

Job Migration for Load Balancing Algorithm in Grid

Computing Using Queue Length parameter

 Ali Wided

 Department of Mathematics and Computer Science

 University of tebessa

 Tebessa, Algeria

 wided.ali@univ-tebessa.dz

 aliwided1984@gmail.com

Bouakkaz Fatima

Department of Mathematics and Computer Science

University of tebessa

Tebessa, Algeria

f.bouakkaz@univ-tebessa.dz

f_bouakkez@esi.dz

Abstract— based on the previous works, we used the job

migration technique for hierarchical load balancing. In this

paper the authors propose a novel job migration algorithm for

dynamic load balancing (JMADLB), in which parameters(such

as CPU queue length) have been considered which is used for the

selection of overloaded resources (or underloaded ones) in grid. .

In dynamic load balancing state, the system will change

dynamically until it reaches a balance. In a grid environment,

efficiency of resources varies with time. Thus, the allocation of

jobs must be adjusted dynamically in according with the

variation of the resources status. The proposed algorithm has

been verified through Alea2 simulator and the simulation results

validate that the proposed algorithm allow us to reach our

objectives.

Keywords— grid computing, load Balancing, job Migration,

workload, information policy, location policy, selection policy,

resources Allocation.component;

I. INTRODUCTION
A computational Grid is a hardware and software

infrastructure that gives dependable, consistent, pervasive, and
cheap access to high-end computational capabilities [1]. The
challenges in grid computing lie in load balancing. Load
balancing is an important issue for the problem of utilization.
It is those techniques which are designed to equally distribute
the load on resources and maximize their utilization. These
techniques can be approximately categorized as centralized or
decentralized, dynamic or static, periodic or non-periodic [2].
Main purpose of load balancing is to enhance the response
time of the application by which workload would be saved
according to resources. There are causes which are the major
raisons of load balancing, resubmission of jobs and job
migration; heterogeneity of resources, dynamic nature of
resource’s performance and diversity of applications in case of
Grids[3]. This is even more vital in computational Grid where
the main concern is to equally allocate jobs to resources and to
minimize the difference between the overloaded and the
underloaded resource load [4]. Efficient load balancing
through the Grid is required for improving performance of the
system. The overloaded grid resources can be balanced by
migrating jobs to the idle processors, i.e. a set of processors to
which a processor is directly connected [4]. Our contributions
are: First, we proposed a hierarchical load balancing
algorithm. Second, we verified the proposed algorithm
through Alea 2 simulator. The objective of proposed algorithm

is enhancing the performance of application by minimizing
slowdown, and the waiting time in the global queue,
maximizing the resources usage rate and load balancing
among the resources.

II. RELATED WORKS

The authors[5] have suggested a Priority based Dynamic
Load Balancing Algorithm (PBDLB). When a node is
overloaded, it calls the MSN which then finds a suitable node
and then performs the load balancing, a function msn () finds
the available under-loaded nodes by looking into a queue
where all the processors are scheduled in the decreasing order
of their computing power. here CPU queue length is
considered. The Job Migration strategy is used through which
the migration of jobs takes place from the heavily node to the
lightly-loaded node. The advantage of this algorithm is that it
takes into account the resource processing capability, where
the nodes with high computing power have high priority; also
it decreases the communication overhead and proves to be cost
real. The drawback of this study is not considering the fault
tolerance.

In the study of [6] an Augmented Hierarchical Load
Balancing with Intelligence Algorithm is proposed (AHLBI).
When a job request comes, the scheduler initializes job and
cluster parameters comes, the scheduler initializes job
parameters and calculates the Expected computing power,
ECP for each job together with ALC, Average System Load
and ACP of clusters before job allocation. The algorithm find
the deviation of ALC with the Average system load and find
out the probability value of deviation for every cluster. If the
probability of deviation is within the range of 0 and 1, the
cluster is marked as under loaded. The ACP of under loaded
clusters is compared with the ECP of jobs. If the ACP value
of a cluster is less than or equal to ECP of jobs, the cluster is
considered as fittest and job is allocated to it. After job
allocation to clusters, some clusters may remain underutilized.
To avoid this, AHLBI compares the queue length of all the
clusters. Jobs from clusters with large queue size are stolen
and allocated to free clusters. Similarly, when the number of
jobs waiting to be executed in a cluster’s queue increases, jobs
from queue tail is allocated to free clusters for execution. the
advantages of this algorithm are reducing idle time of clusters
and makespan. The drawback of this strategy is that it does not

Seven
Machine à écrire
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

take into account the resource processing capacity and the
fault tolerance.

In this paper [7], the authors proposed the Distributed
Load Balancing Model for Grid Computing that represents a
Grid topology based on a forest structure. Jobs migration is
presented on two levels, namely (a) intra-cluster and (b) inter-
cluster load balancing. The nodes of the cluster send their load
information to cluster managers. Cluster manager is
responsible of saving the nodes load information and also
distribution of the information with other cluster managers
through inter-cluster communication. The advantage of this
algorithm is that it takes into consideration the heterogeneity
of the resources, it reduces the response time and the
communication cost. The drawback of this strategy is that it
does not take into account the resource processing capabilities
and the fault tolerance.

III. PROPOSED LOAD BALANCING ALGORITHM
The proposed Load Balancing implements three policies:

Information Policy, selection Policy and location Policy. For
implementation of Information Policy we use activity based
approach. We use FIFO strategy For implementing the
Selection Policy, for implementation of location policy We
use as Load Index Queue Length. On the basis of Load Index
Load Balancer decides to activate Load Balancing process.

Notations used in our algorithms are summarized and
shown in Table I:

TABLE I. NOTATIONS USED

Parameter Description

N Node

LoadR Load of resource

Qlength Queue length of resource

THH The higher threshold

THL The lower threshold

OLD-list Overloaded List

ULD-list Underloaded List

BLD-list Balanced List

Loadavg Average Load

NBRN Number of Nodes of cluster c

C cluster

A. Intra-cluster load balancing algorithm

Depending on its current load, each cluster manager
decides to start a Job Migration operation. In this case, the
cluster manager tries, in priority, to balance its Load among its
nodes. To implement this local load balancing, we propose the
following algorithms:

Algorithm 1: Information policy

We considered the load of node at given time was
described simply by CPU queue length. it denotes the number
of processes which are waiting to be executed.

We calculated this parameter as follow:

Load (Qlength) = (Q1+Q2+……...+QT)/T
Where:Q1,Q2,……...,QT is the value of Qlength in a
previous one second interval.

T is the number of time intervals.

gathering information algorithm

Begin

T 5 seconds

Waiting for jobs;

Create jobs queue for each node;

For every Node N and in each one second of T intervals do

 Calculate (Qlength);

End For

Load (Qlength)=(Q0+Q1+…..QT)/T;

According to its period cluster manager receives Load

informations from all nodes and compute load of cluster C

associated.

Cluster manager Sends Load information of C to Grid

manager

Loop

wait for load change // happening of any of defined events

if (events_happens ()=1 or events_happens ()=4) then

begin

Remove terminated or migrated job from the waiting queue

Subtract their load value from the total local load of node.

Send new load to its cluster manager associated ;

End

if (events_happens ()=2 or events_happens ()=3) then

begin

Add the newly created or incoming job for the waiting queue

Add their load value for the total local load of node

Send new load to its cluster manager associated;

End

If ((events_happens () =6) and (events_happens () =7)) then

begin
ask the slowest resource to send a portion of its load to

the idle resource .

End

End Loop

Function events_happens ()

output Type: integer

begin

If (Job.state=Termination) then events_happens () =1;

If (Job.state=Start) then events_happens () =2;

If (Job.state=Incoming Migrating) then events_happens ()=3;

If (Job.state = migrated) then events_happens ()=4;

If (Arrival of any new resource) then events_happens ()=5;

If(resouce.state= idle) then events_happens () =6;

if(resource.state= slowest) then events_happens ()=7;

if(cluster.state=saturated then events_happens ()=8;

if (cluster.state=unbalanced) then events_happens ()=9;

end

Algorithm 2: Location policy

This algorithm classifies the nodes according to their load.
it used three states for classifying: overloaded, underloaded
and balanced. In the first time, we must calculate two
threshold values for Qlength parameter.

The calculation of these thresholds is done as follow:

Calculate load average of Qlength parameter over all
nodes

Loadavg(Qlength)=(load1+load2+….loadn)/nbr; Where

Loadavg(Qlength) is the average load of Qlength over all
nodes.

load1,load2,….loadn are the current load of Qlength of each
node calculated by Load estimation algorithm. nbr is the
number of nodes.

Calculate the threshold values

The higher and lower threshold values of Qlength
parameter are calculated by multiplying the average load of
Qlength and a constant value.

THH=H*Loadavg

THL=L* Loadavg

Where THH is the high threshold and THL is the low
threshold

H and L are constants.

The next step is to partition the nodes for balanced,
overloaded and underloaded nodes by using the threshold
values as follow:

 Overloaded : the node will be added for overloaded
list if Qlength is high, that is mean if the number of
jobs in the queue of node is high then the node is
classified as overloaded node.

 Underloaded: the resource will be added for
underloaded list if Qlength is low.

 balanced :the node are not into overloaded list and
underloaded list are the node in the balanced load state
they are considered as more loaded than the low state
and less loaded than the high state.

Location policy algorithm

Begin

If(events_happens ()=8) then Inter-cluster load balancing

algorithm

somme 0;

For every Node N of cluster C do

 Somme Somme+ LoadN(Qlength) ;

End For

Loadavg(Qlength)= somme1/NBR-N;

THH(Qlength)= Loadavg(Qlength)*H;

THL(Qlength)= Loadavg(Qlength)*L;

Partionning Nodes into overloaded list OLD-list , underloaded

list ULD-list and balanced list BLD-list

OLD-list ; ULD-list← ; BLD-list← ;

For every Node N of cluster C do

 If (LoadN(Qlength))>THH(Qlength) then

 OLD-list ←OLD-list N;

 Else If (LoadR(Qlength))< THL(Qlength))

 then ULD-list ULD-list N

 Else BLD-list BLD-list N;

End If

End For
Sort OLD_list by descending order relative to their LoadN.

Sort ULD_list by ascending order relative to Their LoadN.

End.

Algorithm 3: Job Migration Decision

After classifying the nodes, in the next step cluster manager

decide to migrate jobs from overloaded to under-loaded nodes,

it applies the following algorithm:

Job Migration Decision algorithm

begin

While (OLD-list ≠ .AND. ULD-list ≠) do

 For i = 1 To ULD-list.Size() do

 Select job from queue of first node

 belonging to OLD-List by FCFS algorithm

 Migrate the selected job from first

 Sender node of OLD-List to i
th

 receiver

 node of ULD-list;

 Update the current LoadN of receiver

 and sender nodes;

 Update OLD-list, ULD-list and BLD-list;

 Sort OLD-list by descending order of their

 LoadN;

 End For

End

B. Inter-cluster load balancing algorithm

This algorithm applies a global load balancing among all
clusters of the Grid. The Inter-cluster load balancing at this
level is made if a cluster manager fails to balance its Load
among its associated nodes. In this case the grid manager
migrates Jobs from overloaded clusters to under loaded
clusters. We propose the following algorithms:

Inter-cluster load balancing algorithm

begin

According to period T do

Grid manager receives Load informations of clusters from its

Cluster Managers .

Grid manager collect related informations of its clusters in the

clusters information table;

Grid manager partitions grid into overloaded (OLD), under-

loaded (ULD) and balanced (BLD) clusters;

Create OLD_clusters_table;

Create ULD_clusters_table;

Sort clusters Cj of OLD_clusters_table by Descending order

of their Load;

For Every cluster Cj of OLD_clusters_table Do

 begin

 Sort clusters Cr of ULD_clusters_table by Ascending

 order of their Load

 Sort nodes of Cj by descending order of their Load

While (OLD_clusters_table ≠ Φ AND ULD_clusters_table ≠

Φ) Do Begin

 Sort the clusters Cr of ULD_clusters_table by

 ascending order of inter clusters (Ci-Cr) WAN

 bandwidth sizes.

 Sort the nodes of Ci by descending order of their

 load

 Sort Jobs of first node of Ci by FCFS algorithm and

 communication cost

 Migrate the selected job from the first node of Ci to

 j
th

 cluster of ULD_clusters_table

 Update the current Load of receiver cluster

 Update ULD_clusters_table, and OLD_clusters_table

End

Endfor

End

IV. EXPERIMENTAL RESULTS

We implemented the proposed load balancing algorithm in
Java using JDK 1.8. The implementation is done on
a Alea 2 grid simulator[8].

A. Simulated parameters

In order to evaluate the feasibility and the performance of
our algorithms we have tested them in Alea 2 Grid simulator.
We utilized the following parameters:

1. Resource parameters: these parameters give
information about available resources during load
balancing period such as:

a. number of Clusters

b. number of resources in each Cluster

c. size of memory (RAM)

d. date to send load information from resources

e. tolerance factor.

2. job parameters: these parameters include:

a. number of jobs queued at every resources;

b. arrival time, waiting time, submission time

 ,start time , processing time and finish time

c. job length

d. job priority

3. Network parameter: LAN and various WAN
bandwidth sizes.

4. Load index: we have used CPU queue Length Where
CPU queue Length denotes number of waiting jobs
in queue of resource.

B. Performance parameters

We have focused on the following parameters:

1. Average response time: the response time is the time
a job spends in the system which means the time
from its arrival to its termination.

2. Slowdown: denotes as the ratio of response time to
processing time . Slowdown= Max (response
time/processing time) of all jobs.

3. Average resource usage rate

C. Performance Evaluation

The proposed algorithm provides better Job Migration
mechanism with DLBA. The important performance factors in
estimating our proposed algorithm are decreasing response
time, reducing slowdown and maximizing resource utilization.
We performed some experiments for evaluating efficiency and
performance of the proposed algorithm.

Experimentations 1:

In the first experimentation, we have focused on the
average response time (in sec), according to various numbers
of jobs and clusters. We have supposed different numbers of
clusters and we considered that each cluster is composed of
various numbers of resources. The results showed that
proposed algorithm surpassed other algorithms by decreasing
the average response time. In FCFS (first come, first served)
algorithm, if the resource demanded by the first job in the
queue is not available, the remaining jobs cannot schedule
even if the demanded resources are available. In the proposed
algorithm, it works as FCFS in the job selection but when the
first job in the queue cannot be scheduled directly the
proposed algorithm estimate the earliest probable starting time
for the first job using the processing time calculated of
running jobs. Then, it makes a reservation to run the job at this
pre-estimated time. Next, it examines the queue of waiting
jobs and directly schedules every job not intervening with the
reservation of the first job.

From figure 1 and 2, we can perceive that the proposed
algorithm works much better than FCFS and EDF(Earliest
deadline first) since jobs are equally distribute over available
clusters. The average response time and average slowdown are
slightly better for the proposed algorithm. we have tried
solving the problem of staturation by preventing the
overloaded resources and we don’t permit receiving more
jobs. Evidently, simple solution is not enough for more
complex problems. We will try to fully comprehend this
phenomenon in the future since it is outside the focus of this
paper.

Fig 1. Comparison of avg response time(in sec), between FCFS, EDF and

JMADLB with 20 clusters

Fig 2.Comparison of avg slowdown(in sec) between FCFS, EDF and
JMADLB with 20 clusters

Experimentations 2:

In the second experimentation, we have focused on the
resource utilization (%). We have supposed number of clusters
is 14, and we considered that each cluster is composed of
various numbers of resources. Number of jobs is 3000. Figure
3 shows the cluster utilization of different algorithms.

Examination of the cluster utilization showed that FCFS
and EDF did not perform well. It shows that the cluster-11
which is having the highest processing resources is over
utilized, while clusters 2, 4, 5, 8 and 9 are idle in FCFS and
EDF scheduling algorithms. The reason behind improvement
is even utilization of all clusters which is achieved because
JMADLB balances the load between clusters at the time of
scheduling. It shows that the JMADLB is better performed
compared to traditional scheduling algorithms, also because
load balancing is used to make sure that none of existing
clusters are idle while others are being utilized. The load
balancing effects are caused by under-loaded clusters. In the
proposed algorithm there is an increase of utilization of cluster
2 from 0% (before JMADLB algorithm) to 8% (after) and
cluster 4 from 0% to 2.5% and cluster 8 from 0% to 4% and
cluster 9 from 0% to 30%. In this case, the different
utilizations of the participating clusters are balanced. On the
other hand, jobs with specific requirements have to wait until
the suitable resources become available. This in fact generates
higher system utilization on particular clusters. We have tried
solving that by migrate the jobs for idle resources for load
balancing and preventing the overloaded clusters. Moreover
the JMADLB algorithm permits the scattering of the job on
the most available resources when there was no appropriate
resource, unlike the other scheduling algorithms that try to
select the best resource resembling to the job requirements;
otherwise, the job will stay in the global queue, which
indicates an under-utilization of the resources.

Fig 3. Comparison of Cluster Utilization (%) between FCFS, EDF and

JMADLB with 14 clusters

Experimentations 3:

In the third experimentation, we have focused on waiting
job in queue and we have compared it with running job. We
have supposed the number of clusters is 20 and we considered
that each cluster is composed of various numbers of resources.
Number of jobs is 3000.

Fig 4 . Comparison of running jobs and waiting jobs of JMADLB algorithm

with 20 clusters

Fig 5 . Comparison of running jobs and waiting jobs of EDF algorithm with

20 clusters

Fig 6. Comparison of running jobs and waiting jobs of FCFS algorithm with

20 clusters

The horizontal axis represents time (units of days) while

the vertical axis indicates that the number of jobs. The red
curve shows waiting job who says that a job in the waiting
jobs queue, the green curve shows running job which say that
a job is running or executing. EDF and FCFS are not able to
schedule jobs easily, generating greatest waiting jobs during
the time. For 3000 jobs and with 20 clusters JMADLB, is
capable of a higher resource utilization and there is no waiting
jobs in the queue through the time as can be seen in figure 4.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a load balancing algorithm
in grid computing environment. To validate the proposed
algorithm, we have used a Grid simulator in order to measure
its performance. The first experimentation results are very
promising and lead to a better load balancing between nodes
of a Grid without high computing overhead. We have obtained
good results especially for resource utilization. In the future,
the authors want to develop the proposed algorithm by adding
the multi-agent systems and we will run our algorithm in
decentralized manner. Nevertheless, our algorithm has some
limitation that the authors intend to address in the future. In
this work, the authors did not study the effect of increasing the
number of Job Migration and the performance degradation due
to the migration in addition to the drawback of the centralized
system. So for the future work, the authors will be interested
by these directions.

References
[1] Foster, C. Kesselman, J.M. Nick, and S.Tuecke.‚Grid services for

distributed system integration'. IEEE Computer, 35(6):pp.37-46,2002.

[2] Y. Zomaya, Y.Teh, Observations on using genetic algorithms for dynamic
load-balancing, IEEE Transactions on Parallel and Distributed Systems,
vol. 12, No.9, 2001, pp.899-911 .

[3] Belabbas Yagoubi , Hadj Tayeb Lilia and Halima Si Moussa , 2006. Load
Balancing in Grid Computing. Asian Journal of Information
Technology, 5: 1095-1103.

[4] B.Yagoubi ,Y. Slimani,Job Load Balancing Strategy for Grid Computing
.Journal of Computer Science 3(3),pp.186-194,2007.

[5] S. Kumar, and N. Singhal. (Jul, 2012). A Priority based Dynamic Load
Balancing Approach in a Grid based Distributed Computing Network,
International Journal of Computer Applications, Vol. 49, No.5, pp. 819-
828.

 [6] Joshua Samuel Raj, Hridya K. S and V. Vasudevan, Augmenting
Hierarchical Load Balancing with Intelligence in Grid Environment ,
International Journal of Grid and Distributed Computing Vol. 5, No. 2,
June, 2012.

[7] B. Yagoubi, and M. Meddeber. (2010). Distributed Load Balancing
Model for Grid Computing, Revue ARIMA, Vol. 12, pp. 43-60.

[8] Dalibor Klusáček and Hana Rudová.(2010). Alea 2 job scheduling
simulator. In Proceedings of the 3rd International Conference on
Simulation Tools and Techniques (SIMUTools 2010), Torremolinos,
Malaga, Spain.

 Website: Dalibor Klusáček and Hana Rudová .Retrieved from
http://www.fi.muni.cz/~xklusac/workload

