

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attrib-

ution 4.0 International (CC BY 4.0) CMiGIN-2019: International Workshop on Conflict Management in

Global Information Networks.

Statistical Testing of Blockchain Hash Algorithms

Alexandr Kuznetsov
1 [0000-0003-2331-6326]

, Maria Lutsenko
1 [0000-0003-2075-5796]

,

Kateryna Kuznetsova
1 [0000-0002-5605-9293]

, Olena Martyniuk
2 [0000-0002-0377-7881]

,

Vitalina Babenko
1 [0000-0002-4816-4579]

 and Iryna Perevozova
 3[0000-0002-3878-802X]

1 V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

kuznetsov@karazin.ua, lutsenko.maria.kh@gmail.com,

kate.kuznetsova.2000@gmail.com, vitalinababenko@karazin.ua
2 International Humanitarian University, Odessa, Ukraine, emartynuk2017@gmail.com
3 Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine,

perevozova@ukr.net

Abstract. Various methods are used for statistical testing of cryptographic algo-

rithms, for example, NIST STS (A Statistical Test Suite for the Validation of

Random Number Generators and Pseudo Random Number Generators for

Cryptographic Applications) and DIEHARD (Diehard Battery of Tests of Ran-

domness). Tests consists of verification the hypothesis of randomness for se-

quences generated at the output of a cryptographic algorithm (for example, a

keys generator, encryption algorithms, a hash function, etc.). In this paper, we

use the NIST STS technique and study the statistical properties of the most

common hashing functions that are used or can be used in modern blockchain

networks. In particular, hashing algorithms are considered which specified in

national and international standards, as well as little-known hash functions that

were developed for limited use in specific applications. Thus, in this paper, we

consider the most common hash functions used in more than 90% of blockchain

networks. The research results are given as average by testing data of 100 se-

quences of 108 bytes long, which means that is, the size of the statistical sample

for each algorithm was 1010 bytes. Moreover, each test (for each of the 100 se-

quences) was considered as an independent observation. In addition, the article

presents statistical portraits for each algorithm under study (diagrams of the

numbers of passing each test).

Keywords: statistical testing, hashing algorithms, blockchain technology.

1 Introduction

In this work, statistical studies of the output sequences of cryptographic hash func-

tions are performed, when this functions processing excessive input data. In this case,

input data are formed using a regular counter.

The NIST STS (A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications) methodology, which is recommended by

The National Institute of Standards and Technology, USA for the study of random

and pseudorandom number generators for cryptographic applications [1, 2]. Both

https://www.scopus.com/redirect.uri?url=http://www.orcid.org/0000-0003-2331-6326&authorId=55428957200&origin=AuthorProfile&orcId=0000-0003-2331-6326&category=orcidLink
mailto:kuznetsov@karazin.ua
mailto:lutsenko.maria.kh@gmail.com
mailto:kate.kuznetsova.2000@gmail.com
mailto:emartynuk2017@gmail.com

world-famous hashing functions (standardized at the international and/or national

levels) [3-7] and little-known algorithms [8, 9], which are designed for use only in

certain applications (e.g., in decentralized blockchain systems [10-14]). Specifically,

the statistical security results of the following algorithms are given: GOST 34.311,

STRIBOG256, STRIBOG512, BALLOON 32, BALLOON 64, BLAKE256,

BLAKE512, BMW, CUBEHASH, DJB-2, DJB-2 XOR, ECHO, FUGUE 224,

FUGUE 256, FUGUE 384, FUGUE 512, GROESTL 256, GROESTL 512, HAMSI

224, HAMSI 256, HAMSI 384, HAMSI 512, J-H, KECCАK 256, KECCАK 512,

LOSELOSE, LUFFA, PROGPOW, RANDOMX, RIPEMD160, SCRYPT 1024,

SCRYPT 16384, SHA2 256, SHA2 512, SHABAL 224, SHABAL 256, SHABAL

384, SHABAL 512, SHAVITE, SIMD, SKEIN, WHIRLPOOL, X11.

2 Research methodology and results

The NIST STS statistical test suite recommended by The National Institute of Stand-

ards and Technology, USA [1, 2] was used to conduct studies of various hashing al-

gorithms by statistical security criteria’s. Methods of statistical testing and processing

algorithm of the obtained results are given in [15, 16].

The NIST Statistical Test Suite was developed during the AES competition for the

study of random or pseudorandom number generators and is the most common tool

for assessing the statistical security of cryptographic primitives. The use of this pack-

age allows us to estimate how closely the crypto algorithms under study approximate

the generators of "random" sequences, that is, with a high probability to confirm

whether the generated sequence is statistically secure. The order of testing of a single

binary sequence S is as follows:

 the null hypothesis
0H is advanced - the assumption that this binary sequence S is

random;

 the test statistic с(S) is calculated according to the sequence S;

 the probability function   P f c S is calculated using a special function and

test statistics;

 the probability value Р is compared with the threshold value [0,96; 0,99] . If so

P  , the hypothesis
0H is accepted. Otherwise, an alternative hypothesis is ac-

cepted.

The test suite contains 15 statistical tests, but in fact, depending on the input pa-

rameters, 188 probability values of Р are calculated, which can be considered as the

result of individual tests.

Frequency (Monobits) Test. Aims to determine the relation between zeros and ones

in a binary sequence of a certain length. For a truly random binary sequence, the

number of zeros and ones is almost the same. The test estimates how close the unit is

to 0.5.

Test for Frequency Within a Block. The essence of the test is to determine the frac-

tion of ones inside the block with a length of m bits, i.e. it is necessary to find out

whether the repetition rate of ones in the block with a length of m bits is approximate-

ly equal 2m , as might be assumed in the case of a random sequence.

Runs Test. This test searches for rows, that is, continuous sequences of identical

bits. A series (runs) of length k bits consists of k absolutely identical bits, beginning

and ending with a bit containing the opposite value. In this test, you need to find out if

the number of such rows really matches their number in random order. In particular, it

is determined whether the ones and zeros in the initial sequence quickly or slowly

alternate.

Test for The Longest Run of Ones in a Block. This test determines the longest row

of ones inside the block with a length of m bits. It is necessary to find out whether the

length of such a row actually meets the expectation of the length of the longest row of

ones in the case of a completely random sequence.

Random Binary Matrix Rank Test. Here, we calculate the rank of non-continuous

sub-matrices constructed from the initial binary sequence. The purpose of this test is

to test for linear dependence of fixed length substrings that make up the initial se-

quence.

Discrete Fourier Transform (Spectral) Test. The essence of the test is to estimate

the peak height of the discrete Fourier transform of the initial sequence. The purpose

is to identify periodic properties of the input sequence, for example, closely spaced

repetitive sections. The idea is that the number of peaks in excess of the 95% ampli-

tude threshold is much greater than 5%.

Non-Overlapping (Aperiodic) Template Matching Test. This test calculates the

number of predefined templates found in the original sequence. It is necessary to

identify random or pseudorandom number generators that form too often non-periodic

patterns. As in Overlapping Template Matching Test, a window with a length of m

bits is also used to search for specific patterns with a length of m bits. If no pattern is

found, the window shifts one bit. If a pattern is found, then the window moves to the

bit that follows the pattern found, and the search continues.

Overlapping (Periodic) Template Matching Test. The essence of this test is to cal-

culate the number of predefined templates that were found in the original sequence.

As in Non-Overlapping Template Matching Test, a window with a length of m bits is

also used to search for specific patterns with a length of m bits. The search itself is

conducted in a similar way. If no pattern is found, the window shifts one bit. The

difference between this test and previous test is that when the pattern is found, the

window moves only one bit forward, and then the search continues.

Maurer's Universal Statistical Test. In here determines the number of bits between

the same patterns in the initial sequence (a measure that is directly related to the

length of the compressed sequence). It is necessary to find out whether this sequence

can be significantly compressed without loss of information. If this can be done, then

it is not truly random.

Linear Complexity Test. The test is based on the principle of the linear shift register

feedback. You need to find out if the input sequence is complex enough to be consid-

ered completely random. Absolutely random sequences are characterized by long

linear shift registers. If such a register is too short, then it is assumed that the se-

quence is not completely random.

Serial Test. This test is to calculate the frequency of all possible overlaps of the m

bit length patterns at the initial bit sequence. The purpose is to determine whether the

number of occurrences of overlapping 2m patterns by the length of the m bits is

approximately the same as in the case of an absolutely random input bit sequence.

The latter is known to be monotonous, that is, each pattern with a length of m bits

appears in a sequence with equal probability. It is worth noting that when 1m  , so

the periodicity test goes into the frequency bit test.

Approximate Entropy Test. As in the periodicity test, this test focuses on calculat-

ing the frequency of all possible overlaps of the m bit length patterns at the initial bit

sequence. It is necessary to compare the overlap frequencies of two consecutive

blocks of the initial sequence with the lengths m and 1m with the overlap frequen-

cies of similar blocks in a completely random sequence.

Cumulative Sum (Cusum) Test. The test is the maximum deviation (from zero) at

an arbitrary bypass determined by the cumulative sum of the given digits  1, 1  in

the sequence. It is necessary to determine whether the cumulative sum of the partial

sequences occurring in the input sequence is too large or too small compared to the

expected behavior of such a sum for a completely random input sequence. Thus, the

cumulative amount can be regarded as an arbitrary bypass. For a random sequence,

the deviations from the bypass should be near zero.

Random Excursions Test. The essence of this test is to calculate the number of cy-

cles that have strictly k excursions with an arbitrary bypass of the cumulative sum.

The arbitrary bypass of a cumulative sum begins with partial sums after the sequence

 0,1 is translated into the corresponding sequence  1, 1  . An arbitrary bypass

cycle consists of a series of single-length steps performed in random order. In addi-

tion, such a bypass begins and ends on the same element. The purpose of this test is to

determine whether the number of visits to a particular state within a cycle differs from

a similar number in the case of a completely random input sequence. In fact, this test

is a set consisting of eight tests that are conducted for each of the eight cycle states: -

4, -3, -2, -1 and +1, +2, +3, +4.

Random Excursions Variant Test. This test calculates the total number of excur-

sions to a given condition when you randomly bypass the cumulative sum. The pur-

pose is to determine deviations from the expected number of visits to different states

at random bypass. In fact, this test consists of 18 tests for each state: -9, -8, ..., -1 and

+1, +2, ..., +9.

Thus, as a result of binary sequence testing, a vector  1 2 188, ...P P P P of probabil-

ity values jP is formed. The analysis of the components jP of this vector allow us to

point to specific defects in the randomness of the tested sequence.

Passing each of the 15 statistical tests is an important criterion for evaluating a

pseudorandom generator. Therefore, not even matching one or more criteria means

that the stream cannot withstand cryptanalysis at a high level. If, on the other hand,

the generator passes all the tests, this does not indicate the security of the generator,

since such tests do not take into account the features of the actual design of the gener-

ator.

The accumulated experience of statistical testing shows that the number of tests

passed by the generator being tested depends directly on the selected cryptographic

algorithm output sequence. To ensure the reliability of the results of statistical testing

in the work [15-18], it is proposed to evaluate the mathematical expectation of the

number of tests passed
iX by the investigated generator (crypto algorithm), consider-

ing each i test as a single observation (experience), i.e. as a specific implementation

of some random variable X .

When conducting statistical surveys, 100 sequences with a length of 10
8

bytes were

generated for each algorithm, i.e. the size of the statistical sample for each algorithm

reached 10
10

bytes. Each testing (for each of the 100 sequences) was considered as an

independent observation. Table 1 summarizes the statistical test results for each algo-

rithm studied.

Table 1. The statistical testing results of hashing algorithms

Algorithm Name M099 D099 S099 P099 M096 D096 S096 P096 MIN

GOST 34.311 132.90 43.93 6.62 1 186.83 1.46 1.20 1 182
STRIBOG256 131.92 55.93 7.47 1 186.70 1.81 1.34 1 181
STRIBOG512 131.64 48.99 6.99 1 186.76 1.88 1.37 1 182
BALLOON 32 134.20 60.56 7.78 1 187.10 1.09 1.04 1 185
BALLOON 64 126.50 0.25 0.50 1 183.00 1.00 1.00 1 182
BLAKE256 133.31 55.13 7.42 1 186.75 1.90 1.38 1 183
BLAKE512 132.65 55.74 7.46 1 186.73 1.59 1.26 1 183
BMW 132.39 48.99 6.99 1 186.92 1.55 1.24 1 182
CUBEHASH 131.22 55.65 7.46 1 186.80 1.44 1.2 1 183
DJB-2 8.92 1.21 1.10 1 11.64 0.29 0.53 1 10
DJB-2 XOR 2.99 2.16 1.47 1 4.94 1.69 1.30 1 0
ECHO 131.96 53.85 7.33 1 186.51 2.16 1.47 1 182
FUGUE 224 133.07 45.78 6.76 1 186.61 2.11 1.45 1 180
FUGUE 256 132.42 43.74 6.61 1 186.78 2.25 1.50 1 180
FUGUE 384 131.03 57.22 7.56 1 186.66 1.78 1.33 1 182
FUGUE 512 133.02 62.31 7.89 1 186.76 2.14 1.46 1 180
GROESTL 256 133.23 56.01 7.48 1 186.72 2.14 1.46 1 181
GROESTL 512 133.01 58.58 7.65 1 187.14 0.90 0.94 1 184
HAMSI 224 132.84 53.65 7.32 1 186.66 2.36 1.53 1 112
HAMSI 256 131.71 51.42 7.17 1 186.87 1.87 1.36 1 181
HAMSI 384 132.86 51.26 7.15 1 187.19 1.21 1.10 1 182
HAMSI 512 132.17 51.16 7.15 1 186.45 2.68 1.63 1 179
J-H 131.70 71.63 8.46 1 186.69 2.43 1.56 1 180
KECCАK 256 131.27 58.79 7.66 1 186.52 2.70 1.64 1 181
KECCАK 512 132.40 48.12 6.93 1 186.78 1.41 1.18 1 182
LOSELOSE 16.00 0.00 0.00 1 16.00 0.00 0.00 1 16
LUFFA 133.11 47.07 6.86 1 186.71 1.50 1.22 1 183
PROGPOW 130.00 0.00 0.00 1 188.00 0.00 0.00 1 188
RANDOMX 0.00 0.00 0.00 1 0.00 0.00 0.00 1 0
RIPEMD160 84.79 84.04 9.16 1 132.11 80.95 8.99 1 105
SCRYPT 1024 133.80 68.36 8.26 1 187.10 1.49 1.22 1 184
SCRYPT 16384 140.00 0.00 0.00 1 185.00 0.00 0.00 1 185

Algorithm Name M099 D099 S099 P099 M096 D096 S096 P096 MIN

SHA2 256 132.70 57.39 7.57 1 186.74 1.67 1.29 1 182
SHA2 512 133.01 51.78 7.19 1 186.87 1.99 1.41 1 182
SHABAL 224 132.76 50.12 7.08 1 186.67 2.52 1.58 1 180
SHABAL 256 133.18 61.72 7.85 1 186.61 2.39 1.54 1 115
SHABAL 384 131.63 45.61 6.75 1 186.54 2.00 1.41 1 180
SHABAL 512 132.81 45.41 6.73 1 186.87 1.57 1.25 1 182
SHAVITE 132.01 53.72 7.33 1 186.9 1.53 1.23 1 182
SIMD 133.09 39.54 6.28 1 186.85 1.58 1.25 1 182
SKEIN 131.90 46.97 6.85 1 186.71 1.26 1.12 1 184
WHIRLPOOL 132.29 47.90 6.92 1 186.78 1.59 1.26 1 182
X11 132.46 46.48 6.81 1 186.80 1.28 1.13 1 184
X12 133.10 21.29 4.61 1 186.20 2.36 1.53 1 183
X13 137.00 74.56 8.63 1 186.90 0.69 0.83 1 185
X14 131.40 24.44 4.94 1 186.90 0.69 0.83 1 123
X15 130.10 31.49 5.61 1 186.20 4.56 2.13 1 182
X16 0.90 0.09 0.30 1 1.00 0.00 0.00 1 1
X17 3.20 0.36 0.60 1 5.80 0.16 0.40 1 5

Table 1 provides the following data:

 "M096" and "M099" – estimates of expected value (the sample mean) of the num-

ber of passed tests by criterion 0,96jP  and criterion 0,99jP  , respectively;

 "D096" and "D099" ("S096" and "S099") – estimates of the statistical dispersion

(standard deviation) of the results of testing the number of statistical tests complet-

ed by the criterion 0,96jP  and criterion 0,99jP  , accordingly;

 "P099" – the confidence value for the number of statistical tests completed by cri-

terion 0,99jP  and accuracy 2  ;

 "P096" – the value of the confidence probability for the number of statistical tests

passed by criterion 0,96jP  and accuracy 1  ;

 "Min096" – the minimum values of the number of statistical tests passed by the

criterion 0,96jP  .

The results of statistical studies (statistical portraits) of hashing algorithms are

shown in Fig. 1-40. On the abscissa scale the statistical test number (from 1 to 188) is

given, on the ordinate scale the fraction of passing of the corresponding test is given.

Fig. 1. BALLOON32

Fig. 2. BALLOON64

Fig. 3. BLAKE 256

Fig. 4. BLAKE 512

Fig. 5. BMW

Fig. 6. CUBEHASH

Fig. 7. DJB-2

Fig. 8. DJB-2XOR

Fig. 9. ECHO

Fig. 10. KECCАK 256

Fig. 11. KECCАK 512

Fig. 12. LOSELOSE

Fig. 13. LUFFA

Fig. 14. FUGUE224

Fig. 15. FUGUE256

Fig. 16. FUGUE384

Fig. 17. FUGUE512

Fig. 18. GOST_256

Fig. 19. Stribog_512

Fig. 20. WHIRLPOOL512

Fig. 21. GROESTL 256

Fig. 22. GROESTL 512

Fig. 23. HAMSI 224

Fig. 24. HAMSI 256

Fig. 25. HAMSI 384

Fig. 26. HAMSI 512

Fig. 27. J-H

Fig. 28. RIPEMD160

Fig. 29. SCRYPT 1024

Fig. 30. SHA2 256

Fig. 31. SHA2 512

Fig. 32. SHABAL 224

Fig. 33. SHABAL 256

Fig. 34. SHABAL 384

Fig. 35. SHABAL 512

Fig. 36. SHAVITE

Fig. 37. SIMD

Fig. 38. SKEIN

Fig. 39. STREEBOG 256

Fig. 40. X11

The results of statistical studies indicate that certain high-speed algorithms cannot

be applied in cryptographic applications. This applies, for example, to the algorithms

DJB-2, LOSELOSE, and others, because these algorithms, in fact, do not compute a

cryptographic checksum. However, most of the cryptographic hashing algorithms,

that have been studied, have shown high statistical properties and have high rates of

indistinguishability criterion with truly random sequence.

3 Conclusions

Hashing functions are a complex and very important cryptographic primitive that is

used in almost all mechanisms and protocols of cryptographic security of information

(password generation, encryption, pseudorandom sequence generation, electronic

signature generation, etc.). In recent years, the use of hashing has expanded signifi-

cantly. In particular, with the advent and rapid spread of decentralized distributed

systems based on so-called "linked lists" (blockchain) technology, there was an urgent

need for fast, safe and reliable hashing functions, because of their unpredictable and

irreversible features secure blockchain chains are being built. The task of choosing a

hash function is much more complicated due to the proliferation of specialized com-

putants that are being developed and practically used to look for prototypes of pre-

formed hash values (ASIC-mining). By investing in the acquisition of ASICs, indi-

vidual players can be deliberately advantaged compared to other blockchain users and

can, therefore, cause non-trust and compromise of decentralized technologies (e.g.,

different cryptocurrencies, distributed storage, smart- contracts, etc.). Therefore, the

study of the properties of modern hashing algorithms and the rationale for their rec-

ommendations for the national blockchain technology segment development is cer-

tainly an important and extremely relevant scientific task.

The results obtained shows that most hashing functions satisfy the criteria of statis-

tical security (by the NIST STS method), that is, by different indicators the output

sequences (hash values) do not differ (in the statistical sense) from the truly random

sequences. These are mainly known and standardized algorithms, which are applied in

various cryptographic applications and have already been substantially researched and

studied in previous tests. However, among the algorithms in Table 1 there are those

whose statistical certainty is either unsatisfactory or completely unacceptable. For

example, the well-known hashing algorithm RIPEMD160, which is standardized in

ISO/IEC 10118-3:2018 and accepted for use in the European Union, has shown low

values of statistical security (the average number of statistical tests with 0,96jP 

completed does not exceed 85). That is, if the RIPEMD160 algorithm inputs an ex-

cess sequence (in our studies, the input sequence was formed by a regular counter),

the generated hash sequences differ from the random sequence, i.e. they have some

determinism. Although we have not identified any specific defects in the

RIPEMD160 algorithm, the results indicate that some of the generated hash codes are

flawed in terms of randomness and unpredictability.

The unsatisfactory performance of the DJB-2, DJB-2 XOR, and LOSELOSE hash-

ing algorithms should be noted separately. In terms of statistical security, they are not

acceptable for practical use in cryptographic applications. This conclusion is predicta-

ble because the DJB-2, DJB-2 XOR, and LOSELOSE algorithms are essentially not

cryptographic, and the calculation of the hash sequences in them is similar to a regular

checksum. But, as the results show, even when using statistically dangerous algo-

rithms as part of cascading mining schemes (for example, in the X family hash algo-

rithms), the generated hash sequences also do not satisfy statistical security indicators

(see last two lines of the Table 1).

Thus, choosing a hashing algorithm for building blockchain system elements is ex-

tremely important and painstaking. In view of the results obtained, in addition to per-

formance, it is also necessary to consider the reliability and security of cryptocurren-

cies. Also important is the availability of Specialized Computers (ASICs), which

greatly accelerate mining in certain consensus protocols. Therefore, to justify the

choice of hashing algorithms, it is necessary to consider various factors and perfor-

mance indicators, including the features of building a specific blockchain system,

consensus protocols, processing and messaging algorithms, etc.

This research might be useful for the improvement of various methods of infor-

mation security, as well as other practical use [17-22].

References

1. A Statistical Test Suite for Random and Pseudorandom Number Generators for Crypto-

graphic Applications.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

2. NIST Cryptographic Toolkit. https://csrc.nist.gov/projects/random-bit-

generation/documentation-and-software

3. ISO/IEC 10118-1:2016. Information technology – Security techniques – Hash-functions –

Part 1: General. (2016-10), 12 p. https://www.iso.org/standard/64213.html

4. Handbook of Applied Cryptography by Alfred J. Menezes, Paul C. van Oorschot, Scott A.

Vanstone. October 1996, 816 pages, Fifth Printing (August 2001).

http://cacr.uwaterloo.ca/hac/

5. NIST Releases SHA-3 Cryptographic Hash Standard. August 05, 2015.

https://www.nist.gov/news-events/news/2015/08/nist-releases-sha-3-cryptographic-hash-

standard

6. NISTIR 7896 Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competi-

tion. https://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf

7. A New Standard of Ukraine: The Kupyna Hash Function.

https://eprint.iacr.org/2015/885.pdf

8. Ed2k-hash. 7 May 2005. https://wiki.anidb.info/w/Ed2k-hash

9. The C Programming Language by Brian W. Kernighan (1978-02-22) Paperback, Prentice

Hall, 178 p.

10. Melanie Swan. Blockchain: Blueprint for a New Economy. O'Reilly Media, Inc, 2015,

152p.

11. Marco Iansiti and Karim R. Lakhani (2017). “The Truth About Blockchain”. Harvard

Business Review (January–February 2017 issue). pp. 118-127.

12. Dylan Yaga, Peter Mell, Nik Roby, Karen Scarfone. NISTIR 8202 Blockchain Technology

Overview. National Institute of Standards and Technology, Internal Report 8202, 66 pages

(October 2018). https://doi.org/10.6028/NIST.IR.8202

13. X11 - cryptocurrency mining algorithm with 11 rounds of hashing. Alexander Markov.

May 23, 2018. https://miningbitcoinguide.com/mining/sposoby/x11

14. Cryptocurrency mining algorithms - table 2019 and a brief description. https://mining-

cryptocurrency.ru/algoritmy-kriptovalyut/

15. Gorbenko, I., Kuznetsov, A., Gorbenko, Y., Vdovenko, S., Tymchenko, V., & Lutsenko,

M. (2019). Studies on Statistical Analysis and Performance Evaluation For Some Stream

Ciphers. International Journal of Computing, 18(1), 82-88.

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://www.iso.org/standard/64213.html
https://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf
https://doi.org/10.6028/NIST.IR.8202
https://miningbitcoinguide.com/mining/sposoby/x11
https://mining-cryptocurrency.ru/algoritmy-kriptovalyut/
https://mining-cryptocurrency.ru/algoritmy-kriptovalyut/

16. I. Gorbenko, A. Kuznetsov, V. Tymchenko, Y. Gorbenko and O. Kachko, "Experimental

Studies Of The Modern Symmetric Stream Ciphers," 2018 International Scientific-

Practical Conference Problems of Infocommunications. Science and Technology (PIC

S&T), Kharkiv, Ukraine, 2018, pp. 125-128. doi: 10.1109/INFOCOMMST.2018.8632058

17. Andrushkevych A., Gorbenko Y., Kuznetsov O., Oliynykov R., Rodinko M. A (2019) “A

Prospective Lightweight Block Cipher for Green IT Engineering”. In: Kharchenko V.,

Kondratenko Y., Kacprzyk J. (eds) Green IT Engineering: Social, Business and Industrial

Applications. Studies in Systems, Decision and Control, vol 171. Springer, Cham, pp. 95-

112. DOI: 10.1007/978-3-030-00253-4_5

18. Krasnobayev V., Kuznetsov A., Koshman S., Moroz S. (2019) Improved Method of De-

termining the Alternative Set of Numbers in Residue Number System. In: Chertov O.,

Mylovanov T., Kondratenko Y., Kacprzyk J., Kreinovich V., Stefanuk V. (eds) Recent

Developments in Data Science and Intelligent Analysis of Information. ICDSIAI 2018.

Advances in Intelligent Systems and Computing, vol 836. Springer, Cham, pp. 319-328,

05 August 2018. DOI: 10.1007/978-3-319-97885-7_31

19. Hu Z., Gnatyuk S., Kovtun M., Seilova N. Method of searching birationally equivalent

Edwards curves over binary fields, Advances in Intelligent Systems and Computing, Vol.

754, pp. 309-319, 2019.

20. Iavich M., Gagnidze A., Iashvili G., Gnatyuk S., Vialkova V. Lattice based Merkle, CEUR

Workshop Proceedings, Vol. 2470, pp. 13-16, 2019.

21. Gnatyuk S., Kinzeryavyy V., Kyrychenko K., Yubuzova Kh., Aleksander M., Odarchenko

R. Secure Hash Function Constructing for Future Communication Systems and Net-

works, Advances in Intelligent Systems and Computing, Vol. 902, pp. 561-569, 2020.

22. Kuznetsov O., Potii O., Perepelitsyn A., Ivanenko D., Poluyanenko N. (2019) “Light-

weight Stream Ciphers for Green IT Engineering”. In: Kharchenko V., Kondratenko Y.,

Kacprzyk J. (eds) Green IT Engineering: Social, Business and Industrial Applications.

Studies in Systems, Decision and Control, vol 171. Springer, Cham, pp. 113-137.

DOI: 10.1007/978-3-030-00253-4_6

https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57192921573&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=36184129600&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57188704958&zone=
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=57202222377&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047498735&origin=resultslist&sort=plf-f&src=s&sid=0995e861d6bea0c5c4cb458fdb69e1da&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2836184129600%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85047498735&origin=resultslist&sort=plf-f&src=s&sid=0995e861d6bea0c5c4cb458fdb69e1da&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2836184129600%29&relpos=0&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/5100152904?origin=resultslist
https://www.scopus.com/authid/detail.uri?authorId=57194796747&eid=2-s2.0-85074103076
https://www.scopus.com/authid/detail.uri?origin=AuthorProfile&authorId=36184129600&zone=
https://www.scopus.com/sourceid/5100152904?origin=resultslist

