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Abstract—The DNA Fragment Assembly Problem (FAP) is a
combinational optimisation problem in bioinformatics which is
the process of reconstructing the original DNA sequence from
a set of fragments produced by a sequencing machine. It is
an NP-Hard problem. Therefore, finding an exact solution in a
polynomial-time is impossible. Metaheuristics-based algorithms
can be used to provide a good solution in reasonable time. In
this paper, we have applied a Chemical Reaction Optimisation
(CRO) algorithm combined with Simulated Annealing (SA) to
the DNA fragment assembly problem. The experimental results
showed that CRO+SA is very competitive with the state-of-the-art
algorithms for this problem.

Index Terms—Bioinformatics, DNA Fragment Assembly Prob-
lem, Chemical Reaction Optimisation, Simulated Annealing

I. INTRODUCTION

The deoxyribonucleic acid (DNA) is a double stranded helix
that contains genetic information needed for the development
and functioning of almost all cells in a living organism.
Each strand is constructed from four types of nucleotides:
Adenine, Cytosine, Guanine, and Thymine. To determine the
sequence of these nucleotides, the process of DNA sequencing
is applied. Since current DNA sequencing technologies are
not able to read the whole DNA sequence, only much shorter
fragments called ”reads”, the DNA fragment assembly is
needed to reconstruct the original DNA sequence from these
reads.

The process of DNA sequencing starts with duplicating
the original DNA sequence, then each copy is cut into short
fragments at random points. After that, this biological material
is converted to sequences of Ts, Gs, Cs, and As using a
sequencing machine; this process is referred to as the shot-
gun sequencing. After the reads are obtained, an assembly
approach is followed to merge these reads into a longer DNA
sequence.

The main approaches to the DNA fragment assembly
problem are: the Overlap-Layout-Consensus (OLC) which is
especially used for assembling long reads obtained by the
Sanger sequencing or the third generation sequencing, and
the De Brujin graph [1], this approach became popular for
assembling the short reads produced by the next generation
sequencing.

Unfortunately, the DNA fragment assembly is an NP-
Hard problem [2], even with the elimination of sequencing

errors and the difficulties caused by the repetitive structure of
genomes. Therefore, metaheuristic approaches are employed to
find good solutions efficiently. Chemical reaction optimization
(CRO) is a powerful population-based optimization algorithm
proposed by [3]. It mimics what happens to molecules in
a chemical reaction system microscopically. The CRO is a
discrete metaheuristic which made it suitable for the DNA
fragment assembly problem. It has been successfully applied
for several combinatorial and real world optimization problems
such as : task scheduling in grid computing [4], the 01
knapsack problem [5], max flow problem [6], the vehicle
routing problem [7], the energy conserving of sensor nodes
in the design of wireless sensor networks [8], clustering
algorithms for wireless sensor networks [9], and multiple
sequence alignment [10].

In this paper, a chemical reaction optimization algorithm
combined with a simulated annealing-based local search
has been proposed to solve the DNA FAP. The simulated
annealing-based local search have been used to enhance the
final solution obtained by the CRO algorithm. We have
validated our algorithm by using three set of benchmarks:
Genfrag, Dnagen, and the f-seires. The experimental results
show that the algorithm can get better overlap score than other
metaheuristics-based approach.

The remainder of this paper is organized as follows. In sec-
tion II, we give some basic concepts about the DNA fragment
assembly problem. Section III presents the CRO algorithm.
The manner of applying the CRO+SA on the DNA fragment
assembly problem is detailed in section IV. Section V presents
and discusses the experimental results obtained from applying
the proposed approach on three set of benchmarks. Finally,
Section VI concludes the paper.

II. THE DNA FRAGMENTS ASSEMBLY PROBLEM

The DNA fragments assembly is one of the most difficult
phases of any DNA sequencing project. Due to the fact
that long DNA sequence cannot be accurately and rapidly
sequenced. DNA sequencing provides the necessary informa-
tion about the overlap to combine the reads back together.
Therefore, the ultimate goal is to obtain a sequence as close
as possible to the original one [11].
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The OLC approach for the DNA fragment assembly prob-
lem proceeds in three phases:

1) Overlap: It consists in finding the longest common
overlapping between the suffix of a sequence and the
prefix of another one. This task requires the comparison
of all possible pairs of fragments. It is usually tackled
with a dynamic programming algorithm applied to semi-
global alignments such as Smith-Waterman algorithm
[12].

2) Layout: The goal of this step is ordering the fragments to
maximise the overlap scores calculated in the previous
phase. This NP-Hard problem [2] is the most difficult
phase of the OLC approach.

3) Consensus: To determine the complete DNA sequence
using the layout generated in the layout phase. The
consensus is usually generated by applying the majority
rule. For measuring the quality of a consensus, we can
use Eq. 1, where n is the number of fragments in
the target sequence. The coverage measures the data
redundancy.

Coverage =

∑n
i=1 length of the fragment i

target sequence length
(1)

Since the DNA fragments assembly problem is an NP-Hard
problem, Most assemblers are based on variations of a greedy
algorithms, such as Phrap [13], TIGR Assembler [14], Celera
Assembler [15], Velvet [16], and ABySS [17]. However, most
proposed metaheuristics dealt with the layout phase of the
OLC approach. Such algorithms based on Simulated annealing
[18], tabu search [19], in [20], the authors have proposed a
problem aware local search algorithm (PALS) to solve the
problem with the object of achieving a maximum overlap value
and a minimum number of contigs, which is a sequence of
fragments with an overlap greater than a threshold between
them. In [21],the authors have proposed two modifications
to PALS to improve its accuracy and efficiency. In [22],
the authors have studied the performance of different genetic
algorithm operators for the DNA fragment assembly problem.
They found that the edge-recombination crossover used with
conjunction with two specialised operators-which manipulate
the contigs rather than the individual fragments, perform best.
Luque and Alba in [18] have proposed a Genetic Algorithm,
Scatter Search and CHC algorithm for solving the DNA
FAP. Due to its difficulty, scientists have opted to hybrid
methods to solve this problem. Different hybridisation with
PALS were proposed in the literature: GA [23], cellular GA
[24], simulated Annealing [25]. The authors in [26] have
proposed a hybrid PSO algorithm (HPSO). They used a a tabu
search algorithm for initialising the particels and a simulated
annealing algorithm to improve the best solution obtained
by the PSO algorithm. The authors in [27] have presented
an Artificial Bee Colony (ABC) algorithm and Queen-bee
Evaluation based on Genetic Algorithm (QEGA) to tackle the
problem of DNA fragment assembly for noisy and noiseless
instances. In [28] the authors have proposed two algorithms
namely genetic algorithm with simulated annealing (GA+SA)

and genetic algorithm with hill climbing (GA+HC). The
authors in [29] have presented a hybrid meta-heuristic based
on Simulated Annealing and a genetic crossover operator. In
[30] the authors have proposed a memetic PSO algorithms
based on two initialization methods: the Tabu Search (TS) and
simulated annealing (SA). In [31] the authors have proposed
a collection of GA variations (Recentering-Restarting, Ring
Species, and Island Model) in combination with each other.
These algorithms also used heuristics, namely, 2-Opt and
the Lin-Kernighan Heuristic. They studied the performance
of these algorithms with different solution representations.
The most recent metaheuristic used for solving the DNA
FAP is the crow search algorithm in hybridisation with the
improved PALS (PALS2Many*) in [32]. The authors have
used a modified version of the ordered crossover operator
to adapt the continuous crow search algorithm to the DNA
FAP; and in the local search they used only the movement
that increase the overlap values not the number of contigs. In
[11] a parallel hybrid algorithm between Particle Swarm Opti-
mization (PSO) and Differential Evolution (DE), (PPSO+DE)
have been proposed.

III. THE CHEMICAL REACTION OPTIMISATION ALGORITHM

CRO is a recent population-based nature inspired meta-
heuristic. It mimics the process of transforming a set of
unstable molecules through a sequence of elementary reactions
into stable products. Every molecule has a molecular structure
(w), a potential energy (PE), and a kinetic energy (ke); and
optional attributes that depends on the problem. Such as: the
number of hits (NumHit), the minimum PE (MinPE), and the
minimum hit number (MinHit). Illustrations of these attributes
are presented in Table I . There are four types of reactions in
the CRO, grouped into uni-molecular and multi-molecular:

1) Uni-molecular reactions
• On-wall ineffective collision
• Decomposition

2) Inter-molecular reactions
• Inter-molecular ineffective collision
• Synthesis

The four elementary reactions are described as follows.
On-wall ineffective collision: In this reaction, a molecule

w hits the wall of the container, then bounces away remaining
in one single unit. As a result, a new molecule w′ in the
neighbourhood of the first one is generated. The change is
allowed only if

PEw +KEw ≥ PEw′ (2)

we get
KEw′ = (PEw +KEw − PEw′) ∗ q (3)

where q ∈ [KELossRate, 1] , and (1 − q) represents the
fraction of KE lost to the environment when it hits the wall.

Decomposition: In the decomposition, a molecule hits the
wall and then decomposes into two or more pieces. in this
paper, we assume that a molecule w produces two molecules



TABLE I
THE ATTRIBUTES OF A MOLECULE USED IN CRO WITH ITS MEANING

Attribute Meaning
Molecular structure (w) Represents a solution of the problem.
Potential energy (PE) Defines the objective function value of

the corresponding solution represented
by w.

Kinetic energy (KE) A non-negative number, it quantifies
the tolerance of the system accepting a
worse solution than the existing one.

Number of hits (numHit) Indicates the total number of collisions
the molecule has been involved in.

Minimum PE (minPE) Means the best objective function value
that the molecule has experienced.

Minimum hit number
(minHit)

Records the number of hits when a
molecule obtains its latest minimum
PE. It is an abstract notation of the
period of time a molecule has stayed in
a stable state.

w1 and w2. To perform the decomposition, the criterion
(NumHit−MinHit > α) has to be fulfilled. The change is
allowed if

PEw +KEw ≥ PEw1 + PEw2 (4)

or
PEw +KEw + buffer ≥ PEw1 + PEw2 (5)

if 4 is satisfied we get

KEw1 = temp1× q

and
KEw2 = temp1× (1− q)

where temp1 = PEw + KEwPEw1 − PEw2 and q is
randomly generated from the interval [0, 1]. And if 5 is
satisfied we get

KEw1 = (temp1 + buffer)× q1 × q2

and

KEw2 = (temp1 + buffer −KEw1)× q3 × q4

Then the buffer is updated by

buffer = buffer + temp1 +KEw1 +KEw2

where q1, q2, q3, and q4 are randomly generated from the
interval [0, 1]. If 4 and 5 are not satisfied, the decomposition
reaction does not hold and the molecule has its original
structure w.

Inter-molecular ineffective collision: In this reaction, two
or more molecules (assume two) collide with each other
and bounce away. This reaction is similar to the On-wall
ineffective collision, we generate two molecule w′1 and w′2
in the neighbourhoods of w1 and w2 respectively. The change
is allowed if

PEw1 + PEw2 +KEw1 +KEw2 ≥ PE′w1 + PE′w2. (6)

Let temp2 = (PEw1 + PEw2 + KEw1 + KEw2)(PE
′
w1

+
PE′w2

.
We get

KE′w1
= temp2× q

and
KE′w2

= temp2× (1− q)

where p is a random number uniformly generated from the
interval [0, 1].

Synthesis: A synthesis happens when multiple (assume
two) molecules hit against each other and fuse together. We
generate a new molecule w′ a quite different from the two
original molecules w1 and w2. The condition for synthesis is
(KEw1

< β and KEw2
< β). The change is allowed only

if
PEw1

+ PEw2
+KEw1

+KEw2
≥ PEw′ . (7)

We get

KEw′ = PEw1
+ PEw2

+KEw1
+KEw2

− PEw′ .

IV. CRO+SA FOR THE DNA FRAGMENT ASSEMBLY
PROBLEM

As previously mentioned, the present work uses a chemical
reaction optimisation algorithm combined with a local search
for solving the layout phase in the OLC approach for the DNA
fragment assembly problem. In fact, the use of exact methods
for finding the optimal layout would be very time-consuming,
which motivates the use of metaheuristics. In this section, we
start by defining the aspects of the solution presentation and
the objective function, then we present the use of the CRO and
the simulated annealing algorithm to tackle the DNA fragment
assembly problem.

A. Solution representation

A solution in CRO is presented by the molecular structure
of a molecule. Solutions are represented by a permutation of N
(the number of reads) integer encoding a sequence of fragment
identifiers.

B. Objective function

Chemical reaction optimisation was originally designed to
tackle minimisation problems. In this paper, we adopt the
fitness function proposed in [22] by adding a minus sign to it,
as shown in Eq. 8

Minimise : F (S) = −
n−1∑
j=1

w(fj , fj+1) (8)

Where S denotes a molecule, and w(fj , fj+1) is the overlap
score between the two adjacent fragments, calculated using a
dynamic programming semi-global alignment algorithm. The
settings used were 1 for a match, 3 for a mismatch, and 2 for
a gap [33].



C. The search process

In our approach, a chemical reaction optimisation algorithm
is used to search for the best layout that minimises the
objective function Eq. 8. As summarised in the flowchart of
Fig. 1, the algorithm starts by defining the initial population,
and assigning values to the control parameters. After that, a
number of iterations are performed. In each iteration, we per-
form one of the four collisions of the CRO, then we check for
any new minimum fitness value and record it. After a certain
number of iterations without improvements, we substitute the
worst 20% of the population with new solutions generated by
the same method as the initial population. This process helps
to maintain the diversity of the population. After a maximum
number of iterations performed without improvements, we
finish the CRO process and use the simulated annealing to
improve the best solution obtained. More details are presented
in the following:

1) Population initialisation: To provide good and diverse
solutions, we have combined two strategies to set the values
of each solution. We used a greedy-based approach to set
the values of 60% of a solution and we assigned the rest
randomly from the fragments that had not been selected
before. This approach serves a twofold purpose. Firstly, the
greedy approach helps to speed up the search. Secondly, the
random approach prevents the algorithm from stacking at a
local minimum.

2) Elementary reactions: To choose one of the four elemen-
tary reactions, we first decide whether it is a uni-molecular or
an inter-molecular collision. To do this, we generate a random
number t, in the interval of [0, 1]. If t is larger than molecoll,
it will result in an event of uni-molecular collision; Otherwise,
an inter-molecular collision will take place. Next, we examine
the criteria of decomposition or synthesis to decide which type
of collision will take place.

1) On-wall ineffective collision: Since this reaction is used
to make a small change in the molecular structure, it
is done by selecting a fragment that does not have
an overlap greater than a threshold with its adjacent
fragments, or selecting a random one.To do this, we
generate a random number t, in the interval of [0, 1]. If
t is larger than 0.2, it will result in a random selection.
Otherwise, we select an isolated fragment. Then, we
search for the best position for it in the permutation.
Figure 2 shows a graphical representation of on-wall
ineffective collision.

2) Decomposition: In this reaction, we have used the half-
total change operator [34]. we have produced two new
solutions from an existing one by keeping one half of
the existing solution for the new one and assigning the
remaining half by piking randomly the values form the
other half. Figure 3 depicts the decomposition collision.

3) Inter-molecular ineffective collision: In this operator, we
generate two molecule w′1 and w′2 in the neighbourhoods
of w1 and w2 respectively. to do this, we have used the
two points crossover. we start by selecting randomly two

points. Then, we swap all the fragments between the
two points between the solutions w1 and w2 as shown
in Figure 4.

4) Synthesis: We have used an enhanced edge recom-
bination operator [35]. This operator emphasizes the
adjacency information instead of the order or position of
the fragments in the layout. To create a new solution, we
use the information contained in the ” edge table”, which
is an adjacency table listing the connections between the
fragments found in the two molecules. Figure 5 shows
a graphical representation of the synthesis collision.

3) The simulated annealing: The Simulated Annealing
(SA) algorithm is a well-known metaheuristic for solving
combinatorial optimisation problem, proposed in [36]. SA is
a local search algorithm inspired from the cooling process of
molten metals through annealing to find the optimal solution.
It has been successfully applied to many difficult optimization
problems such as the hybrid vehicle routing problem [37] and
the competitive single and multiple allocation hub location
problems [38]. In our proposal, the SA starts with the solution
provided by the CRO algorithm. It remains for some time
at the same temperature while a fixed number of iterations
is performed. Then, the temperature is cold down. In each
iteration, we choose one of three operators:

1) Inversion: In this operator, we randomly select two
points. Then, we reverse the order of the fragments
between them as shown in Figure 6.

2) Specific inversion: we invert the orientation of one
contig. To do this, we randomly select one point in the
permutation and determine the contig that contains this
fragment. Then, we reverse the order of the fragments
in the selected contig. [22]. Figure 7 show an example
of the specific inversion operator.

3) Transposition: this operator moves a contig to a position
between two adjacent contigs [22]. we randomly select
two points in different contigs to determine the contig
that will be moved and its new position. Then, we move
the contig as shown in figure 8.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the performance of our algo-
rithm, implemented in Matlab R2015a and tested on a personal
computer with Intel(R) Core()TM i3-4005U CPU at 1.70GHz
1.70GHz, 4GB RAM, running on Windows 8.1 64-bit.

We have tested our algorithm through applying it on thirty
benchmarks divided into three collections: GenFrag, DNAgen
and f-series, Table II represents a summary of them. The first
column represents the name of the instance, the second column
contains the original DNA sequence of each benchmark, the
third column is the length of the original DNA sequence,
the rest of the columns are the coverage, the mean fragment
length and the number of fragments. More details on these
benchmarks can be found in [33]. All the benchmarks are
available for downloading at http://chac.sis.uia.mx/fragbench/
descargas.php. Table III shows the parameters settings of



Fig. 1. The proposed CRO+SA algorithm for the DNA fragment assembly problem



TABLE II
DESCRIPTION OF THE THREE SET BENCHMARKS FOR THE DNA FAP USED IN THIS STUDY

Instances Original DNA Seq. original
Seq. length

Coverage Mean
Frag.
length

nbr of
Frag.

GenFrag instances
x60189(4) A cluster of fibronectin type III repeats

found in the human major
histocompatibility complex class III region

3835

4 395 39
X60189(5) 5 286 48
X60189(6) 6 343 66
X60189(7) 7 387 68
M15421(5)

A human apolipoprotein B gene 10089
5 398 127

M15421(6) 6 350 173
M15421(7) 7 383 177
j02459(7) Complete nucleotide sequence of the cohe-

sive ends of bacteriophage lambda DNA
20000 7 405 352

bx842596(4) Neurospora crassa DNA linkage group II
BAC clone B10K17 77292 4 708 442

bx842596(7) 7 703 773
DNAgen instances

acin1

a human microbion bacterium ATCC 49176

2170 26 182 307
acin2 147200 3 1002 451
acin3 200741 3 1001 601
acin5 329958 2 1003 751
acin7 426840 2 1003 901
acin9 156305 7 1003 1049

f-series
f25-305 - - - 305 25
f25-400 - - - 400 25
f25-500 - - - 500 27
f50-315 - - - 315 50
f50-412 - - - 412 50
f50-498 - - - 498 50
f100-307 - - - 307 100
f100-415 - - - 415 100
f100-512 - - - 512 100
f508-354 - - - 354 508
f635-350 - - - 350 635
f737-355 - - - 355 737

f1343-354 - - - 354 1343
f1577-354 - - - 354 1577

Fig. 2. Illustration of on-wall ineffective collision

the CRO and SA algorithms. The parameters values were
determined empirically by observing the results obtained for
different settings.

Table IV gives the results of the first version of the CRO
and the hybrid CRO+SA. It shows the results of the two
algorithms in terms of the best, average, worst and standard
deviation values obtained over 30 independent runs. The
optimal column presents the optimal fitness values obtained
by the LKH algorithm [39], the LKH results were presented

Fig. 3. Illustration of decomposition collision

in [33]. The solutions that reached the optimal values are
presented in bold. The purpose of this experiment is to show
the enhancement of the CRO algorithm by a local search such
as the simulated annealing. As we can see from Table IV, the
simulated annealing algorithm had clearly improved the results
obtained by the CRO. These results validate that the use of a



Fig. 4. Illustration of inter-molecular ineffective collision

Fig. 5. Illustration of synthesis collision

Fig. 6. Illustration of inversion operator

Fig. 7. Illustration of specific inversion operator
.

Fig. 8. Illustration of transposition operator

local search with large-scale neighbourhood operators, which
manipulate the contgs [22], improves the results. The low rates
at which the specific operators are applied is due to the fact
that the number of contigs in the solutions obtained by the
CRO are low as shown in Table V. Furthermore, the random
inversion operator also allows a large scale modification in
a solution and prevent the generation of redundant solutions
contrary to the specific operators.

As mentioned above, Table V gives a summary of the
number of contigs obtained by each algorithm. The threshold
used to calculate the number of contigs is thirty. Simulated

TABLE III
THE PARAMETERS OF THE CRO+SA ALGORITHM

Parameter Value
CRO parameters

size of the initial population 50
initial kinetic energy 1000
α 400
β 10
kelossrate 0.2
molecoll 0.25

SA parameters
Initial temperature 50
Inversion rate 0.85
Specific inversion rate 0.06
Transposition rate 0.09



TABLE IV
THE RESULTS OF THE CRO AND CRO+SA ALGORITHMS

Benchmark Optimal CRO CRO+SA
Best Average Worst STD Best Average Worst STD

GenFrag
x60189(4) 11478 11478 11275.733 10937 188.388 11478 11478 11478 0
X60189(5) 14161 13753 13603.2 13402 90.603 14161 14161 14161 0
X60189(6) 18301 18111 17684.966 17036 267.729 18301 18301 18301 0
X60189(7) 21271 20700 20194.033 19432 311.661 21271 21260.4 21210 19.796
M15421(5) 38746 37975 36395.4 34975 615.427 38746 38740 38706 12.165
M15421(6) 48052 46696 44406.3 42373 1103.849 48052 48052 48052 0
M15421(7) 55171 54019 51316.533 48276 1687.53 55171 55158.233 55130 11.732
j02459(7) 116700 111951 107675.466 97086 3793.992 116700 116677.8 116612 23.649
bx842596(4) 227920 217308 211594.2 191079 7873.797 227914 227682.7 227127 179.206
bx842596(7) 445422 421482 391629.766 373515 15175.729 444518 442822.533 441238 760.515

DNAgen
acin1 47618 43127 41679.466 40475 677.354 47613 47496.1 47320 68.017
acin2 151553 146360 143683.233 141490 1061.346 151456 151394.366 151361 22.48
acin3 167877 160182 159036.866 157584 708.128 167228 166980.166 166793 132.64
acin5 163906 157814 156551.3 155153 613.182 163426 163326.4 163247 43.914
acin7 180966 175869 175173.7 174057 08.463 180220 180065.466 179947 62.272
acin9 344107 327919 325452.7 323377 1177.81 343385 343247.5 343093 76.949

f-series
f25(305) 596 592 586.333 584 2.07 596 596 596 0
f25 (400) 777 774 766.033 761 2.938 777 777 777 0
f25(500) 921 916 911.2 905 2.773 921 921 921 0
f50(315) 1581 1540 1514.933 1493 10.639 1581 1581 1581 0
f50(412) 1573 1529 1507.233 1486 10.167 1573 1572.2 1570 0.979
f50(498) 1570 1540 1515.333 1498 11.542 1570 1569.466 1568 0.845
f100(307) 2793 2652 2623.5 2589 14.046 2793 2788.433 2785 1.994
f100(415) 2860 2714 2690.5 2659 14.216 2860 2854.933 2851 2.112
f100(512) 2732 2577 2541.766 2508 15.658 2731 2727.6 2723 2.374
f508(354) 18112 16665 16428.166 15979 130.376 18007 17986.333 17948 15.08
f635(350) 22498 20578 20076.966 18880 387.379 22358 22282.166 22240 25.486
f737(355) 25218 23056 22541.9 21766 281.075 24948 24899.566 24865 22.819
f1343(354) 49042 44313 42530.4 40997 849.78 48121 47994.866 47913 51.031
f1577(354) 57373 52131 50165.966 47770 1228.46 56024 55896.7 55731 82.088

annealing had significantly reduced the number of contigs for
the GenFrag and DNAgen benchmarks. However, for the f-
series benchmarks, the CRO and CRO+SA algorithms have
given the same results for the three first small instances. For
the next six instances, the two algorithms reached the same
best results but the average number of contigs is improved
after applying the SA algorithm. For the large instances in
this collection, the SA has reduced the number of contigs in
the solutions obtained by the CRO algorithm.

Table VI compares CRO+SA with the state-of-the-art algo-
rithms for the DNA fragment assembly problem that have been
applied on the same benchmarks. The algorithms presented
in the table are LKH [39], PPSO+DE [11], QEGA [27], SA
[40], PALS [20], SAX [29], RRG [31] and CSA+P2M [32].
The optimal solutions are presented in bold. We can see that
the CRO+SA has given competitive results with LKH and
CSA+P2M algorithms and has outperformed the rest of the
algorithms in most instances.

Indeed, The statistical Friedman test of Figure 9 represents
a comparison of the results of the algorithms presented in
table VI for the GenFrag and DNAgen benchmarks. As it is
shown in the Friedman test, there is not a significant difference
between the CRO+SA, RRGA, CSA+P2M and the optimal
solutions. Furthermore, the results of the hybrid genetic algo-

Fig. 9. Friedman test compares the algorithms presented in table VI for the
GenFrag and DNAgen benchmarks



TABLE V
THE NUMBER OF CONTIGS OBTAINED BY THE CRO AND CRO+SA

ALGORITHMS

Benchmark CRO CRO+SA
Best Average Worst Best Average Worst

GenFrag
x60189(4) 1 1.8 3 1 1 1
X60189(5) 2 3.333 5 2 2 2
X60189(6) 2 3 5 1 1 1
X60189(7) 2 3.366 6 1 1.166 2
M15421(5) 9 14.666 19 3 3.2 4
M15421(6) 7 13.166 20 2 2 2
M15421(7) 5 14 27 3 3 3
j02459(7) 16 28.566 57 2 2 2
bx842596(4) 33 48.2 71 9 10.333 14
bx842596(7) 37 84.233 112 5 9.833 14

DNAgen
acin1 28 48.2 61 6 8.766 13
acin2 118 172.166 189 65 71.1 78
acin3 182 235.066 275 83 92.866 104
acin5 204 254.233 325 107 117.333 131
acin7 245 286.366 339 116 130.733 144
acin9 267 370.866 408 77 89.366 105

f-series
f25(305) 19 19 19 19 19 19
f25 (400) 14 14 14 14 14 14
f25(500) 14 14 14 14 14 14
f50(315) 26 26.466 28 26 26 26
f50(412) 26 26.466 28 26 26 26
f50(498) 28 28.066 29 28 28 28
f100(307) 69 69.5 71 69 69 69
f100(415) 65 66.1 69 65 65 65
f100(512) 69 69.933 71 69 69 69
f508(354) 273 279.433 285 260 260.7 263
f635(350) 357 366 390 332 334.166 337
f737(355) 428 437.4 455 404 406.233 410
f1343(354) 707 749.033 781 657 662.933 672
f1577(354) 856 889.233 936 810 816.966 827

Fig. 10. Friedman test compares the LKH, RRGA, CSA+P2M and CRO+SA
algorithms for the f-series benchmarks

rithm with the SA are close to the CRO+SA results. Figure
10 represents a statistical Friedman test compares the available
results of the f-series benchmarks. The Friedman test shows
that CRO+SA and CSA+P2M algorithms have no significant
difference from the best known results.

The experimental results shows that the hybrid CRO algo-
rithm with the simulated annealing gives good results for the
DNA fragment assembly problem. As shown by the Friedman
test, our algorithm ranks third for the three sets of benchmarks.

VI. CONCLUSION

In this work, we have proposed a hybrid CRO algorithm
with simulated annealing for solving the layout phase of the
OLC approach for the DNA fragment assembly problem. The
experimental results show that combining CRO with SA can
achieve the best overlap scores for sixteen benchmarks out of
thirty benchmark data sets and very encouraging results for
the rest of them.

As future work, it may be interesting to fine tuning and
optimising our approach to improve the results. Since parallel
implementation of the CRO can be done easily [34], a parallel
version of the algorithm seems to be a possible option. It is
also necessary to develop efficient optimisation algorithms to
deal with noisy instances and real world scenarios.
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