustrates how GMLS-Nets with a poly-
nomial basis extracts features closely associated with taking
derivatives of the data field. We emphasize for other choices

GMLS Features

GMLS-Layer

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7] a[8] a[9]

a[10] a[11] a[12] a[13] a[14]

Input
Image

MNIST
Classes

Case Conv-2L Hybr id-2L GMLS-2L
MNIST 98.52% 98.41% 96.87%

Figure 5: MNIST Classification. GMLS-Layers are substi-
tuted for convolution layers in a basic two-layer architecture
(Conv2d + ReLu + MaxPool + Conv2d + ReLu + MaxPool +
FC). The Conv-2L test are all Conv-Layers, Hybrib-2L has
GMLS-Layer followed by a Conv-Layer, and GMLS-2L uses
all GMLS-Layers. GMLS-Nets used a polynomial basis of
monomials. The filters in GMLS are by design more limited
than a general Conv-Layer and correspond here to estimated
derivatives of the data set (top-right). Despite these restric-
tions, the GMLS-Net still performs reasonably well on this
basic classification task (bottom-table).

of basis for p∗ and sampling functionals λj , other features
may be extracted. For polynomials with terms in dictionary
order, coefficients are shown in Fig. 5. Notice the clear trends
and directional dependence on increases and decreases in the
image intensity, indicating c[1] ∼ ∂x and c[2] ∼ ∂y. Given
the history of PDE modeling, for many classification and
regression tasks arising in the sciences and engineering, we
expect such derivative-based features extracted by GMLS-
Nets will be useful in these applications.

GMLS-Net on unstructured fluid simulation data.
We consider the application of GMLS-Nets to unstructured
data sets representative of scientific machine learning appli-
cations. Many hydrodynamic flows can be experimentally
characterized using velocimetry measurements. While veloc-
ity fields can be estimated even for complex geometries, in
such measurements one often does not have access directly
to fields, such as the pressure. However, integrated quanti-
ties of interest, such as drag are fundamental for performing
engineering analysis and yet depend upon both the velocity
and pressure. This limits the level of characterization that
can be accomplished when using velocimetry data alone. We
construct GMLS-Net architectures that allow for prediction
of the drag directly from unstructured fluid velocity data,
without any direct measurement of the pressure.

We illustrate the ideas using flow past a cylinder of radius
L. This provides a well-studied canonical problem whose
drag is fully characterized experimentally in terms of the
Reynolds number, Re = UL/ν. For incompressible flow
past a cylinder, one may apply dimensional analysis to relate
drag Fd to the Reynolds number via the drag coefficient Cd:

2Fd
ρU2
∞A

= Cd

(
UL

ν

)
. (12)

TheU∞ is the free-stream velocity,A is the frontal area of the
cylinder, and Cd : R→ R. Such analysis requires in practice
engineering judgement to identify relevant dimensionless
groups. After such considerations, this allows one to collapse
relevant experimental parameters to (ρ, U∞, A, L, ν) onto a
single curve.

100 10000 1e+06 1e+08
Reynolds number

1

1.5

2

2.5

D
ra

g
 c

o
ef

fi
ci

en
t

Training data

GMLS-Net test data

Figure 6: GMLS-Nets are trained on a CFD data set of flow
velocity fields. Top: Training set of the drag coefficient plot-
ted as a function of Reynolds number (small black dots). The
GMLS-Net predictions for a test set (large red dots). Bottom:
Flow velocity fields corresponding to the smallest (left) and
largest (right) Reynolds numbers in the test set.

For the purposes of training a GMLS-Net, we construct a
synthetic data set by solving the Reynolds averaged Navier-
Stokes (RANS) equations with a steady state finite volume
code. Let L = ρ = 1 and consider U ∈ [0.1, 20] and
ν ∈

[
10−2, 108

]
. We consider a k − ε turbulence model

with inlet conditions consistent with a 10% turbulence inten-
sity and a mixing length corresponding to the inlet size. From
the solution, we extract the velocity field u at cell centers
to obtain an unstructured point cloud Xh. We compute Cd
directly from the simulations. We then obtain an unstruc-
tured data set of 400 (u)i features over Xh, with associated
labels Cd. We emphasize that although U∞ and ν are used to
generate the data, they are not included as features, and the
Reynolds number is therefore hidden.

We remark that the k − ε model is well known to perform
poorly for flows with strong curvature such as recirculation
zones. Here, in our proof-of-concept demonstration, we treat
the RANS-k − ε solution as ground truth for simplicity, de-
spite its short-comings and acknowledge that a more physical
study would consider ensemble averages of LES/DNS data
in 3D. We aim here just to illustrate the potential utility of
GMLS-Nets in a scientific setting for processing such un-

structured data sets.
As an architecture, we provide two input channels for the

two velocity components to three stacked GMLS layers. The
first layer acts on the cell centers, and intermediate pooling
layers down-sample to random subsets of Xh. We conclude
with a linear activation layer to extract the drag coefficient
as a single scalar output. We randomly select 80% of the
samples for training, and use the remainder as a test set. We
quantify using the root-mean-square (MSE) error which we
find to be below 1.5%.

The excellent predictive capability demonstrated in Fig. 6
highlights GMLS-Nets ability to provide an effective means
of regressing engineering quantities of interest directly from
velocity flow data; the GMLS-Net architecture is able to
identify a latent low-dimensional parameter space which is
typically found by hand using dimensional analysis. This
similarity relationship across the Reynolds numbers is identi-
fied, despite the fact that it does not have direct access to the
viscosity parameter. These initial results indicate some of the
potential of GMLS-Nets in processing unstructured data sets
for scientific machine learning applications.

Conclusions
We have introduced GMLS-Nets for processing scattered
data sets leveraging the framework of GMLS. GMLS-Nets
allow for generalizing convolutional networks to scattered
data, while still benefiting from underlying translational in-
variances and weight sharing. The GMLS-layers provide
feature extractors that are natural particularly for regressing
differential operators, developing dynamical models, and pre-
dicting quantities of interest associated with physical systems.
GMLS-Nets were demonstrated to be capable of obtaining
dynamical models for long-time integration beyond the lim-
its of traditional CFL conditions, for making predictions of
density evolution of molecular systems, and for predicting
directly from flow data quantities of interest in fluid mechan-
ics. These initial results indicate some promising capabilities
of GMLS-Nets for use in data-driven modeling in scientific
machine learning applications.

References
[1] D.S. Broomhead and D. Lowe. “Multivariable Func-

tional Interpolation and Adaptive Networks”. In: Com-
plex Systems 2.1 (1988), pp. 321–355.

[2] T. Poggio and F. Girosi. “Networks for approxima-
tion and learning”. In: Proceedings of the IEEE 78.9
(1990), pp. 1481–1497.

[3] Ioannis Karatzas and Steven E Shreve. “Brownian
Motion and Stochastic Calculus”. In: Springer, 1998,
pp. 47–127.

[4] I. E. Lagaris, A. Likas, and D. I. Fotiadis. “Artificial
neural networks for solving ordinary and partial dif-
ferential equations”. In: IEEE Transactions on Neural
Networks 9.5 (1998), pp. 987–1000.

[5] Holger Wendland. Scattered data approximation.
Vol. 17. Cambridge university press, 2004.

[6] Susanne Brenner and Ridgway Scott. The Mathemati-
cal Theory of Finite Element Methods. Springer, 2008.

[7] Franco Scarselli et al. “The Graph Neural Network
Model”. In: Trans. Neur. Netw. 20.1 (Jan. 2009),
pp. 61–80. ISSN: 1045-9227.

[8] Joan Bruna et al. “Spectral networks and locally con-
nected networks on graphs”. English (US). In: In-
ternational Conference on Learning Representations
(ICLR2014), CBLS, April 2014. 2014.

[9] Steven L. Brunton, Joshua L. Proctor, and J. Nathan
Kutz. “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems”.
In: 113.15 (2016), pp. 3932–3937.

[10] Thomas N. Kipf and Max Welling. “Semi-Supervised
Classification with Graph Convolutional Networks”.
In: ArXiv abs/1609.02907 (2016).

[11] Federico Monti et al. “Geometric Deep Learning on
Graphs and Manifolds Using Mixture Model CNNs”.
In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016), pp. 5425–5434.

[12] M. M. Bronstein et al. “Geometric Deep Learning:
Going beyond Euclidean data”. In: IEEE Signal Pro-
cessing Magazine 34.4 (2017), pp. 18–42. ISSN: 1053-
5888. DOI: 10.1109/MSP.2017.2693418.

[13] Charles R. Qi et al. “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation”. In: The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017.

[14] Charles Ruizhongtai Qi et al. “PointNet++: Deep Hi-
erarchical Feature Learning on Point Sets in a Metric
Space”. In: Advances in Neural Information Process-
ing Systems 30. Ed. by I. Guyon et al. Curran Asso-
ciates, Inc., 2017, pp. 5099–5108.

[15] Samuel H. Rudy et al. “Data-driven discovery of par-
tial differential equations”. In: 3.4 (2017).

[16] Nathaniel Trask, Mauro Perego, and Pavel Bochev.
“A high-order staggered meshless method for elliptic
problems”. In: SIAM Journal on Scientific Computing
39.2 (2017), A479–A502.

[17] Manzil Zaheer et al. “Deep Sets”. In: Advances in
Neural Information Processing Systems 30. Ed. by I.
Guyon et al. Curran Associates, Inc., 2017, pp. 3391–
3401.

[18] P. J. Atzberger. “Importance of the Mathematical Foun-
dations of Machine Learning Methods for Scientific
and Engineering Applications”. In: SciML2018 Work-
shop, position paper, https://arxiv.org/abs/1808.02213
(2018).

[19] M. Fey et al. “SplineCNN: Fast Geometric Deep
Learning with Continuous B-Spline Kernels”. In: 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2018, pp. 869–877.

[20] Paul Allen Kuberry, Pavel B Bochev, and Kara J Pe-
terson. A virtual control meshfree coupling method for
non-coincident interfaces. Tech. rep. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States),
2018.

[21] Zichao Long et al. “PDE-Net: Learning PDEs from
Data”. In: Proceedings of the 35th International Con-
ference on Machine Learning. Ed. by Jennifer Dy
and Andreas Krause. Vol. 80. Proceedings of Ma-
chine Learning Research. Stockholmsmssan, Stock-
holm Sweden: PMLR, 2018, pp. 3208–3216.

[22] Ravi G. Patel and Olivier Desjardins. “Nonlinear
integro-differential operator regression with neural net-
works”. In: ArXiv abs/1810.08552 (2018).

[23] Maziar Raissi and George Em Karniadakis. “Hidden
physics models: Machine learning of nonlinear partial
differential equations”. In: Journal of Computational
Physics 357 (2018), pp. 125 –141. ISSN: 0021-9991.

[24] Yifan Xu et al. “SpiderCNN: Deep Learning on Point
Sets with Parameterized Convolutional Filters”. In:
Computer Vision – ECCV 2018. Ed. by Vittorio Ferrari
et al. Cham: Springer International Publishing, 2018,
pp. 90–105. ISBN: 978-3-030-01237-3.

[25] Nathan Baker et al. Workshop report on basic research
needs for scientific machine learning: Core technolo-
gies for artificial intelligence. Tech. rep. USDOE Of-
fice of Science (SC), Washington, DC (United States),
2019.

[26] Yohai Bar-Sinai et al. “Learning data-driven discretiza-
tions for partial differential equations”. In: Proceed-
ings of the National Academy of Sciences 116.31
(2019), pp. 15344–15349. ISSN: 0027-8424. DOI: 10.
1073/pnas.1814058116.

[27] M. Raissi, P. Perdikaris, and G.E. Karniadakis.
“Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations”. In:
Journal of Computational Physics 378 (2019), pp. 686
–707.

[28] Hugues Thomas et al. “KPCONV: Flexible and de-
formable convolution for point clouds”. In: Proceed-
ings of the IEEE International Conference on Com-
puter Vision. 2019, pp. 6411–6420.

[29] BJ Gross et al. “Meshfree methods on manifolds for
hydrodynamic flows on curved surfaces: a generalized
moving least-squares (GMLS) approach”. In: Journal
of Computational Physics (2020), p. 109340.

[30] Nathaniel Trask, Pavel Bochev, and Mauro Perego.
“A conservative, consistent, and scalable meshfree
mimetic method”. In: Journal of Computational
Physics 409 (2020), p. 109187.

Derivation of Gradients of the Operator τxi
[u].

Parameters of the operator τ̃ .
We give here some details on the derivation of the gradients for
the learnable GMLS operator τ [u] and intermediate steps. This
can be used in implementations for back-propagation and other
applications.

GMLS works by mapping data to a local polynomial fit in region
Ωi around xi with p∗(x) ≈ u(x) for x ∈ Ωi. To find the optimal
fitting polynomial p∗(x) ∈ V to the function u(x), we can consider
the case with λj(x) = δ(x − xj) and weight function wij =
w(xi−xj). In a region around a reference point x∗ the optimization
problem can be expressed parameterically in terms of coefficients a
as

a∗(xi) = arg min
a∈Rm

∑
j

(
uj − p(xj)

Ta
)2
wij .

We write for short p(xj) = p(xj , xi), where the basis elements
in fact do depend on xi. Typically, for polynomials we just use
p(xj , xi) = p(xj − xi). This is important in the case we want to
take derivatives in the input values xi of the expressions.

We can compute the derivative in a` to obtain

∂J

∂a`
(xi) = 0.

This implies[∑
j

p(xj)wijp(xj)
T

]
a =

∑
j

wijp(xj)uj .

Let

M =

[∑
j

p(xj)wijp(xj)
T

]
, r =

∑
j

wijp(xj)uj ,

then we can rewrite the coefficients as the solution of the linear
system

Ma∗(xi) = r.

This is sometimes written more explicitly for analysis and computa-
tions as

a∗(xi) = M−1r.

We can represent a general linear operator τ̃(xi) using the a∗ repre-
sentation as

τ̃(xi) = q(xi)
Ta∗(xi)

Typically, the weights will not be spatially dependent q(xi) = q0.
Throughout, we shall denote this simply as q and assume there is
no spatial dependence, unless otherwise indicated.

Derivatives of τ̃ in xi, a(xi), and q.
The derivative in xi is given by

∂

∂xi
a∗(xi) =

∂M−1

∂xi
r +M−1 ∂r

∂xi

In the notation, we denote p(xj) = p(xj , xi), where the basis
elements in fact can depend on the particular xi. These terms can
be expressed as

∂M−1

∂xi
= −M−2 ∂M

−1

∂xi
,

where

∂M

∂xi
=

∑
j

[(
∂

∂xi
p(xj , xi)

)
p(xj , xi)

Twij

+ p(xj , xi)

(
∂

∂xi
p(xj , xi)

)T

wij

+ p(xj , xi)p(xj , xi)
T ∂wij

∂xi

]
.

The derivatives in r are given by

∂r

∂xi
=
∑
j

[(
∂

∂xi
p(xj)

)
ujwij + p(xj)uj

∂wij

∂xi

]
.

The full derivative of the linear operator τ̃ can be expressed as

∂

∂xi
τ̃(xi) =

(
∂

∂xi
q(xi)

T

)
a∗(xi) + q(xi)

T

(
∂

∂xi
a∗(xi)

)
.

In the constant case q(xi) = q0, the derivative of τ̃ simplifies to

∂

∂xi
τ̃(xi) = qT

0

(
∂

∂xi
a∗(xi)

)
.

The derivatives of the other terms follow more readily. For deriva-
tive of the linear operator τ̃ in the coefficients a(xi), we have

∂

∂a(xi)
τ̃(xi) = q(xi).

For derivatives of the linear operator τ̃ in the mapping coefficient q
values, we have

∂

∂q(xi)
τ̃(xi) = a(xi).

In the case of nonlinear operators τ̃ = q(a(xi)) there are further
dependencies beyond just xi and a(xi), and less explicit expres-
sions. For example, when using MLP’s there may be hierarchy of
trainable weights w. The derivatives of the non-linear operator can
be expressed as

∂

∂w
τ̃(xi) =

∂q

∂w
(a(xi)).

Here, one relies on back-propagation algorithms for evaluation of
∂q
∂w

. Similarly, given the generality of q(a), for derivatives in a and
xi, one can use back-propagation methods on q and the chain-rule
with the expressions derived during the linear case for a and xi
dependencies.

