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ABSTRACT
Curriculum-integrated games can provide teachers with data
to help them decide when and how to intervene with indi-
vidual students. Based on our prior work observing teach-
ers using ST Math, teachers may not be able to attend to a
dashboard or student screens to determine who might need
intervention. We therefore set out to determine how much
data we need from the current ST Math gameplay session to
predict performance. Based on the available log data that
tracks student performance over SETS of puzzles, we per-
formed two experiments to predict performance. The first
uses data from one game level, which is about 3 minutes
long, to predict the performance on the next level, and the
second uses the first 6 minutes of gameplay to predict how
many levels a student can complete in 20 minutes, a typical
class length. Our results show that our data are not fine-
grained enough to allow for paired level prediction, but that
6 minutes of gameplay can be used to rank students in or-
der of performance for a class session. These results can be
used as a basis for an alert system that could help teachers
prioritize their time in the classroom.

1. INTRODUCTION
Educational games can be a useful tool for teachers to pro-
vide additional practical learning for students [3]. As more
educational games become curriculum-integrated, a signifi-
cant portion of a students time can be spent in these sys-
tems. However, teachers cannot monitor and assist each
student at the same time, struggling to identify students
who need help the most. In previous work, we observed
teachers assistance often was influenced by things such as
classroom layout and disruptive behavior rather than learner
proficiency or needs [13]. Furthermore, the work identified

that students who “struggled quietly” often went unnoticed.
In other work, the authors found that when students pos-
sibly need intervention but do not receive it, they might
get frustrated and give up or replay an easier game instead
[9]. Other research has also shown that teachers can often
unintentionally favor or give assistance to certain types of
students due to differences in perceptions or help-seeking
behaviors [4, 22, 5]. Therefore, providing teachers with in-
formation to help them determine who needs assistance the
most may be crucial to some low-performing students.

Despite the amount of data gathered with each playthrough,
teachers in our system are only provided with a student’s
current progress in the curriculum and a feature that al-
lows a student to “raise” their hand through the system.
However, this is only visible on the student’s screen via a
purple hand indicator and often goes unnoticed. Therefore,
we sought to determine if there was a way to provide teach-
ers with knowledge regarding students projected progress
as fast as possible, so that the teachers can determine who
to help from there. With the machine learning techniques
that can process such data and help predict outcomes, we
wanted to find the correct technique to answer our question.
Machine learning and educational data mining techniques
have been successfully used in educational game research
for many years [11, 21, 10, 18].

In this paper, we tried to determine the smallest amount of
time needed to predict student outcomes for one gameplay
session by investigating multiple feature selection algorithms
and prediction models on student gameplay data for an edu-
cational game, Spatial Temporal Math (ST Math). We tried
two methods of prediction using data analysis and machine
learning: 1) Trying to predict student outcomes for play-
ing one level of a game using gameplay data from only the
previous level, 2) Using the least amount of time of a stu-
dent’s gameplay data to predict the number of levels they
will pass in the next twenty minutes of gameplay. To accom-
plish this, we tried various machine learning and feature se-
lection methods to find the most significant features needed
to predict student outcomes in this educational game. In
this study our intention was to give insight to the teachers
of ST Math by indicating our best guess for which students
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could most benefit from teacher intervention on a single day,
provided early enough in the gameplay session to allow the
teacher to help as many as possible.

1.1 Spatial Temporal Math (ST Math)
ST Math is a curriculum-integrated supplemental mathe-
matics game for 2nd-4th-grade students that uses spatial
puzzles to teach basic math concepts [19, 12, 14, 15]. The
puzzles do not contain any textual instruction. The games
are grouped at the highest level by objective which indicates
the broad math concept. Each objective contains a number
of games, the gameplay under an objective varies but con-
cerns the same content inside an objective. The games usu-
ally have between 3 to 5 levels each, and the gameplay across
levels is similar but increases in difficulty. There are usually
between 6 and 8 puzzles per level. The puzzles are either
randomly generated using a template or randomly selected
from pre-designed puzzles depending on the level. Each puz-
zle requires the student to do the correct action to indicate
their answer. Animated feedback is presented to the student
following the puzzle solving attempt that shows the student
if they are correct or incorrect. For example, in the game
“Fair Sharing” under “Division Concepts” a student is asked
to distribute boxes equally among animals to construct a
straight bridge and will show the bridge blocked off or with
gaps that make it impossible to cross in case of an incorrect
answer. A level begins with a set number of lives, usually
2, that resets at the beginning of each level. If a student’s
response is incorrect, the student loses a life. If the student
loses all of their lives before completing the level, they do
not pass the level and must retry it. To pass a level, the
student must complete all puzzles without losing all their
lives. After a student passes a level, they may move on to
the next level in the game or objective, or backtrack and
play a previously passed level. We refer to this backtracking
as replay. A level attempt includes passing a level, failing
a level, and replay. Each student has the option to ”raise
their hand” if they want help from their teacher by clicking
on a hand icon on the screen. The teacher also has access
see which objectives and levels a student has passed. See
Figure 1 for a breakdown of ST Math.

2. RELATED WORK
Educational games in classrooms are helpful to teachers be-
cause the students can receive individualized attention and
learning from the game while the teacher gives one-on-one
attention to students who need it.[7]. However, teachers
have limited time and try to prioritize their attention to the
students who need it most. It has been shown that students
who are given attention by teachers have increased student
learning[5]; therefore, teachers who are able to focus their
attention to low-performing students should see them bene-
fit.

Unfortunately, there are many reasons that students who
need help do not receive it. One study found that middle-
class students seek help more directly than working-class
students and end up getting more help as a result[4]. In
a recent study of classroom observations using ST Math,
researchers found differences in classroom format have an
influence on who receives help[13]. Furthermore, this work
found teachers in free-seating classrooms could not easily see
the raised hand indicator on student screens and so those

Figure 1: ST Math

help-seeking students went unnoticed. In classrooms that
use rotation-seating, teacher attention was only given if the
ST Math group was being disruptive. In general, the stu-
dents who directly asked for help or were obviously off-task
received more teacher intervention than the students who
were less vocal [13].

The task of automatically identifying students who need
help has been explored [2]. With machine learning meth-
ods that can process large amounts of data and make pre-
dictions, many have been using these methods in attempt
to solve the problem. Ahadi et al. explored machine learn-
ing techniques and were able to use the first week of data
in a programming course to predict student performance
with accuracy ranging from 71-80%. Additionally, Jiang
et al. employed logistic regression models to predict the
type of certificate a learner received in Massive Open Online
Courses (MOOCs) [8]. In a study at the Open University,
decision tree models were implemented on users’ current and
previous activity to predict if they were at risk of failing a
module [24]. Another Open University study explored using
Bayesian models to build real-time predictive models from
student data and found little difference among the types of
models but that the accuracy increased with the addition
of data throughout the progression of the learning module
[23]. These studies show that machine learning can be used
to predict and understand student behavior, but are not be-
ing used to directly aid in student learning.

Predictive models are now being integrated into teacher dash-
boards or alert systems to enable this aid. In a survey of
K-12 teachers who used intelligent tutoring systems in class,
Holstein et al. found that they were very interested in hav-
ing real-time classroom monitoring tools that would help
them decide which students most needed their attention [7].
In another study, Holstein et al. developed a teacher alert
system using smart glasses that showed real-time indicators
of student behaviors floating above their heads [6]. Their
early findings suggest that this helped direct the teachers to
the students who needed intervention the most [7].



3. DATA
The data is collected by MIND Research Institute, who cre-
ated ST Math. This study was conducted on data from
3rd grade students who played ST Math during the 2016-
2017 school year. The data contains 31 objectives, 154
games, and 669 levels which equals 5,186,269 total level at-
tempts by 8,983 students from 111 schools and 636 teach-
ers. We excluded students who completed objectives not
contained in the 3rd grade objectives which removed 21,544
level attempts. These are students who might have been
erroneously included from other grades, as the system is
used for grades 3-5. For the purposes of our study, we fil-
tered out level attempts where the student only completed
one level attempt in our 30 minute gameplay session cutoff.
This removed 101,849 level attempts, leaving us with a fi-
nal dataset of 5,062,876 unique level attempts. The initial
data we were provided with had 6 features for each level at-
tempt: STMathID (unique ID for each student), Level, Ob-
jective Code, Timestamp, Number of Correct Puzzles, and
Total Number of Puzzles. For the purpose of our analysis,
we created additional features shown in 1.

4. METHOD
We wanted to explore different ways of providing teachers
with information about student progress, so that they could
intervene and monitor progress according to their own class-
room goals. Therefore, our intention is to predict the pro-
jected progress of a student using the least amount of infor-
mation and using only same-day gameplay data. Here, we
are comparing two methods of data segmentation: predict-
ing the time spent passing the next level based on the time
spent passing the current level, and using the least amount
of gameplay to predict how many levels would be passed
in the next 20 minutes of gameplay. We are attempting to
see if a student’s performance in the beginning of a game-
play session is a good prediction for their later performance.
A gameplay session is defined as subsequent level attempts
that are separated by less than 30 minutes. If two level at-
tempts are separated by 30 minutes or longer, we count the
second attempt as a new gameplay session. We decided on a
30 minute cutoff because a pause in the game of 30 minutes
or more might indicate the student was working on some-
thing else in between and we cannot say that the previously
played level will have any effect on the performance of next
level. However, we still want to include students who may
be truly struggling, receiving help from a teacher or giving
help to another student during the playthrough of a level.
Only 3.5% of the data for the gap between play sessions was
between 30 minutes and 20 hours, while 11.6% of the data
was 20 hours or longer between gameplay sessions.

5. EXPERIMENT 1: PAIRWISE PREDIC-
TION

This section details our attempt at using previous level data
to predict student outcomes for the next level attempt.

5.1 Pairwise Method
We wanted to see if we can predict how well a student will
do on the next level by using only the data from the pre-
vious level in the prediction. Our aim in this experiment
was to investigate if the features of a single level for a stu-
dent can predict whether the student would have needed an

Table 1: Features Created for the Analysis
Feature Description
game The name of the game

this level is in,
extrapolated from the
Objective Code and Level

performance Number of puzzles correct
before losing all lives divided
by total puzzles in level

isReplay 1 if this level has been
attempted before, otherwise 0

isUnneceReplay 1 if the level is
replay, otherwise 0

prevPassAttempt For replay: 1 if it is on
SameLevel the same level played

in previous row, 0 if not,
NA if not replay

passedCurrentLevel 1 if the student passed
B4Unnece the level in the previous row

(their “current” level) AND
this row is replay, 0 if not,
NA if not replay

sameObj 1 if current level and previous
are the same objective

levelPlayTimeSec Timestamp - previous row’s
timestamp

gameplaySession Numbered starting at 1
and incrementing if the
levelPlayTimeSec > 30
minutes (1800s). Rows with the
same numbered gameplaySession
are assumed to happen
during a single “play session”

prevPerf Average of previous gameplay
session’s performance

firstInGameplaySession 1 if this level attempt is
the first in a new gameplay
session, otherwise 0

lastInGameplaySession 1 if this level attempt is
the last in a gameplay
session, otherwise 0

intervention for the next level. This would be beneficial to
teachers because it would give an alert immediately after a
student finishes a level that would tell them that the stu-
dent might need help on the next level. We used pairwise
prediction, so the data was grouped into Level A and Level
B, with the constraint that Level A and Level B had to be
in the same objective and the same gameplay session. We
considered Level A to be the first attempt on a new level, all
subsequent attempts (retries) until the level was passed, and
any replayed levels that happened before or after the level
was passed. Any gameplay that happened between the first
attempts of two consecutive levels would be counted as Level
A data. Level B is the next attempt on a new level after
Level A, and contains the same information as Level A: num-
ber of attempts, retries, replays before and after passing, up
until the next new level attempt. We expected the num-
ber of attempts to pass a level to provide information about
how many attempts they will need for the next level because
the levels increase in difficulty inside objectives and this is



consistent through ST Math. Also, research has shown that
replay that happens before passing a level results in a neg-
ative effect on performance while replay that happens after
passing a level has been shown to have a positive effect[12];
therefore, we expected this data to also be useful for the
prediction.

Due to time constraints and the complexity of the feature
creation, we used a subset of our total dataset for this anal-
ysis. The dataset includes 830 students, and 665 unique
objective-level pairs. Objective-level pairs are level pairs
within an objective. However, some students did not com-
plete all the objective-levels resulting in a total of 277,975
unique student objective-level pairs.

5.1.1 Pairwise Feature Generation
Since the raw data only included gameplay aspects per at-
tempt such as time taken, attempt performance and the kind
of attempt (retries, replay, etc.), we engineered 33 additional
features for every student objective-level pair. There are 7
attempt categories and 5 metrics per each category. The
7 attempt categories are as follows: overall level attempts,
total retry and replay attempts, retry attempts, total replay
attempts, total replay attempts before passing the current
level, total replay attempts after passing, replay attempts of
the same level (current) after passing, and replay attempts
of other levels after passing. The 5 metrics for each cate-
gory are as follows: whether an attempt category occurred
(except for overall attempts category), total number of at-
tempts (except for overall attempts category), total time,
average time, and average performance.

Next, for each student, we identified the consecutive levels
(Level A, Level B) within each objective that were com-
pleted in the same session. We found a total of 222,258 such
level pairs for 830 students. We explored four different ways
to define an intervention: if the total time was greater than
the 75th percentile (I-TotalTime), if the average time was
greater than the 75th percentile (I-AvgTime), if the average
performance was less than 25th percentile (I-AvgPerf), and
if the student could not finish a level in the first attempt
(I-FirstAttempt). Each of these intervention types were in-
tended to capture a different aspect of a student’s ability to
complete a level.

5.1.2 Pairwise Feature Selection and Prediction Mod-
els

The analysis was carried out in Python. We normalized the
time-related features and then explored three feature selec-
tion techniques in the scikit-learn[16] package. We used a
pipeline of a feature selection wrapper method, SelectFrom-
Model, with models such as LinearSVC (Linear Support
Vector Classifier with L1 loss), LassoCV (Lasso linear model
with 3-fold Cross Validation), and Logistic Regression. We
used 7 classifiers KNN (n = 3), LinearSVC (Linear Support
Vector Classifier), Decision Tree (using Gini index), Ran-
dom Forest (using Gini index), MLP (Multi-layer Percep-
tron classifier with a 2-layer (100,100) neural network using
a learning rate of 0.001 and reLU activation function), AD-
Aboost, Naive Bayes and measured the prediction accuracy
using 10-fold Cross Validation.

Table 2: Features Selected using Linear SVC (with
L1 loss) for Pairwise Prediction
Feature Description Mean SD/

(mode occurrence
for for
Binary) Binary

retryOr- 1 if 0 0:181,804
Replay- retryAnd- 1:40,454
Binary ReplaySum>0,

otherwise 0
replay- 1 if 0 0:221,981
Binary replaySum>0, 1:277

otherwise 0
retryAnd- Total Time 65.78 200.18
Replay- Spent on
TimeSum Retries

and Replays
avgTime- Average Overall 225.49 175.23
PerLevel time
avgPerf- Average Overall 0.94 0.16
Total Performance
avgRetry- Average Replay 0.16 0.35
AndReplay- Performance
Perf
avgRetry- Average Retry 0.16 0.35
Perf Performance

5.2 Pairwise Results & Discussion
The feature selection based on LinearSVC with L1 loss and
the Random Forest classifier provided the most optimal pre-
diction accuracy. Table 3 shows the results of using a Ran-
dom Forest classifier for each intervention type. We observed
that the average time spent on Level A was selected for each
intervention type based target for Level B. The distribution
parameters of the features selected are shown in Table 2.
We observed that very few features related to the replays
were selected. This may be because the consecutive level
pair dataset recorded very few rows with retries or replays
(18.20%) and even lower just considering replays (0.12%).
Such a high degree of sparsity in replay made any replay re-
lated features not significant enough to contribute towards
the predictions. Another interesting observation is that the
performance over all the attempts (avgPerfTotal) in Level A
was not a significant predictor of the intervention for Level B
in any of the models primarily because of the small variance
recorded for this feature. The small variance is due to the
granularity of the data only recording passed level attempts
with failed puzzles as 100% performance. On the other hand,
the average time in Level A (avgTimePerLevel) was a sig-
nificant predictor of the intervention for Level B for every
intervention type based target. We recorded few replays in
general and a low variance in the performance related fea-
tures, so only the time related features were varied enough
to capture the relationship between Level A and Level B.
The results suggest that the average time spent on an at-
tempt in a level is the most significant predictor of whether a
student may need assistance in the next level. However, the
classifier models for each intervention type did not perform
significantly better than a baseline classifier that would pre-
dict all the observations to be the Majority Class (the class



Table 3: Features Selected based on Linear SVC with L1 loss and Prediction Accuracy with Significant
Predictors using a Random Forest classifier for Each Intervention Type Target

I-TotalTime I-AvgTime I-AvgPerf I-FirstAttempt
Feature avgTimePerLevel avgTimePerLevel avgTimePerLevel avgTimePerLevel
Selected avgPerfTotal avgPerfTotal avgPerfTotal

retryOrReplayBinary avgRetryAndReplayPerf retryOrReplayBinary
retryAndReplayTimeSum replayBinary
avgRetryPerf

Significant avgTimePerLevel: 0.7 avgTimePerLevel: 0.93 avgTimePerLevel: 0.98 avgTimePerLevel: 1.00
Predictor retryAnd-

ReplayTimeSum: 0.17
Majority 76.64% 76.18% 99.59% 75.32%
Class
Prediction 77.20% 77.21% 99.60% 76.49%
Accuracy
(K=10)

containing more students) as shown in Table 3. This sug-
gests that the relation between the behavior of students in
two consecutive levels may be highly varied and that it is
difficult to generalize whether an intervention is needed in a
level based on only one previous level. It may also suggest
that such a prediction may be dependant on how far along
students are in their academic year. To investigate the first
scenario, we added a feature for a student’s previous perfor-
mance average, an average of every level attempt until now,
in attempt to help distinguish low-performing students from
the rest. Previous performance average was selected for each
intervention type prediction but had lower feature impor-
tance (0.03%) because of the low variance and, therefore,
did not affect the prediction accuracy. To investigate if the
time of the academic year had any impact on the predic-
tion, we added a feature to indicate the month in which
the sessions occurred. Similar to the previous performance
average, this feature was selected but had a low feature im-
portance (0.05%) leading to an insignificant difference in the
prediction accuracy.

Since only time related features were varied enough to cap-
ture the variance in the student behavior in two consecutive
level pairs, we explored ways other than feature generation
to perform the pairwise prediction. We sliced the data based
on aspects, such as replay type or month of the year but,
again, obtained similar prediction accuracies; however, the
replay related features did get selected and had high impor-
tance for the prediction in the data sliced by replay type.
To investigate if the variance in the content of the objec-
tives may be affecting the prediction results, we performed
the prediction for each intervention type within a single ob-
jective and observed that the prediction accuracy decreased
slightly. This suggests that even within one objective, the
behavior of a student in one level, as captured in its cur-
rent granularity, may not accurately predict if they need an
intervention in the next level.

The pairwise prediction models may not have generated de-
sirable results because we may need more than just one pre-
vious level’s data to predict if an intervention is needed.
There is not sufficient data about each level in this dataset to
accurately represent the student’s performance and to cre-
ate good predictions. Therefore, having more fine-grained

details about level attempts, including knowing more about
how the levels compare to each other within each objective,
may improve the prediction accuracy.

6. EXPERIMENT 2: LEVELS COMPLETED
IN 20 MINUTES

We chose to determine if we could predict the number of
levels completed in 20 minutes using only information from
the current session. Using only information from the cur-
rent session will allow an easier integration with the current
system with minimal changes needed. Different schools and
classrooms have unique ways of using ST Math[13]. As a
result, there is a variety of session times ranging from very
short (less than 5 min) to sessions lasting over an hour, with
an average of 23 minutes spent in a session. Therefore, we
decided to predict how many levels a student would com-
plete in a 20 minute session. This information could be
used by teachers to identify students who will not be able
to complete the number of levels the teacher expects for
that session and the teacher can intervene to assist or en-
courage. With this prediction, the system could provide a
teacher with each student’s predictions and order the stu-
dents by the lowest predicted number of levels to complete
in the next 20 minutes. Then, the teacher can easily look at
the slowest students and make the judgment, based on their
knowledge of each student and what goals the teacher has for
that lesson, and determine who they need to assist. Studies
have shown that teachers may focus assistance on students
with better help-seeking behaviors because they are often
more persistent or better in requesting help[4, 20]. Provid-
ing this information this early in the session could be crucial
for low-performing student with who are not asking for help
or not doing so effectively.

6.1 Levels Completed Prediction: Methods
The data we used consisted of 787949 session observations
from 8978 unique students, 111 schools, and 636 teachers. A
session represents a period of time that the student spends
working on ST Math without taking longer than a 30 minute
break (see Section 4 for full definition). For accurate predic-
tions, we chose to use the first 6 minutes of gameplay due to
the average level attempt taking approximately 3 minutes.
We refer to this segment of data used for prediction as a



time “slice”. Since our goal was to use the least amount of
information to do the prediction, we wanted this time to be
as short as possible. We initially attempted to use shorter
time slices, but due to a level attempt taking on average
3 minutes, this did not provide a sufficient amount of data
to represent the students’ gameplay behavior and, in some
cases, eliminated slower students data for that time slice.

Next, we removed sessions under 10 minutes (242750 obs.
- 169863 obs. under 6 min) and sessions over 75 minutes
(10,257 obs.). We chose these cutoffs to eliminate short ses-
sions where predictions would not be useful and long ses-
sions, in some cases over 4 hours, that were likely anoma-
lous.

Table 5 shows the statistics for session and slice features.
The average session time was 28 minutes and the average
slice length was 4.5 minutes.

Table 4: Session and Time Slice Stats for the time,
performance, and levels completed

Feature Mean(SD) Mdn
Session Levels per 20 min 3.8 (2.5) 3.5

Total Time (min) 28.9(26.3) 816.2
Avg Performance 74.9%(23.4) 81.3%

Slice Levels Completed 1.9(1.1) 1
Total Time (min) 4.5(0.9) 4.6
Avg Performance 72.6%(34.0) 100

6.1.1 Levels Completed Prediction: Feature Gener-
ation

From the level data, the data was segmented into the first 6
minute time slice for prediction. Features were aggregated
from this 6 minute time slice to capture what each student
was able to do, such as complete a level, fail a level, retry a
level, or engage in replay. The features generated are based
on performance, time, level attempts/replay features, the
objective the student was in within that slice. The per-
formance features were: average performance (numeric),
percentage of levels passed out of all attempts (numeric),
and percentage of levels completed out of all attempts (nu-
meric). The time features from the slice were: the total
time (numeric), the average level time (numeric), number
of passed levels per time (numeric, scaled), number of com-
pleted levels per time (numeric, scaled), and the month of
the session. The level attempt features were: total num-
ber of replays (numeric), total number of levels failed (nu-
meric), total number of levels passed (numeric), total num-
ber of levels completed (numeric), total puzzles attempted
(numeric), total puzzles completed (numeric), whether they
engaged in replay (binary), whether they re-attempted a
level (binary). Then, there were 31 binary features rep-
resenting the objective the student was playing when the
session started.

6.1.2 Levels Completed Prediction: Model Selection
and Feature Selection

For this prediction, we tried a variety of models, tuning of
these models, and alteration of the target variable. Model
and feature selection was accomplished by using scikit-learn[16].

For the models, we tried both classification and regression.
For classifications, multiple groupings of number of com-
pleted levels in 20 minutes were chosen using balanced classes,
the best accuracy (77% using a 2-layer neural network) be-
ing a split to determine if a student could complete at least
an average number of levels in 20 minutes. However, we
decided that regression, providing finer-grained predictions,
would provide more useful information to the teachers and
allow them to have more autonomy in deciding which stu-
dents need help. For regression, we tried to predict how
many levels a student could complete in 20 minutes, which
derived from taking the total number of levels completed
and the total time of the session and scaling.

We tried multiple models, including decision trees, neural
networks, and random forests after normalizing the features.
Intrepretable machine learning methods are more important
because knowing which features are more influential to pre-
dicting performance can give insights to how students learn
in games. In the results, we show the 2 best models com-
pared to a baseline. The baseline model is created by always
predicting the mean of the completed levels per 20 minutes.
The best models were created by testing multiple models
and fine-tuning the parameters. The two best models are
created from scikit-learn: a 3-layer (50,30,20) neural net-
work (MLPRegressor) using a learning rate of 0.001 and
reLU activation function, and a Random Forest (Random-
ForestRegressor) using mean squared error as the criterion
function and setting the minimum samples for a split to be
20.

To evaluate each model, we used the following metrics: Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE),
adjusted R-squared score, and explained variance (EV). We
choose these metrics to evaluate, on average, how accurate
each prediction rate was to determine if the error is small
enough to still provide a good estimate of the students’ pro-
jected progress. Both R2 and EV were used to evaluate the
variance of these errors and check for biases within the mod-
els. All models were evaluated with 10-fold cross validation.

We attempted feature selection using scikit-learn filter meth-
ods, such as feature importance from tree regression, and a
wrapper method (SelectFromModel) with each model. Fea-
ture selection did not improve any models, and resulted in
significantly worse predictions in most cases. This is most
likely due to the limited amount of features available. Be-
cause our data is not fine-grained, we have a limited amount
of information about each student for a level attempt. This
indicates that each feature could be providing key informa-
tion regarding their current progress. Therefore, for the best
models the whole feature set was used (see Feature Genera-
tion).

6.2 Levels Completed Prediction: Results &
Discussion

This section discusses the results of the Experiment 2 re-
gressions.

Table 5 shows the results of the evaluation metrics for the
two best regression models compared to the baseline model.
The NN and the Random Forest both perform similarly,
both outperforming the baseline model. Although the MAE



does not have a large difference, the RMSE is much lower.
This indicates that the variance of the errors is significantly
smaller for our predictive models. The MAE of 1.2 for our
predictive models means that on average the prediction will
only be around 1 level off for a specific student, which still
provides a good estimation for the teacher to use. The ad-
justed R-squared and explained variance are almost identical
for both models, which happens when the mean of the errors
is approaching zero. Although these scores are not perfect,
in the context of educational data from a system used with
multiple teaching styles, this is a highly meaningful result[1,
17].

Table 5: Results for the 2 best regression models
compared to a baseline(mean).

Model MAE RMSE R2 EV
Forest 1.24 1.59 0.58 0.58
NN 1.22 1.58 0.59 0.59
Baseline 1.96 2.48 -1.2E-5 0.0

Table 6 shows the top five most important features for deci-
sions in the Random Forest. All of these top features focus
on the number of completed levels, the total time, or a com-
bination of these features. This is not surprising because the
amount of levels a student can complete in the first 6 min-
utes should be a good indication of how they will perform
over the whole session. However, this is assuming that the
students remain seated and playing the game in the same
manner.

Table 6: The top five most important features from
the Random Forest

Rank Feature
1 Total Levels Completed
2 % of Levels Completed
3 Completed Levels per Time
4 Total Time
5 Average Level Time

Figure 2 shows a density plot of the predicted values versus
the actual values, the yellow/lightest color being the highest
density. Both figures show the highest density areas occurs
closely to the actual values. The Neural Network appears
to have a higher density closer to the line and the points
appear to be more compact, although both models show
similar predictions. Both figures are zoomed in to focus on
the lower level number predictions, although few points have
values higher than 10. One note is both models are less fitted
for the higher values and tends to predict around 10 after the
actual value is 10+. However, we are mostly concerned with
students who are completing very few levels. If a student
falls into the 10+ range of levels completed, the actual value
becomes less important due to how much above the average
it is. A teacher will still be able to use this information to
identify over-performing students and ensure they don’t get
too far ahead of the class.

With the variability of how this system is used, the models
evaluations are a positive result. For example, during field
observations of the system, we found many teachers asked
students ahead in the curriculum to help students next to

Figure 2: These density plots show the predicted vs.
actual values for the two best regression models to
predict the number of completed levels in 20 min-
utes. Note: the yellow/lightest areas represent the
highest density of points.

them during a gameplay session. Therefore, a student may
spend part of the session working as normal, then, after the
teacher has identified a struggling student, the teacher may
ask the student next to them to help. This could result in
much higher predicted values than what the student actu-
ally completes. Furthermore, we observed students in some
classrooms initially talking and working at a slower pace in
the first few minutes of a session as they settled in, then
shortly being asked to focus. This could result in much
lower predictions of the projected number of levels that stu-
dent could complete. Since the data does not only include
the sessions where students quietly work by themselves for a
continuous period of time, accurate predictions are difficult.

Furthermore, the data we used focused on only the same-day
gameplay data, not containing any information regarding
how a student has previously performed in other sessions.
This decision was made to limit the changes required to im-
plement this system in the game. However, including prior
information may improve predictions. One possible way to
control for the effect of the different teaching styles is to in-
clude teacher or school information in the model. However,
this would create very sparse features due to the large num-
ber of teachers and schools that use the system. A future
attempt could identify and categorize the teachers or schools
based on similar styles and add those features to the models.

This prediction can be used in two main ways: identifying
the lowest performing students who may need assistance,
but may not be requesting help, and identifying students
who may be working too fast and getting ahead in the cur-
riculum. The second usage may not seem like an issue, but
having a large knowledge gap between students may make
a classroom harder to manage and teach. This is a problem
teachers seek to avoid in ST Math that they have reme-
died by asking those students to help others or by allowing
them to play games while others catch up[13]. For ease of
use, these predictions could be provided in a simple list with
each student’s name and the predicted number of levels they
will complete in 20 minutes. Furthermore, the top 5 lowest
and highest predictions could be presented at the top of the
interface so teachers could quickly have an idea of who is
struggling and who may need to be slowed down. Because



teachers already have access to where each student is in the
curriculum, the teacher can use their expertise and knowl-
edge of the students to make judgement calls on what to do
from there. A mock interface of how this could be presented
can be seen in Figure 3.

Figure 3: Mock interface showing how teachers
would view students’ predictions

7. OVERALL DISCUSSION
The results for the levels completed experiment were more
promising than the pairwise experiment. For the pairwise
prediction, the lack of fine-grained puzzle level data made
it difficult to predict whether a student may need interven-
tion based only on their previous level’s data. We believe
the results for this method of pairwise prediction might im-
prove with more data about how the objectives, games, and
levels relate to each other. On the other hand, the predic-
tion model from the levels completed experiment had decent
results with the MAE and RMSE indicating that the predic-
tions are generally within 1-2 levels of the actual completed
levels for the 20-minute time period. Having additional in-
formation, including finer-grained puzzle-level data, should
also improve this prediction.

Providing the teachers with a projected completed amount
of levels allows us to give the teachers a list of the stu-
dents ranked by the number of levels they are predicted to
complete. This allows the teachers to use their expertise to
distinguish the higher- and lower-performing students dur-
ing that game session, and, importantly, the teachers have
the ability to make judgments about interventions accord-
ing to their discretion. Currently, the teachers only have
information on student progress in the overall game curricu-
lum (which objectives each student has finished and how
many levels have been completed). Additionally, the only
method currently used to support students in seeking help
is the raised hand indicator, which has been shown to not
always get the teachers’ attention due to its location on the
students’ screens. We believe that incorporating this predic-
tion into the system will be a valuable tool for teachers that
will suggest which students are struggling and allow them
to decide if they need intervention. Giving teachers these
suggestions after only 6 minutes of gameplay time means
that the teachers will have more control over the classroom
progress because they will have more time to help students
get back on track instead of being behind for the entire ses-
sion and be able to slow down students who are getting too
far ahead of the class.

7.1 Limitations
To reduce the amount of time processing the data, we used a
representative subset for the pairwise prediction. However,
we compared multiple numerical and categorical features be-
tween this subset and the entire dataset and determined that
it contained almost identical distributions of data points.
We created histograms for the distributions of performance,
level play time, levels in session, time of session, performance
session, and compared the number of schools and teachers
represented in the subset to the totals. We were only miss-
ing 6 out of 111 schools and we had students from almost
half of the teachers (291 out of 636) included in our subset.

We do not have fine-grained interaction data, which means
we cannot tell exactly how many puzzles a student gets
wrong. This lack of information causes our data to be skewed
by having many performance scores of 100%, without cap-
turing the full gameplay. However, there are other features
that we can use tease out this information, like level time, as
students who pass a level while also getting puzzles wrong
will most likely take longer because they are doing more
problems. We have finer-grained puzzle level data, but it
does not match up accurately with our level data. This
means that while we can do studies on these datasets sepa-
rately, we cannot combine them to have the full picture of
what a student is doing during the level: which puzzles they
see, if any puzzles are repeated during a level, how many
puzzles right and wrong, and the time spent on each indi-
vidual puzzle in a level. These finer granularities could offer
valuable information on what a student is doing during a
level and their performance compared to the whole student
set.

8. CONCLUSION
This study aimed to use the least amount of student game-
play data possible to predict which students would benefit
from teacher intervention during the remainder of the game-
play session. We tried two granularities of prediction for
our analysis. We hypothesized that we could use one level’s
data (average of 3.5 minutes of gameplay) to predict the
next level’s outcomes, as this controls for content and dif-
ficulty, but this hypothesis was not confirmed. The lack of
fine-grained level attempt data might not allow us to make
a good prediction. Our second hypothesis was that we could
use the first 6 minutes of gameplay (about 2 levels) to pre-
dict how many levels the student could complete in the next
20 minutes. This had a reasonable outcome with a MAE
of 1.2 and RMSE error of 1.6, meaning that, on average,
the prediction is only off by 1-2 levels, which is a good es-
timation of how many levels a student will complete. We
believe this can provide a valuable resource for the teachers
who use ST Math in their classrooms, to help them con-
centrate their time and energy on the students who need it
the most. Furthermore, this method allows the teachers to
have a certain level of judgment in regards to who needs the
assistance, which is imperative in a system that is used in
multiple styles. Future work could investigate how this af-
fected the students’ performance if we gave this information
to teachers.
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Barnes, T., Lynch, C.F., Rutherford, T.: A field study
of teachers using a curriculum-integrated digital game.
In: Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. p. 428. ACM
(2019)

[14] Peddycord-Liu, Z., Cody, C., Kessler, S., Barnes, T.,
Lynch, C.F., Rutherford, T.: Using serious game

analytics to inform digital curricular sequencing:
What math objective should students play next? In:
Proceedings of the Annual Symposium on
Computer-Human Interaction in Play. pp. 195–204.
ACM (2017)

[15] Peddycord-Liu, Z., Harred, R., Karamarkovich, S.,
Barnes, T., Lynch, C., Rutherford, T.: Learning curve
analysis in a large-scale, drill-and-practice serious
math game: Where is learning support needed? In:
International Conference on Artificial Intelligence in
Education. pp. 436–449. Springer (2018)

[16] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al.: Scikit-learn:
Machine learning in python. Journal of machine
learning research 12(Oct), 2825–2830 (2011)

[17] Prentice, D.A., Miller, D.T.: When small effects are
impressive. Psychological bulletin 112(1), 160 (1992)

[18] Romero, C., Ventura, S.: Educational data mining: a
review of the state of the art. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 40(6), 601–618 (2010)

[19] Rutherford, T., Farkas, G., Duncan, G., Burchinal,
M., Kibrick, M., Graham, J., Richland, L., Tran, N.,
Schneider, S., Duran, L., et al.: A randomized trial of
an elementary school mathematics software
intervention: Spatial-temporal math. Journal of
Research on Educational Effectiveness 7(4), 358–383
(2014)

[20] Ryan, A.M., Gheen, M.H., Midgley, C.: Why do some
students avoid asking for help? an examination of the
interplay among students’ academic efficacy, teachers’
social–emotional role, and the classroom goal
structure. Journal of educational psychology 90(3),
528 (1998)

[21] Sabourin, J.L., Shores, L.R., Mott, B.W., Lester, J.C.:
Understanding and predicting student self-regulated
learning strategies in game-based learning
environments. International Journal of Artificial
Intelligence in Education 23(1-4), 94–114 (2013)

[22] Skinner, E.A., Belmont, M.J.: Motivation in the
classroom: Reciprocal effects of teacher behavior and
student engagement across the school year. Journal of
educational psychology 85(4), 571 (1993)

[23] Wolff, A., Zdrahal, Z., Herrmannova, D., Kuzilek, J.,
Hlosta, M.: Developing predictive models for early
detection of at-risk students on distance learning
modules. In: Machine Learning and Learning
Analytics Workshop at The 4th International
Conference on Learning Analytics and Knowledge
(LAK14). p. 24–28 (2014)

[24] Wolff, A., Zdrahal, Z., Nikolov, A., Pantucek, M.:
Improving retention: predicting at-risk students by
analysing clicking behaviour in a virtual learning
environment. In: Proceedings of the third
international conference on learning analytics and
knowledge. pp. 145–149. ACM (2013)


