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ABSTRACT
In recent years, digital games for learning have shown significant 
potential for creating engaging and effective student learning 
experiences. A common gameplay design used by many digital 
games for learning is providing students with a series of challenges 
featuring varying levels of difficulty. Identifying whether students 
will struggle on certain challenges is a key task in these 
environments because it could support adaptively adjusting 
difficulty levels and providing immediate assistance to students. In 
this paper, we present a data-driven approach to modeling students’ 
gameplay behaviors with challenges in an open-ended learning 
environment for introductory genetics. Challenge outcome 
prediction models utilize students’ observed gameplay behaviors 
with previous challenges to classify students’ performance on the 
next challenge into two categories: quit or complete. We build 
machine learning models for predicting students’ gameplay 
performance by taking advantage of a corpus of 633 students’ in-
game behaviors from Geniventure, a digital game for learning 
genetics. We compare the accuracy of the models to gain insights 
into which models perform best for this prediction task. Results 
show that support vector machine (SVM) models produce the 
overall best performance in predicting gameplay outcomes for 
challenges.   
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1. INTRODUCTION
Recent years have seen growing interest in digital games for 
learning because of their potential for creating engaging and 
effective student learning experiences [7][27]. Researchers have 
investigated digital games for learning in a wide array of 
educational domains, including mathematics [28][18], 
computational thinking [4][14], and science [30][1][12]. Well-
designed digital games for learning must carefully balance students’ 
engagement in the gameplay experience with a focus on the overall 
learning objective [12]. A common gameplay design used by many 
digital games for learning is providing students with a series of 
challenges featuring varying levels of difficulty. 

Successful game-based learning experiences that simultaneously 
promote engagement while improving learning outcomes are 
possible, but they must be carefully designed [29]. Researchers 
suggest that well-designed educational games should provide 
students’ with just-in-time support while focusing their gameplay 
at the edge of their abilities, ensuring students remain challenged 

throughout the learning experience [9]. To achieve this goal, digital 
games for learning should have the ability to detect when students 
are struggling and take action to tailor their learning experience to 
provide appropriate levels of challenge [31]. With recent advances 
in machine learning techniques, data-driven approaches using 
students’ in-game behaviors have enabled the automatic 
assessment of students’ evolving competence [25][35] and the 
modeling of important learning phenomenon, including mind 
wandering [6][15] and wheel spinning [3]. One  interesting avenue 
of research in student modeling is to examine students’ quitting 
behaviors associated with negative learning outcomes [24][17]. It 
is particularly important to design robust predictive models for 
students’ quitting behaviors, since a digital game with this 
functionality can, in advance, guide students from undertaking a 
challenge that is beyond the learners’ capabilities at that moment.

The goal of this paper is to detect whether a student is likely to quit 
an upcoming challenge in a digital game for learning. In this work, 
we present a data-driven approach to modeling students’ quitting 
behaviors in an open-ended digital game for learning genetics, 
Geniventure [23]. In Geniventure, students learn genetics by 
engaging in challenges of varying difficulty levels. Within the 
game, although students are encouraged to solve challenges in a 
linear manner, they can autonomously choose which challenge they 
play as well as to leave a challenge prior to completing it. During 
gameplay, students’ gameplay trajectory and their detailed in-game 
actions were recorded as trace data logs. Fine-grained and 
descriptive features were engineered to effectively capture salient 
learning trajectories which are useful to predict quitting behaviors 
per challenge. To incorporate students’ gameplay trajectory 
information into the model, n-gram features, which are a 
contiguous subsequence of n actions from a sequence of actions, 
were employed. A suite of machine-learned predictive models was 
trained using the extracted features to better understand which 
approach offers the best predictive performance. We compare the 
performance of the different machine learning algorithms under 
two different feature sets in order to gain insights into which 
learning algorithms and features perform best for this task.  

2. RELATED WORK
Engagement is a key component of successful learning. Detecting 
disengagement has been of great interest to educational researchers 
[6][15][24][17]. Engagement is often viewed as encompassing 
three primary components: emotional, behavioral, and cognitive [8]. 
Disengagement detectors usually target elements of these three 
components, by making inferences about students’ emotional or 
cognitive state based on their behaviors. In contrast to models of 
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detecting disengagement whose ground truth labels are collected by 
humans in various manners such as field observations, self-reports, 
and retrospective judgement, students’ quitting behaviors can be 
directly identified from learning environment trace data [2].  

There is considerable research on predicting students’ quitting 
behaviors in the context of massive open online courses (MOOCs). 
In MOOCs, students’ quitting behavior is usually referred to as 
dropout, which indicates situations where a student registers for a 
course and makes initial effort on the course activities but 
eventually quits before completing the course [21]. Much of the 
work on dropout prediction in MOOCs focuses on developing 
features from students’ behaviors and engagement patterns to help 
improve prediction [13]. For instance, Kloft et al. predict dropout 
from only click-stream data using a support vector machine (SVM) 
[20]. Halawa et al. study early dropout prediction using student 
activity features capturing lack of ability or interest [11]. Taylor et 
al. employed crowd-sourced feature engineering from raw trace 
data collected from thousands of students to predict dropout using 
logistic regression [33]. In more recent studies, deep learning 
techniques have been employed, achieving high performance on 
predicting dropout by taking advantage of large amounts of student 
data. Yuntao et al. proposed a composite model to infer students’ 
dropout behaviors based on a historical log of their learning 
activities, including interaction with video lectures, participation in 
discussion forums, and performance on assignments. The authors 
employed a stacked sparse autoencoder model combined with a 
recurrent neural network model to learn high-level representations 
of input features and implemented an SVM for final classification 
of dropout [21].  
Beyond dropout prediction in MOOCs, previous work has also 
explored various data-driven approaches to predicting students’ 
quitting behavior in learning environments. Mills et al. developed 
detectors to predict students’ behavioral disengagement through 
their quitting behaviors while reading instructional texts. 
Supervised machine learning algorithms were used to predict 
whether students would quit reading an upcoming text based on 
features extracted from reading behaviors on previous texts [24]. 
Karumbaiah et al. presented a quitting prediction model for 
students playing an educational game called Physics Playground. 
Gradient boosting classifiers were trained using a set of engineered 
features from students’ interaction data. The features were of 
different levels of granularity and used to train both level-specific 
models and level-agnostic models to predict students’ quitting 
behavior on levels within the game. Level-agnostic models were 
found to provide better predictive performance [17]. Similar to the 
digital learning environment in [17], our digital learning 
environment also contains different challenge levels. In our work, 
we build a single integrated model to predict students’ quitting 
behaviors for all challenges. Different from the level-agnostic 
model in [17], our model uses n-gram features to incorporate 
students’ historical gameplay information, while they calculated 
accumulated features to summarize historical data. Our work also 
investigates the performance of different machine learning 
algorithms for this task. 

3. EXPERIMENTAL SETUP 
We investigate our approach of modeling students’ outcomes on 
challenges with data collected from high school and middle school 
students. In this section, we describe the digital game for learning, 
its problem-solving challenges, and the dataset generated from 
students’ interactions with the learning environment.  
3.1 Geniventure 
Geniventure is a digital game environment developed for middle 
school and high school students (11 ~ 18 years old) to learn genetics. 
The design of the game was guided by core ideas in genetics and 

science practices aligned with the Next Generation Science 
Standards [32], a set of science education standards developed in 
the United States. In the game, students learn concepts in genetics 
by completing problem-solving challenges centered around 
breeding dragons [23]. The game consists of 6 levels and over 60 
problem-solving challenges of varying levels of difficulty. Each 
challenge is designed around one or more genetic concepts with the 
same concept potentially appearing across multiple challenges. 
Problem-solving challenges within the game appear in a variety of 
types. When students launch the game, they have the option to 
decide which challenge to begin with and they are free to quit a 
challenge at any time during the game. If students finish a challenge, 
the game rewards them with a colored crystal based on their 
efficiency in solving the challenge. Students can then decide 
whether to try the same challenge again or move on to another 
challenge. 

The goal of this work is to build models that can accurately predict 
students’ outcomes on a problem-solving challenge before they 
begin the challenge. We focus on challenges from the first two 
levels in Geniventure, which test four fundamental concepts in 
genetics: simple dominance, recessive traits, sex determination, 
and genotype-to-phenotype mapping. These four concepts are 
critical for students to understand more complex genetic 
phenomena covered in later challenges. In this work, four distinct 
challenges are noted as Challenge A, Challenge B, Challenge C, 
and Challenge D, respectively (Figure 1). Each of these challenges 
cover all of the four fundamental concepts. Because of different 
task settings, there are differences in challenges with respect to the 
difficulty of solving them. We observed that, Challenge A and 
Challenge B are relatively easier than Challenge C and Challenge 
D based on students’ success rate of completing the challenges 
(Table 1). 

In Challenge A and Challenge B (Figure 1, Top), students are 
shown a target dragon with certain traits on the right side of the 
screen. On the left side of the screen, the game provides students 
with options to manipulate the alleles of the dragon they are 
creating. Students have options to set alleles to a dominant gene or 
recessive gene that determine the traits of their dragon. The goal of 
these two challenges is to create a dragon with the same traits as the 
target dragon. Both Challenge A and Challenge B follow this 
mechanic, but the visibility of the dragon being created varies 
between the two. In Challenge A, students immediately see the 
changes to the dragon they are creating as the alleles are 
manipulated. However, in Challenge B, the dragon they are 
creating is hidden until students have selected the alleles and 
requests the dragon to be hatched. To successfully complete these 
problem-solving challenges, students must understand several 
genetic concepts and be able to infer the phenotype of their dragons 
from its genotype. At the start of the challenge, the game randomly 
generates an initial set of alleles that require the student to make at 
least one selection for each allele to achieve the target trait. The 
“Moves Left” indicator in the lower right corner of the game’s 
display is initialized with the minimum number of allele changes 
needed to generate the target dragon from the initial configuration 
of alleles. The indicator will decrement each time a student makes 
a change to the alleles. Once students feel they have the correct 
genotype, they click the “Check” or “Hatch” button to submit their 
answer. If the dragon they create matches the target dragon, the 
challenge is successfully completed. Otherwise, the game provides 
the student with feedback and allows them to continue to make 
further changes to the alleles until they quit or successfully 
complete the challenge. In Challenge C and Challenge D, students 
must sort eggs into the correct basket based on their traits. Students 
can receive information about the genotype of each egg using the 
scope on the right side of the screen.  



3.2  Dataset 
In this work, we analyzed data from 654 students (299 female, 305 
male, and 50 unreported) from seven high schools (six public 
schools, one private school) and one public middle school located 
in the Middle to Northern Atlantic coast of the United States. 
Among the students, 100 of them reported being in 6th to 8th grade, 
544 reported being in 9th to 12th grade, and 10 students did not 
report their grade level. This data was conducted during a teacher- 
led classroom implementation of Geniventure where students 
played the game during class over the course of several days. 
Before playing the game, students took a pre-test consisting of 24 
questions related to the genetic concepts covered in the game. Five 
of these questions assessed the genetic concepts in the four types of  
challenges described earlier. Once gameplay concluded, students 
took a post-test which was identical to the pre-test. Both the pre-
test and post-test were online surveys accessible through the same 
online portal as the game. We focus on students’ performance on 
the five questions aligned to the four previously identified concepts 
being examined. Results from a paired t-test on students’ 
knowledge pre-test (M=2.971, SD=1.52) and post-test (M=3.878, 
SD=1.40) revealed a significant improvement from pre-test to post-
test (t(653) = 15.85, p < 0.001, Cohen’s d = 0.621).  
 
4.  METHODS 
We first describe students’ quitting behaviors that occur in the 
game and then discuss our feature engineering process.  

4.1 Students’ Quitting Behaviors 
We define “quitting a challenge” as being anytime a student leaves 
a challenge without successfully completing it. In Geniventure, a 
challenge is considered as successfully completed only when the 
crystal awarding screen appears. For Challenge A and Challenge B, 
students will be directed to the crystal awarding screen only after  

 

they reach a correct answer. For Challenge C and D, it will be after 
they sort each of the 8 eggs into a basket no matter whether the 
basket-egg match is correct or not.  We identified three types of 
quitting behaviors: (1) A student starts a challenge but leaves the 
challenge before making any moves; (2) A student starts a 
challenge, makes a few moves, but leaves the challenge prior to 
submitting an answer; (3) A student starts a challenge, makes some 
moves, and submits at least one wrong answer before leaving the 
challenge.  

Out of 654 students, we removed 21 students who played less than 
two challenges for our analysis, since they would not provide 
sufficient details to infer students’ quitting behaviors. In the dataset, 
the challenges were played 6,568 times by 633 students in total (M 
= 10.38). Among all these attempts, Challenge A was played 1,983 
times, Challenge B was played 2,795 times, Challenge C was 
played 1,116 times, and Challenge D was played 674 times. The 
overall class label distribution in the dataset is highly imbalanced, 
having 17.1% quit and 82.9% completed. Table 1 shows the 
summary statistics for challenges.  

We examined students’ trace data logs, and observed that it is 
common for a student to play the same challenge repeatedly or 
revisit an easier challenge after a few unsuccessful attempts on a 
more difficult challenge. To represent a student’s trajectory of 
playing a sequence of challenges, we use  𝑇" = {𝐶&, 𝐶(, … , 𝐶*}, 
where N denotes the number of challenge attempts, and each 
𝐶,(1	 ≤ 𝑘	 ≤ 𝑁) in the trajectory (𝑇") is the k-th challenge student  

 
Challenge A 

 
Challenge B 

 
Challenge C 

 
Challenge D 

Figure 1. Four problem-solving challenges in the Geniventure learning environment 



Table 1. Summary statistics for each type of challenge 

i played. Note that 𝐶, ∈ {𝐴, 𝐵, 𝐶, 𝐷}  where A, B, C, and D are 
the four types of challenges and the subscript k denotes the order 
the challenges were played. The length N of the trajectory varies 
between students. Likewise, there is a series of outcome labels 
𝑂" = {𝐿&, 𝐿(, … , 𝐿*} that correspond to the trajectory of student i, 
where 𝐿, ∈ {𝑞𝑢𝑖𝑡, 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑} denotes whether the student quit 
or completed challenge 𝐶,. Our goal is to induce predictive models 
which can dynamically predict students’ quitting or completing 
behavior for the next possible challenges they will play, utilizing 
their observed previous gameplay trajectory (e.g., predicting 𝐿E 
utilizing 𝐶&, 𝐶(, 𝐶F, 𝐿&, 𝐿(, 𝐿F ). In other words, as soon as the 
student finishes 𝐶,, our model performs predictions of whether the 
student will quit or complete challenge 𝐶,G&.   

4.2 Feature Engineering 
Feature engineering is a critical step in building models to predict 
students’ quitting behaviors. Feature engineering converts students’ 
raw, low-level interaction data, and pre-learning measures into a 
trainable format. In our predictive model, each student’s problem-
solving trajectory for a Challenge C is represented with a set of M 
features 𝐹I = 		 {𝑓I&, 𝑓I(, … , 𝑓IK}  that captures (1) the challenge 
type, (2)  the student’s pre-test score on the concept knowledge, and 
(3) a sequence of actions the student took while interacting with the 
challenge. All of these features are designed to be generalizable to 
other digital games for learning. 

First, one feature is created to represent the challenge, which in this 
work is one of the four challenge types. Each challenge is 
characterized by a different task objective, available actions, and 
difficulty. The challenge type feature plays a pivotal role in 
interpreting other game interaction-related features accordingly. 
For example, suppose a student spent two minutes to finish a 
challenge. Two minutes may suggest poor performance in 
completing Challenge A, since it is a relatively easy task compared 
to other challenge types; in the meantime, two minutes may indicate 
good performance for Challenge C, because it often requires more 
actions and thus takes longer time to finish. We use a four-
dimensional one-hot encoding feature vector to represent the four 
challenge types. 

Second, the students’ pre-knowledge feature is designed as a 
measure of students’ prior knowledge about the relevant genetic 
concepts. Previous work has shown that students’ pre-knowledge 
can serve as a significant predictive feature for student modeling 
[34]. Students with a better understanding of the concepts covered 
in the game are more likely to demonstrate higher performance on 
this feature. We use five questions extracted from the pre-test 
questionnaire, which are highly related to the genetic concepts in 
those challenges we focus on in this work. For each student, we use 
the ratio of correct answers as a predictive feature to represent 
students’ initial knowledge.  

Third, we design four game performance features associated with 
each challenge. Previous research suggested that demotivation and 
quitting are related to students’ self-efficiency [22]. Since students’ 
prior poor performance may negatively impact their self-efficacy 

related to genetic achievement, these poor performance could be 
predictive of future quitting behaviors. Therefore, students’ in-
game performance features could play an important role for 
modeling students’ quitting behaviors. The four game performance 
features are formulated as follows: 

• Current challenge outcome: This feature represents whether 
students quit the current challenge or not. We use a two-
dimensional binary vector to represent it. 

• Time spent on the current challenge: This feature captures 
the duration from when students started the challenge to when 
they leave it, where leaving is either quitting or finishing the 
challenge. Instead of using the absolute time, we use the Z-
scores of the times calculated per challenge type, which 
enables the capture of challenge type-specific time 
information.  

• Ratio of wrong submission counts to total submission 
counts: This feature measures students’ overall performance 
on the challenge. In contrast to Challenge A and Challenge B, 
where students are allowed to make multiple submissions, in 
Challenge C and Challenge D, we consider the action of 
“putting an egg into a basket” as a submission (i.e., an implicit 
way of submitting an answer).  We calculate the feature value 
based on the number of wrong egg-basket matchings divided 
by the total number of egg-basket matching attempts. It is 
worth noting that for those students who quit the challenge 
without making any submissions (i.e., 0 divided by 0 cases), 
we set the value of the feature to 1, which means maximum 
error rate. 

• Efficiency: This feature is used to measure students’ 
efficiency at completing the challenge. As mentioned in 
Section 3.1, there is a “goal move” for each challenge which 
indicates the minimum number of actions needed to 
successfully solve the challenge. For Challenge A and 
Challenge B, the minimum moves for a challenge is 
determined depending on the generated problem. For 
Challenge C and Challenge D, the minimum moves is fixed to 
8, since 8 sorting actions are required per challenge. The 
efficiency feature is calculated as the ratio of the “goal action” 
number divided by the number of students’ actions actually 
taken in cases where students completed a challenge (i.e., 
higher is better). On the other hand, when students quit a 
challenge, the negative of this ratio is used. This ensures that 
larger ratio values are better for this efficiency score, even for 
students who quit the challenge (i.e., giving a higher penalty 
to students who quit the challenge in earlier phase than 
students who quit in later phase).  

In addition to these six features, we create one additional 
explanatory variable representing the type of challenge the student 
will play next. It is hypothesized that students’ quitting behaviors 
will not be homogeneous across all challenge types due to 
differences in the task objective, available actions, and difficulty. 
As a result, it is observed from Table 1 that the percentages of 
quitting class vary among challenges. In a runtime implementation 
of our framework, since the next challenge type is unobservable 
until the student chooses one, the predictive model can make 
inferences on quitting across all available challenge types, and then 
the framework can make scaffolding decisions based on 
probabilities of quitting across all challenge types. In our offline 
evaluation, our dataset allows us to get the next challenge type and 
use it as an additional explanatory variable. We investigate whether 
knowing the challenge type students will play next might serve as 
a strong predictor by exploring two different feature sets: one 
feature set enhanced with this next challenge information and the 
other feature set without considering it. This variable is represented 

 Quit Complete Total 
Challenge A 251 (12.7%) 1,732 (87.3%) 1,983 
Challenge B 330 (11.8%) 2,465 (88.2%) 2,795 

Challenge C 376 (33.7%) 740 (66.3%) 1,116 

Challenge D 166 (24.6%) 508 (75.4%) 674 

Total 1,123 (17.1%) 5,445 (82.9%) 6,568 



as a four-dimensional one-hot encoded vector to represent the four 
types of challenge. 

Moreover, to take advantage of students’ historical gameplay 
information (Figure 2), we use n-gram models with a varying value 
of  n. N-gram concatenates information from the observed sequence 
of n consecutive challenges (including the current and n-1 previous 
challenges) students played as the final set of features for a 
prediction. As discussed, for the unigram model, we use the set of 
M features(𝐹I = 		 {𝑓I&, 𝑓I(, … , 𝑓IK}) based on the current challenge 
𝐹LM  to predict student’s challenge outcomes for the next challenge, 
𝐿,G&. For the bigram model, a variant of n-gram when n=2, 2M 
predictive features ( 𝐹LM  and 𝐹LMNO ) are used from the two 
challenges ( 𝐶, and  𝐶,P&) for predicting whether students will quit 
on 𝐶,G& . The bigram-based concatenated features can be 
represented as follows: 

𝐹	[LMNO,		LM	] = {𝑓IMNO
& , 𝑓IMNO

( , … , 𝑓IMNO
K , 𝑓IM

& , 𝑓IM
( , … , 𝑓IM

K} 

In more general, for the n-gram setting, M*n features are created 
based on the previous n challenges, which can be represented as 
𝐹	[LMNSTO,…	,LM]. If the observed challenges in the trajectory are less 
than n, we pad zeros for the features to represent the missing 
challenges. In this study, we explore n from 1 to 3 for the n-gram 
model to investigate if leveraging temporal information captured 
from a time-series challenge interaction is useful in predicting 
students’ quitting behaviors. 

Figure 2. Histogram of students’ gameplay trajectory length 

 
 
5. EXPERIMENTS 
5.1 Machine Learning Models 
We explore a suite of machine learning algorithms for our 
prediction task [33][17][25][20]. We implement our predictive 
models using six machine learning algorithms, including logistic 
regression (LR), decision tree (DT), naive Bayes (NB), support 
vector machine (SVM), random forest (RF), and feed-forward 
neural network (FFNN). To develop our models for the first five, 
we use Python 3.6 with scikit-learn, a Python machine learning 
library [26]. For the FFNN  model, we use Keras with the 
Tensorflow backend [5].  
Hyperparameter values for the first five machine learning 
algorithms are set to the default values specified by scikit-learn, 
which are briefly described below. For logistic regression, we used 
L2 norm regularization with a weight of 1.0, while the optimization 
method used is stochastic gradient descent. For Naive Bayes, we 
assume the likelihood of our features to follow a Gaussian 
distribution. For SVM models, we investigate linear SVMs with a 

radial basis function (RBF) kernel and a polynomial kernel. For the 
RBF-based SVMs, the regularization parameter C is set to be 1. The 
gamma changes along with the feature set used, which is calculated 
using 1 divided by the number of features. For example, the 
dimension of unigram BFS is 10, gamma is set to 0.1 in this case. 
Similarly, the dimension of bigram BFS is 20, thus gamma is set to 
0.05. For the decision tree models, the scikit-learn library uses 
optimized version of the CART algorithm. The splitting criterion 
used is the GINI index. For the random forest models, we explored 
one hyperparameter to search the optimal number of trees to be 
generated in the model from {10, 50, 100}. Each decision tree in 
the random forest adopts the same settings used in the independent 
decision tree model. The number of features considered for splitting 
a node of a subtree is set to be n, where n is the number of all 
features in the original dataset. For example, for unigram BFS 
feature set, n = 10 (The dimension of unigram BFS feature set is 
10). The number of features considered for splitting in each tree is 
3 ( √10 ≈ 3 ). Neural network hyperparameters are often 
empirically determined. There are several categories of 
hyperparameters to consider, including optimization (e.g., 
optimizer, learning rate), model structure (e.g., the number of 
hidden units, initialized weights), and training criterion (e.g., 
regularization terms, loss function) [26]. When implementing the 
FFNN models, we adopted grid-search on structure-based 
hyperparameters, number of hidden layers and number of hidden 
units, which has significant influence on predictive performance. 
We tried the number of hidden layers from 1 to 5 and the number 
of hidden units in each hidden layer from {32, 64, 128}. For other 
hyperparameters, we utilize categorical cross entropy for the loss 
function and Adam stochastic optimizer [19]. We use the Glorot 
uniform initializer to generate initial weights [10]. The learning rate 
of training is set to 0.01 and dropout rate is set from {0.25, 0.5, 
0.75}. We adopt a mini-batch gradient descent with the mini batch 
size of 128 when training. We trained all of these models on our 
two feature sets, feature sets without the next challenge information 
and feature set with the next challenge information under different 
n-gram settings. Another common model used for comparison is 
majority class-based method. In our dataset, the majority class is 
“completed”, which accounts for 82.90%. This majority model 
predicts all students’ outcomes for the next challenge as 
“completed”.  
We conduct student-level five-fold cross-validation to evaluate 
models’ performance. In our problem, the quitting class is the 
category that we are most interested in, since our goal is to identify 
students at risk (i.e., students who might quit the challenge) and 
support their learning. Therefore, we evaluate the model 
performance with respect to recall rates of predicting the quitting 
class. Recall is calculated by True Positive / (True Positive + False 
Negative), which refers to the percentage of the relevant class being 
correctly classified [16]. For algorithms for which we conducted 
grid-search on some hyperparameters, we chose those 
hyperparameters which helped algorithms achieved highest 
performance. For random forest model, the number of trees is set 
to 10. For FFNN model, we finally chose a 5-layer architecture with 
128 hidden units with 0.25 dropout rate on each hidden layer. 

Since the overall class distribution in our dataset is highly 
imbalanced, predictions by machine learning models trained with 
the dataset will likely be inclined towards the majority group [16]. 
In other words, models trained with the dataset would achieve a 
high predictive accuracy by predicting the majority class label (i.e., 
completed) for most of the data instances, but would suffer from 
inferring the incorrect labels for instances that belong to the 
minority class label (i.e., quit). To accurately recognize the ‘quit’ 
class, we conduct oversampling of the instances with the minor 
class label only for the training set, while the recall is measured for 



the intact, original test set. In the next section, we compare the 
results of models trained with the original dataset without 
oversampling and the dataset with oversampling applied.  
5.2 Results 
Table 2 shows the recall rates of the models induced with two 
variants of the feature set without conducting oversampling. As 
clarified in the previous section, we call the feature set which 
contains six features as Base Feature Set (BFS). As an alternative, 
we call the feature set that includes the next challenge feature (NC) 
type BFS + NC. Since the majority-class model classifies all 
instances into the “completed” class, the accuracy of this model is 
83.90%. However, the recall rate for quitting of the majority-class 
model is 0.00%. A high accuracy value in our problem could not 
reflect model’s ability to recognize quitting class, which is what we 
are interested in this work. Other models are able to correctly 
predict some quitting class, but the recall rates of quitting for most 
of the models explored in this work are not significant. It is not 
surprising because machine learning models are optimized to 
minimize the loss defined in an objective function and achieve a 
high predictive accuracy during training. In the experiment with the 
imbalance data, naive Bayes models show the highest recall rates 
outperforming other baseline models. The predictive accuracy of 
the best naive Bayes model is 73.63%, which is still less than the 
accuracy of the majority-class method. In addition, we find that the 
models’ predictive performance for the quitting class does not 
generally improve when using n-gram representations (n > 1) 
which include students’ historical gameplay information. 

Table 3 reports the recall rates for predicting quitting of the next 
challenge, after we conducted oversampling on the dataset. It 
should be noted that all the experimental settings are identical, 
except that the results reported in Table 3 are obtained from a 
training set oversampled to have an equal distribution between the 

‘quit’ class and the ‘completed’ class, while the same test set is used 
in the two experimental settings. Comparing without-oversampling 
to with-oversampling, nearly all models demonstrate significant 
improvements with respect to the recall rates of quitting class. 
Linear SVM models show an average of 57.30% improvement in 
the recall rates for all the conditions in pairwise comparisons. 
SVMs with the polynomial kernel and SVMs with the RBF kernel 
exhibit improvements of 60.23% and 60.64% on average, 
respectively. LRs, RFs and FFNNs demonstrate improvements on 
average of 12.65%, 48.84% and 50.47% respectively. The only 
exception is DT, which does not show improvements when 
utilizing bigram and trigram features. 

Since most of the predictive models show improved performance 
after oversampling, further discussions are made based on the 
results of the models induced with the oversampled training dataset 
(Table 3). The best models for predicting quitting are SVMs with 
the polynomial kernel using the unigram feature set with the next 
challenge (NC) information. These models achieve a 76.91% in 
recall rate for quitting and an accuracy of 67.97%. SVMs with the 
RBF show the highest recall rates with bigram and trigram features. 
We compare the average recall rates for each feature set under the 
unigram, bigram and trigram settings. Overall, SVMs with the 
polynomial kernel achieves the highest recall rates (74.31% on 
average). SVMs with the RBF also show relatively high 
performance, which achieves 74.05%. Thus, we conclude that 
SVM models are the most robust machine learning method for our 
task. One distinguished advantage of SVM is the kernel tricks, 
which is a technique to project our original data into another feature 
space that offers enhanced capacity for models to classify data 
instances. Although deep feed-forward neural networks also learn 
salient features from the dataset through multi-level non-linear 
transformation, the models usually require a large amount of 
training data to successfully extract meaningful features. Our 

 
Table 2. Predictive results of different models using different feature sets (Without oversampling) 

 unigram 2-gram 3-gram Average 
Models Feature Set Recall-quitting Recall-quitting Recall-quitting Recall-quitting 

Majority-class 
BFS 0.00% 0.00% 0.00% 0.00% 

BFS + NC 0.00% 0.00% 0.00% 0.00% 

DT 
BFS 27.47% 29.54% 28.58% 28.53% 

BFS + NC 33.12% 31.05% 29.94% 31.37% 

LR 
BFS 11.86% 12.50% 14.98% 13.08% 

BFS+NC 19.67% 16.80% 17.83% 18.10% 

NB 
BFS 49.84% 55.81% 57.96% 54.54% 

BFS + NC 50.64% 56.61% 56.21% 54.49% 

RF 
BFS 22.85% 24.44% 23.57% 23.62% 

BFS + NC 28.50% 26.99% 26.59% 27.36% 

Linear SVM 
BFS 0.00% 0.00% 0.00% 0.00% 

BFS + NC 0.00% 0.00% 0.00% 0.00% 

SVM_poly 
BFS 6.45% 6.21% 6.93% 6.53% 

BFS + NC 6.29% 5.10% 5.02% 5.47% 

SVM _rbf 
BFS 6.37% 5.65% 6.45% 6.16% 

BFS + NC 6.45% 5.02% 6.21% 5.89% 

FFNN 
BFS 12.10% 10.19% 15.45% 12.58% 

BFS + NC 11.86% 13.85% 14.49% 13.40% 
      



dataset is not large enough for deep learning models to effectively 
learn the intermediate features and achieve high performance. 

Moreover, the results also support our hypothesis that the next 
challenge type feature improves model performance. These results 
support our hypothesis that students’ quitting behaviors are highly 
influenced by the challenge type that they will choose next, rather 
than being generally predictable regardless of the challenge type. 
Moreover, we find that students’ historical gameplay information 
obtained from the previous one or two challenges they interacted 
with does not seem to improve model performance, as 
demonstrated by models using the unigram features achieve the 
highest recall rates. The results suggest that students’ historical 
gameplay information on previous challenges before the current 
induce more noise rather than adding more predictive power. This 
should be an interesting area that required further investigation in 
future work.    
6. CONCLUSION AND FUTURE WORK 
In this work we present a data-driven approach to modeling 
students’ performance on challenges within an open-ended learning 
environment for genetics. We build an integrated model for all 
challenge levels, which can dynamically predict students’ quitting 
behaviors on future challenges in their gameplay trajectory. In 
practice, the learning environment could use the predicted results 
from these models to decide on specific interventions to take. For 
instance, if the learning environment recognizes that a student is 
likely to quit at a challenge before starting, it could suggest another 
challenge to smooth their learning experience. To implement the 
predictive models, we engineered fine-grained features to describe 
student gameplay actions from their interaction log data and 
investigated the performance of different machine learning 
algorithms. The results show that SVM machine learning algorithm 
achieves the highest recall rate with respect to predicting students’ 

quitting behaviors for our problem. We also find that using the next 
challenge information offers improved predictive capabilities for 
the models. 

During our analysis of quitting behaviors in Geniventure, we 
identified two key situations. One type of quitting occurs 
immediately after students open a challenge, while the second 
occurs after extended struggle on the challenge. For the second 
type, it likely occurs because the difficulty of the challenge in the 
game does not match the students’ current abilities. In this case, 
students’ mastery of knowledge and their problem-solving skills in 
the game provide good evidence for predicting whether students 
will quit or not. However, for the first type, the reason for quitting 
is harder to ascertain. It could be caused by many factors that are 
not easily observable during the learning process. It could be a case 
that students are gaming the system or they might just want to take 
a look at challenge before deciding which challenge to play. The 
occurrence of this type of quitting behavior is less related to their 
in-game performance. Thus, differentiating these two types of 
quitting behaviors may help improve models’ predictive 
performance and their abilities to support effective interventions. 
In the future, we may need to build models for more fine-grained 
types of quitting behaviors. Moreover, we may need to investigate 
more features that could reflect students’ affective and cognitive 
states and dynamic progress of their mastery of content knowledge. 
In addition, we are also interested in investigating how students’ 
learning gains are affected by interventions driven by our predictive 
models. 
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Table 3. Predictive results of different models using different feature sets (Oversampling) 
 unigram 2-gram 3-gram Average 

Models Feature Set Recall-quitting Recall-quitting Recall-quitting Recall-quitting 

Majority-class 
BFS 0.00% 0.00% 0.00% 0.00% 

BFS + NC 0.00% 0.00% 0.00% 0.00% 

DT 
BFS 39.41% 27.31% 27.23% 31.34% 

BFS + NC 37.26% 30.81% 30.33% 32.96% 

LR 
BFS 60.03% 59.61% 60.51% 59.45% 

BFS+NC 70.86% 68.63% 70.22% 69.37% 

NB 
BFS 50.40% 59.39% 60.59% 56.39% 

BFS + NC 59.63% 60.19% 59.16% 60.00% 

RF 
BFS 42.44% 34.95% 35.67% 37.45% 

BFS + NC 42.44% 37.02% 38.30% 38.83% 

Linear SVM 
BFS 48.73% 49.76% 53.11% 49.42% 

BFS + NC 64.65% 65.45% 64.89% 65.18% 

SVM_poly 
BFS 62.02% 56.21% 57.09% 58.15% 

BFS + NC 76.91% 73.01% 69.51% 74.31% 

SVM_rbf 
BFS 61.94% 57.96% 60.91% 59.29% 

BFS + NC 75.96% 73.09% 71.97% 74.05% 

FFNN 
BFS 57.25% 59.71% 60.91% 58.89% 

BFS + NC 69.03% 67.52% 67.99% 68.02% 
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