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Abstract. Various methods are used for statistical testing of cryptographic algo-

rithms, for example, NIST STS (A Statistical Test Suite for the Validation of 

Random Number Generators and Pseudo Random Number Generators for 

Cryptographic Applications) and DIEHARD (Diehard Battery of Tests of Ran-

domness). Tests consists of verification the hypothesis of randomness for se-

quences generated at the output of a cryptographic algorithm (for example, a 

keys generator, encryption algorithms, a hash function, etc.). In this paper, we 

use the NIST STS technique and study the statistical properties of the most 

common hashing functions that are used or can be used in modern blockchain 

networks. In particular, hashing algorithms are considered which specified in 

national and international standards, as well as little-known hash functions that 

were developed for limited use in specific applications. Thus, in this paper, we 

consider the most common hash functions used in more than 90% of blockchain 

networks. The research results are given as average by testing data of 100 se-

quences of 108 bytes long, which means that is, the size of the statistical sample 

for each algorithm was 1010 bytes. Moreover, each test (for each of the 100 se-

quences) was considered as an independent observation. In addition, the article 

presents statistical portraits for each algorithm under study (diagrams of the 

numbers of passing each test). 
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1 Introduction 

In this work, statistical studies of the output sequences of cryptographic hash func-

tions are performed, when this functions processing excessive input data. In this case, 

input data are formed using a regular counter. 

The NIST STS (A Statistical Test Suite for Random and Pseudorandom Number 

Generators for Cryptographic Applications) methodology, which is recommended by 

The National Institute of Standards and Technology, USA for the study of random 

and pseudorandom number generators for cryptographic applications [1, 2]. Both 
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world-famous hashing functions (standardized at the international and/or national 

levels) [3-7] and little-known algorithms [8, 9], which are designed for use only in 

certain applications (e.g., in decentralized blockchain systems [10-14]). Specifically, 

the statistical security results of the following algorithms are given: GOST 34.311, 

STRIBOG256, STRIBOG512, BALLOON 32, BALLOON 64, BLAKE256, 

BLAKE512, BMW, CUBEHASH, DJB-2, DJB-2 XOR, ECHO, FUGUE 224, 

FUGUE 256, FUGUE 384, FUGUE 512, GROESTL 256, GROESTL 512, HAMSI 

224, HAMSI 256, HAMSI 384, HAMSI 512, J-H, KECCАK 256, KECCАK 512, 

LOSELOSE, LUFFA, PROGPOW, RANDOMX, RIPEMD160, SCRYPT 1024, 

SCRYPT 16384, SHA2 256, SHA2 512, SHABAL 224, SHABAL 256, SHABAL 

384, SHABAL 512, SHAVITE, SIMD, SKEIN, WHIRLPOOL, X11. 

2 Research methodology and results  

The NIST STS statistical test suite recommended by The National Institute of Stand-

ards and Technology, USA [1, 2] was used to conduct studies of various hashing al-

gorithms by statistical security criteria’s. Methods of statistical testing and processing 

algorithm of the obtained results are given in [15, 16]. 

The NIST Statistical Test Suite was developed during the AES competition for the 

study of random or pseudorandom number generators and is the most common tool 

for assessing the statistical security of cryptographic primitives. The use of this pack-

age allows us to estimate how closely the crypto algorithms under study approximate 

the generators of "random" sequences, that is, with a high probability to confirm 

whether the generated sequence is statistically secure. The order of testing of a single 

binary sequence S is as follows: 

 the null hypothesis 
0H  is advanced - the assumption that this binary sequence S is 

random; 

 the test statistic с(S) is calculated according to the sequence S; 

 the probability function   P f c S  is calculated using a special function and 

test statistics; 

 the probability value Р is compared with the threshold value [0,96; 0,99] . If so 

P  , the hypothesis 
0H  is accepted. Otherwise, an alternative hypothesis is ac-

cepted. 

The test suite contains 15 statistical tests, but in fact, depending on the input pa-

rameters, 188 probability values of Р are calculated, which can be considered as the 

result of individual tests. 

Frequency (Monobits) Test. Aims to determine the relation between zeros and ones 

in a binary sequence of a certain length. For a truly random binary sequence, the 

number of zeros and ones is almost the same. The test estimates how close the unit is 

to 0.5. 

Test for Frequency Within a Block. The essence of the test is to determine the frac-

tion of ones inside the block with a length of m bits, i.e. it is necessary to find out 



 

 

whether the repetition rate of ones in the block with a length of m bits is approximate-

ly equal 2m , as might be assumed in the case of a random sequence. 

Runs Test. This test searches for rows, that is, continuous sequences of identical 

bits. A series (runs) of length k bits consists of k absolutely identical bits, beginning 

and ending with a bit containing the opposite value. In this test, you need to find out if 

the number of such rows really matches their number in random order. In particular, it 

is determined whether the ones and zeros in the initial sequence quickly or slowly 

alternate. 

Test for The Longest Run of Ones in a Block. This test determines the longest row 

of ones inside the block with a length of m bits. It is necessary to find out whether the 

length of such a row actually meets the expectation of the length of the longest row of 

ones in the case of a completely random sequence. 

Random Binary Matrix Rank Test. Here, we calculate the rank of non-continuous 

sub-matrices constructed from the initial binary sequence. The purpose of this test is 

to test for linear dependence of fixed length substrings that make up the initial se-

quence. 

Discrete Fourier Transform (Spectral) Test. The essence of the test is to estimate 

the peak height of the discrete Fourier transform of the initial sequence. The purpose 

is to identify periodic properties of the input sequence, for example, closely spaced 

repetitive sections. The idea is that the number of peaks in excess of the 95% ampli-

tude threshold is much greater than 5%. 

Non-Overlapping (Aperiodic) Template Matching Test. This test calculates the 

number of predefined templates found in the original sequence. It is necessary to 

identify random or pseudorandom number generators that form too often non-periodic 

patterns. As in Overlapping Template Matching Test, a window with a length of m 

bits is also used to search for specific patterns with a length of m bits. If no pattern is 

found, the window shifts one bit. If a pattern is found, then the window moves to the 

bit that follows the pattern found, and the search continues. 

Overlapping (Periodic) Template Matching Test. The essence of this test is to cal-

culate the number of predefined templates that were found in the original sequence. 

As in Non-Overlapping Template Matching Test, a window with a length of m bits is 

also used to search for specific patterns with a length of m bits. The search itself is 

conducted in a similar way. If no pattern is found, the window shifts one bit. The 

difference between this test and previous test is that when the pattern is found, the 

window moves only one bit forward, and then the search continues. 

Maurer's Universal Statistical Test. In here determines the number of bits between 

the same patterns in the initial sequence (a measure that is directly related to the 

length of the compressed sequence). It is necessary to find out whether this sequence 

can be significantly compressed without loss of information. If this can be done, then 

it is not truly random. 

Linear Complexity Test. The test is based on the principle of the linear shift register 

feedback. You need to find out if the input sequence is complex enough to be consid-

ered completely random. Absolutely random sequences are characterized by long 

linear shift registers. If such a register is too short, then it is assumed that the se-

quence is not completely random. 



 

 

Serial Test. This test is to calculate the frequency of all possible overlaps of the m  

bit length patterns at the initial bit sequence. The purpose is to determine whether the 

number of occurrences of overlapping 2m  patterns by the length of the m  bits is 

approximately the same as in the case of an absolutely random input bit sequence. 

The latter is known to be monotonous, that is, each pattern with a length of m  bits 

appears in a sequence with equal probability. It is worth noting that when 1m  , so 

the periodicity test goes into the frequency bit test. 

Approximate Entropy Test. As in the periodicity test, this test focuses on calculat-

ing the frequency of all possible overlaps of the m  bit length patterns at the initial bit 

sequence. It is necessary to compare the overlap frequencies of two consecutive 

blocks of the initial sequence with the lengths m  and 1m with the overlap frequen-

cies of similar blocks in a completely random sequence. 

Cumulative Sum (Cusum) Test. The test is the maximum deviation (from zero) at 

an arbitrary bypass determined by the cumulative sum of the given digits  1, 1   in 

the sequence. It is necessary to determine whether the cumulative sum of the partial 

sequences occurring in the input sequence is too large or too small compared to the 

expected behavior of such a sum for a completely random input sequence. Thus, the 

cumulative amount can be regarded as an arbitrary bypass. For a random sequence, 

the deviations from the bypass should be near zero. 

Random Excursions Test. The essence of this test is to calculate the number of cy-

cles that have strictly k excursions with an arbitrary bypass of the cumulative sum. 

The arbitrary bypass of a cumulative sum begins with partial sums after the sequence 

 0,1  is translated into the corresponding sequence  1, 1  . An arbitrary bypass 

cycle consists of a series of single-length steps performed in random order. In addi-

tion, such a bypass begins and ends on the same element. The purpose of this test is to 

determine whether the number of visits to a particular state within a cycle differs from 

a similar number in the case of a completely random input sequence. In fact, this test 

is a set consisting of eight tests that are conducted for each of the eight cycle states: -

4, -3, -2, -1 and +1, +2, +3, +4. 

Random Excursions Variant Test. This test calculates the total number of excur-

sions to a given condition when you randomly bypass the cumulative sum. The pur-

pose is to determine deviations from the expected number of visits to different states 

at random bypass. In fact, this test consists of 18 tests for each state: -9, -8, ..., -1 and 

+1, +2, ..., +9. 

Thus, as a result of binary sequence testing, a vector  1 2 188, ...P P P P  of probabil-

ity values jP  is formed. The analysis of the components jP  of this vector allow us to 

point to specific defects in the randomness of the tested sequence. 

Passing each of the 15 statistical tests is an important criterion for evaluating a 

pseudorandom generator. Therefore, not even matching one or more criteria means 

that the stream cannot withstand cryptanalysis at a high level. If, on the other hand, 

the generator passes all the tests, this does not indicate the security of the generator, 

since such tests do not take into account the features of the actual design of the gener-

ator. 



 

 

The accumulated experience of statistical testing shows that the number of tests 

passed by the generator being tested depends directly on the selected cryptographic 

algorithm output sequence. To ensure the reliability of the results of statistical testing 

in the work [15-18], it is proposed to evaluate the mathematical expectation of the 

number of tests passed 
iX  by the investigated generator (crypto algorithm), consider-

ing each i  test as a single observation (experience), i.e. as a specific implementation 

of some random variable X . 

When conducting statistical surveys, 100 sequences with a length of 10
8 

bytes were 

generated for each algorithm, i.e. the size of the statistical sample for each algorithm 

reached 10
10 

bytes. Each testing (for each of the 100 sequences) was considered as an 

independent observation. Table 1 summarizes the statistical test results for each algo-

rithm studied. 

Table 1. The statistical testing results of hashing algorithms 

Algorithm Name M099 D099 S099 P099 M096 D096 S096 P096 MIN 

GOST 34.311 132.90 43.93 6.62 1 186.83 1.46 1.20 1 182 
STRIBOG256 131.92 55.93 7.47 1 186.70 1.81 1.34 1 181 
STRIBOG512 131.64 48.99 6.99 1 186.76 1.88 1.37 1 182 
BALLOON 32 134.20 60.56 7.78 1 187.10 1.09 1.04 1 185 
BALLOON 64 126.50 0.25 0.50 1 183.00 1.00 1.00 1 182 
BLAKE256 133.31 55.13 7.42 1 186.75 1.90 1.38 1 183 
BLAKE512 132.65 55.74 7.46 1 186.73 1.59 1.26 1 183 
BMW 132.39 48.99 6.99 1 186.92 1.55 1.24 1 182 
CUBEHASH 131.22 55.65 7.46 1 186.80 1.44 1.2 1 183 
DJB-2 8.92 1.21 1.10 1 11.64 0.29 0.53 1 10 
DJB-2 XOR 2.99 2.16 1.47 1 4.94 1.69 1.30 1 0 
ECHO 131.96 53.85 7.33 1 186.51 2.16 1.47 1 182 
FUGUE 224 133.07 45.78 6.76 1 186.61 2.11 1.45 1 180 
FUGUE 256 132.42 43.74 6.61 1 186.78 2.25 1.50 1 180 
FUGUE 384 131.03 57.22 7.56 1 186.66 1.78 1.33 1 182 
FUGUE 512 133.02 62.31 7.89 1 186.76 2.14 1.46 1 180 
GROESTL 256 133.23 56.01 7.48 1 186.72 2.14 1.46 1 181 
GROESTL 512 133.01 58.58 7.65 1 187.14 0.90 0.94 1 184 
HAMSI 224 132.84 53.65 7.32 1 186.66 2.36 1.53 1 112 
HAMSI 256 131.71 51.42 7.17 1 186.87 1.87 1.36 1 181 
HAMSI 384 132.86 51.26 7.15 1 187.19 1.21 1.10 1 182 
HAMSI 512 132.17 51.16 7.15 1 186.45 2.68 1.63 1 179 
J-H 131.70 71.63 8.46 1 186.69 2.43 1.56 1 180 
KECCАK 256 131.27 58.79 7.66 1 186.52 2.70 1.64 1 181 
KECCАK 512 132.40 48.12 6.93 1 186.78 1.41 1.18 1 182 
LOSELOSE 16.00 0.00 0.00 1 16.00 0.00 0.00 1 16 
LUFFA 133.11 47.07 6.86 1 186.71 1.50 1.22 1 183 
PROGPOW 130.00 0.00 0.00 1 188.00 0.00 0.00 1 188 
RANDOMX 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0 
RIPEMD160 84.79 84.04 9.16 1 132.11 80.95 8.99 1 105 
SCRYPT 1024 133.80 68.36 8.26 1 187.10 1.49 1.22 1 184 
SCRYPT 16384 140.00 0.00 0.00 1 185.00 0.00 0.00 1 185 



 

 

Algorithm Name M099 D099 S099 P099 M096 D096 S096 P096 MIN 

SHA2 256 132.70 57.39 7.57 1 186.74 1.67 1.29 1 182 
SHA2 512 133.01 51.78 7.19 1 186.87 1.99 1.41 1 182 
SHABAL 224 132.76 50.12 7.08 1 186.67 2.52 1.58 1 180 
SHABAL 256 133.18 61.72 7.85 1 186.61 2.39 1.54 1 115 
SHABAL 384 131.63 45.61 6.75 1 186.54 2.00 1.41 1 180 
SHABAL 512 132.81 45.41 6.73 1 186.87 1.57 1.25 1 182 
SHAVITE 132.01 53.72 7.33 1 186.9 1.53 1.23 1 182 
SIMD 133.09 39.54 6.28 1 186.85 1.58 1.25 1 182 
SKEIN 131.90 46.97 6.85 1 186.71 1.26 1.12 1 184 
WHIRLPOOL 132.29 47.90 6.92 1 186.78 1.59 1.26 1 182 
X11 132.46 46.48 6.81 1 186.80 1.28 1.13 1 184 
X12 133.10 21.29 4.61 1 186.20 2.36 1.53 1 183 
X13 137.00 74.56 8.63 1 186.90 0.69 0.83 1 185 
X14 131.40 24.44 4.94 1 186.90 0.69 0.83 1 123 
X15 130.10 31.49 5.61 1 186.20 4.56 2.13 1 182 
X16 0.90 0.09 0.30 1 1.00 0.00 0.00 1 1 
X17 3.20 0.36 0.60 1 5.80 0.16 0.40 1 5 

 

Table 1 provides the following data: 

 "M096" and "M099" – estimates of expected value (the sample mean) of the num-

ber of passed tests by criterion 0,96jP   and criterion 0,99jP  , respectively; 

 "D096" and "D099" ("S096" and "S099") – estimates of the statistical dispersion 

(standard deviation) of the results of testing the number of statistical tests complet-

ed by the criterion 0,96jP   and criterion 0,99jP  , accordingly; 

 "P099" – the confidence value for the number of statistical tests completed by cri-

terion 0,99jP   and accuracy 2  ; 

 "P096" – the value of the confidence probability for the number of statistical tests 

passed by criterion 0,96jP   and accuracy 1  ; 

 "Min096" – the minimum values of the number of statistical tests passed by the 

criterion 0,96jP  . 

The results of statistical studies (statistical portraits) of hashing algorithms are 

shown in Fig. 1-40. On the abscissa scale the statistical test number (from 1 to 188) is 

given, on the ordinate scale the fraction of passing of the corresponding test is given. 

 

 

Fig. 1. BALLOON32 

 

Fig. 2. BALLOON64 



 

 

 

Fig. 3. BLAKE 256 

 

Fig. 4. BLAKE 512 

 

Fig. 5. BMW 

 

Fig. 6. CUBEHASH 

 

Fig. 7. DJB-2 

 

Fig. 8. DJB-2XOR 

 

Fig. 9. ECHO 

 

Fig. 10. KECCАK 256 

 

Fig. 11. KECCАK 512 

 

Fig. 12. LOSELOSE 



 

 

 

Fig. 13. LUFFA 

 

Fig. 14. FUGUE224 

 

Fig. 15. FUGUE256 

 

Fig. 16. FUGUE384 

 

Fig. 17. FUGUE512 

 

Fig. 18. GOST_256 

 

Fig. 19. Stribog_512 

 

Fig. 20. WHIRLPOOL512 

 

Fig. 21. GROESTL 256 

 

Fig. 22. GROESTL 512 



 

 

 

Fig. 23. HAMSI 224 

 

Fig. 24. HAMSI 256 

 

Fig. 25. HAMSI 384 

 

Fig. 26. HAMSI 512 

 

Fig. 27. J-H 

 

Fig. 28. RIPEMD160 

 

Fig. 29. SCRYPT 1024 

 

Fig. 30. SHA2 256 

 

Fig. 31. SHA2 512 

 

Fig. 32. SHABAL 224 



 

 

 

Fig. 33. SHABAL 256 

 

Fig. 34. SHABAL 384 

 

Fig. 35. SHABAL 512 

 

Fig. 36. SHAVITE 

 

Fig. 37. SIMD 

 

Fig. 38. SKEIN 

 

Fig. 39. STREEBOG 256 

 

Fig. 40. X11

The results of statistical studies indicate that certain high-speed algorithms cannot 

be applied in cryptographic applications. This applies, for example, to the algorithms 

DJB-2, LOSELOSE, and others, because these algorithms, in fact, do not compute a 

cryptographic checksum. However, most of the cryptographic hashing algorithms, 

that have been studied, have shown high statistical properties and have high rates of 

indistinguishability criterion with truly random sequence. 



 

 

3 Conclusions 

Hashing functions are a complex and very important cryptographic primitive that is 

used in almost all mechanisms and protocols of cryptographic security of information 

(password generation, encryption, pseudorandom sequence generation, electronic 

signature generation, etc.). In recent years, the use of hashing has expanded signifi-

cantly. In particular, with the advent and rapid spread of decentralized distributed 

systems based on so-called "linked lists" (blockchain) technology, there was an urgent 

need for fast, safe and reliable hashing functions, because of their unpredictable and 

irreversible features secure blockchain chains are being built. The task of choosing a 

hash function is much more complicated due to the proliferation of specialized com-

putants that are being developed and practically used to look for prototypes of pre-

formed hash values (ASIC-mining). By investing in the acquisition of ASICs, indi-

vidual players can be deliberately advantaged compared to other blockchain users and 

can, therefore, cause non-trust and compromise of decentralized technologies (e.g., 

different cryptocurrencies, distributed storage, smart- contracts, etc.). Therefore, the 

study of the properties of modern hashing algorithms and the rationale for their rec-

ommendations for the national blockchain technology segment development is cer-

tainly an important and extremely relevant scientific task. 

The results obtained shows that most hashing functions satisfy the criteria of statis-

tical security (by the NIST STS method), that is, by different indicators the output 

sequences (hash values) do not differ (in the statistical sense) from the truly random 

sequences. These are mainly known and standardized algorithms, which are applied in 

various cryptographic applications and have already been substantially researched and 

studied in previous tests. However, among the algorithms in Table 1 there are those 

whose statistical certainty is either unsatisfactory or completely unacceptable. For 

example, the well-known hashing algorithm RIPEMD160, which is standardized in 

ISO/IEC 10118-3:2018 and accepted for use in the European Union, has shown low 

values of statistical security (the average number of statistical tests with 0,96jP   

completed does not exceed 85). That is, if the RIPEMD160 algorithm inputs an ex-

cess sequence (in our studies, the input sequence was formed by a regular counter), 

the generated hash sequences differ from the random sequence, i.e. they have some 

determinism. Although we have not identified any specific defects in the 

RIPEMD160 algorithm, the results indicate that some of the generated hash codes are 

flawed in terms of randomness and unpredictability. 

The unsatisfactory performance of the DJB-2, DJB-2 XOR, and LOSELOSE hash-

ing algorithms should be noted separately. In terms of statistical security, they are not 

acceptable for practical use in cryptographic applications. This conclusion is predicta-

ble because the DJB-2, DJB-2 XOR, and LOSELOSE algorithms are essentially not 

cryptographic, and the calculation of the hash sequences in them is similar to a regular 

checksum. But, as the results show, even when using statistically dangerous algo-

rithms as part of cascading mining schemes (for example, in the X family hash algo-

rithms), the generated hash sequences also do not satisfy statistical security indicators 

(see last two lines of the Table 1). 



 

 

Thus, choosing a hashing algorithm for building blockchain system elements is ex-

tremely important and painstaking. In view of the results obtained, in addition to per-

formance, it is also necessary to consider the reliability and security of cryptocurren-

cies. Also important is the availability of Specialized Computers (ASICs), which 

greatly accelerate mining in certain consensus protocols. Therefore, to justify the 

choice of hashing algorithms, it is necessary to consider various factors and perfor-

mance indicators, including the features of building a specific blockchain system, 

consensus protocols, processing and messaging algorithms, etc. 

This research might be useful for the improvement of various methods of infor-

mation security, as well as other practical use [17-22]. 
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